
RESEARCH ARTICLE

ConPADE: Genome Assembly Ploidy
Estimation from Next-Generation Sequencing
Data
Gabriel R. A. Margarido1,2*, David Heckerman1*

1 Microsoft Research, Los Angeles, California, United States of America, 2 Departamento de Genética,
Escola Superior de Agricultura ‘‘Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil

* gramarga@usp.br (GRAM); heckerma@microsoft.com (DH)

Abstract
As a result of improvements in genome assembly algorithms and the ever decreasing costs

of high-throughput sequencing technologies, new high quality draft genome sequences are

published at a striking pace. With well-established methodologies, larger and more complex

genomes are being tackled, including polyploid plant genomes. Given the similarity be-

tween multiple copies of a basic genome in polyploid individuals, assembly of such data

usually results in collapsed contigs that represent a variable number of homoeologous ge-

nomic regions. Unfortunately, such collapse is often not ideal, as keeping contigs separate

can lead both to improved assembly and also insights about how haplotypes influence phe-

notype. Here, we describe a first step in avoiding inappropriate collapse during assembly. In

particular, we describe ConPADE (Contig Ploidy and Allele Dosage Estimation), a probabi-

listic method that estimates the ploidy of any given contig/scaffold based on its allele propor-

tions. In the process, we report findings regarding errors in sequencing. The method can be

used for whole genome shotgun (WGS) sequencing data. We also show applicability of the

method for variant calling and allele dosage estimation. Results for simulated and real data-

sets are discussed and provide evidence that ConPADE performs well as long as enough

sequencing coverage is available, or the true contig ploidy is low. We show that ConPADE

may also be used for related applications, such as the identification of duplicated genes in

fragmented assemblies, although refinements are needed.

Author Summary

Diploid organisms, such as human beings, have two “copies” of each chromosome, whereas
polyploid organisms have multiple “copies” (we use quotes to stress that the “copies” are
not identical). A key difference between diploid and polyploid organisms is that the “copies”
tend to be less similar in polyploid organisms. This difference leads to important differences
in the process of de novo genome assembly from short fragments of DNA. In particular,
when assembling polyploid organisms, contigs corresponding to different copies of the
chromosomes can be quite different, and merging them leads to loss of information. Thus,
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it is important to maintain distinct contigs, even though they correspond to copies of the
same chromosomal region. An important step in doing so is to determine how many truly
distinct copies of a chromosomal region are found in a single contig. For example, if there
are 12 copies of a particular chromosome, the possible number of distinct copies could be
anywhere from 1 to 12. We call this task “contig ploidy estimation”, and present a method
for accomplishing it. This set of methods is useful for the de novo assembly of complex,
polyploid genomes such as sugarcane, switchgrass, and wheat.

This is a PLOS Computational BiologyMethods paper

Introduction
Complete genome de novo sequencing and assembly is a major initial step in understanding
the underlying genetic architecture of important traits in any species [1–3]. Reliable reference
genomes are pivotal for finding genetic variations such as single nucleotide polymorphisms
(SNP) and insertions/deletions (indels), which bolster downstream applications such as ge-
nome-wide association studies, population genomics and comparative biology [4–7]. Genetic
breeding programs also benefit from reference genomes through the identification of superior
promoters and genes [8], which may later be channeled to transformation applications. There
have been many algorithmic developments yielding a myriad of software for assembly of the
large amounts of short reads generated by next-generation sequencing technologies, mainly de-
veloped under a haploid or diploid mindset [9–12]. Such methods have been successfully ap-
plied to many diploid species for which high quality or draft reference genomes are now
available [13–15]. In the case of more thoroughly studied species, particularlyHomo sapiens,
current work involves resequencing of a large number of individuals to characterize genetic
variation, as illustrated by the 1000 Genomes Project [16].

With these already established methodologies, research is moving to larger and more com-
plex genomes [17]. Plants are particularly challenging, due to the highly repetitive nature of
their genomes, combined with widespread occurrence of different forms of polyploidy, such as
allopolyploidy (e.g., wheat, many species of the genus Brassica and some types of cotton) [18],
autopolyploidy (such as potato, sugarcane and switchgrass) [19] and even paleopolyploidy (e.
g., Arabidopsis and maize) [20]. To circumvent many of the difficulties arising from such high
complexity, researchers have undertaken approaches such as sequencing doubled monoploids
to reduce heterozygosity, as was done with autotetraploid potato [21], chromosome sorting
and/or bacterial artificial chromosome (BAC) sequencing, such as done for allohexaploid
wheat [22]. These approaches are time and resource consuming and may not be applicable to
all species. On the other hand, whole genome shotgun (WGS) sequencing is a much less costly
option that does not require extensive library preparation or cloning efforts, but in turn results
in more fragmented assemblies [23]. Hybrid approaches, for example combining WGS with
BAC sequencing, can be used to balance the tradeoffs.

When a genome is assembled with WGS data, regions where two or more copies are similar
to each other result in a collapsed assembly, such that a single contig represents more than one
haploid segment. Unfortunately, such collapse is often not ideal. Keeping contigs separate can
lead to improved assembly due to simplification of downstream analyses such as genome fin-
ishing. Maintaining separation will also yield a more detailed view of the polyploid genome,
which in turn can lead to (e.g.) insights about how haplotypes influence phenotype.
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Here, we describe a first step in avoiding inappropriate collapse during assembly. Our goal
is to identify the number of potentially collapsed haplotypes in any given contig, affording in-
formation for subsequent efforts aimed at properly separating distinct genomic segments. In
particular, we describe a method to estimate the ploidy of a contig. The algorithm, called Con-
PADE (Contig Ploidy and Allele Dosage Estimation), estimates ploidy using the relative pro-
portions of alleles in heterozygous positions along with a learned model of measurement error.
We evaluate the accuracy of ConPADE with both simulated and real datasets, and show how
the approach can also be used for allele dosage estimation in polyploid species. Our approach
is applicable to shotgun data from an entire genome or from subsets of a genome, and is valid
as long as there is random sampling of all segments potentially collapsed into a single contig—
that is, there is no preferential sequencing or higher coverage from one or another genomic
segment. It is fundamentally different from copy-number detection algorithms, which are de-
signed to look for departures from a normal situation of diploidy [24,25], and from SNP calling
algorithms, which find variants based on the assumption of diploidy [26], or assume an user
defined ploidy level [27,28].

At first glance, it may seem that ploidy estimation is trivial when the number of homoeolo-
gous copies is known prior to assembly. However, for aneuploid species such as sugarcane, the
number of copies varies from one chromosome to another [29]. Furthermore, even if the num-
ber of homoeologues is the same for each chromosome, in a given region, some homoeologues
will be identical, some will be different, and some will be lacking the region altogether. Conse-
quently, if a region has k homoeologues, the contig ploidy in that region can range from 1 to k.

ConPADE should also prove useful in estimating the true ploidy of an organism. With
lower sequencing costs and better assembly methods, we anticipate that many species for
which there is no genomic information will undergo genome sequencing. Even for more well-
known species, there may only be rough ploidy information available. In all these situations, it
would be beneficial to have information on the ploidy of specific contigs.

Results

HiSeq Error Model
Examination of the quality score distribution showed an apparent excess of bases with quality
2 (S1 Fig), the lowest possible value, indicating that the base calling algorithm could not reliably
call a nucleotide for over 12% of the cases. Furthermore, assessment of realized error probabili-
ties showed a strong deviation from the expected value particularly for a quality score of 2 (Fig
1). These observations indicate that many sequenced nucleotides were inappropriately assigned
a poor quality score. One approach for dealing with low scores would be to trim reads or re-
move entire reads. In Section Simulations, however, we show that such reads can be incorporat-
ed into the analysis of ploidy, provided an appropriate error model is used.

Sequencing quality of the neighboring region gives further indication of whether a given nu-
cleotide can be relied upon. In particular, it is known that nucleotides with high quality scores
can nonetheless be of lower actual quality when surrounded by a region of low quality [30].
Our observed error probability surface over the nucleotide quality score and the average neigh-
boring quality score does indeed show a slight bump in the plot for high quality nucleotides in
a poor quality region (bottom part of Fig 2). More interestingly, however, we have also ob-
served that the error probability is significantly increased when an intermediate quality nucleo-
tide is surrounded by a high quality neighborhood.

Modeling the sequencing error probability by taking into account quality score and neigh-
boring quality score features, as well as specific nucleotide substitutions and the preceding se-
quenced nucleotides, resulted in a substantially superior fit over the quality score information
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alone, as shown by cross validation analyses. By doing so, we were also able to keep all aligned
reads in the dataset, without removing allegedly low quality bases. We note that the modeling
of sequencing errors is similar to the approach taken by some SNP calling methods, such as the
one employed by GATK [27]. Evaluation of the error model on ploidy estimation is given in
Section Simulations.

Summary of the Ploidy Estimation Model
In our model, we assume that there are at most two possible alleles at any given position. For a
genomic region with any given level of ploidy, herein denotedM, heterozygous sites in the ge-
nome can hold varying proportions of these two alleles. As an example, all heterozygous posi-
tions in a diploid region will display the two alleles in a 1:1 ratio. Alleles in a triploid region can
be present in 2:1 or 1:2 ratios. A tetraploid can display the ratios 3:1, 2:2 and 1:3. In general, the
number of heterozygous possibilities isM−1. This structure is captured in the generative model
displayed in Fig 3. Because particular contigs or scaffolds can represent a varying number of
copies in a polyploid individual, due to collapsing during assembly, this model assumes ploidy
is constant along each contig, instead of along the entire genome.

For a given contig or scaffold, the genotype at each position refers to the ratio between the two
alleles. First, we define the probability of there being a SNP in any position as P(SNP). We then as-
sume a uniform distribution for all possible heterozygous proportions, as done by others in a

Fig 1. Sequencing error probabilities.Observed sequencing error probability as a function of the Phred
quality score (dots connected by the dotted line) and the expected error probability according to the
expression 10(−QS /10), whereQS represents the quality score (solid line). There is overall agreement between
empirical observations and theoretical expectation, expect for the quality score of 2.

doi:10.1371/journal.pcbi.1004229.g001
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polyploid genotyping context [31], which corresponds to setting PðG ¼ gÞ ¼ PðSNPÞ
M�1

, where G de-

notes the dosage of the first allele, with g = 1, � � �,M−1. The dosage of the other allele is conse-
quentlyM−g. The order of alleles is defined arbitrarily without loss of generality. For g = 0 and g =

M, which correspond to a position with no true variation, we set PðG ¼ gÞ ¼ 1�PðSNPÞ
2

, such that

both possibilities are uniformly distributed. Lastly, for each read at each position, we assume that
the true (unobserved) nucleotide follows a Bernoulli distribution with probability equal to the pro-

portion of the first allele—that is, T ¼ Bern g
M

� �
, where T takes on the value 1 or 2 representing

the first or second allele. Our previously learned HiSeq error model is then plugged into this ploi-
dy model.

Our model takes into account information from all genomic positions of a given contig/
scaffold, having a nested model for all reads covering each position. We use the model to infer
the probability of observing each particular nucleotide in the dataset for all possible genotypes
for any given ploidy, and subsequently infer the ploidy that maximizes the likelihood of the ob-
served data. The default implementation sets a uniform prior for every ploidy, but prior infor-
mation can be easily incorporated.

Fig 2. Error probability surface depicting predictive influence of the average neighboring quality score.Note that Phred quality score 2 was
not included.

doi:10.1371/journal.pcbi.1004229.g002
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After selecting the ploidy with highest posterior probability, an estimate of the most likely
genotype can be obtained for each individual position. More or less conservative thresholds, as
well as other optional filters, can be used to call variants—that is, heterozygous genotypes.

The model is described in more detail inMethods.

Simulations
To evaluate the performance of this ploidy estimation model, we simulated data from several
different scenarios and applied the ConPADE method to each of them. We evaluated contigs

Fig 3. The graphical model for ploidy estimation and variant calls. Each node represents a variable. Edges represent probabilistic dependencies. Each
node is associated with a probability distribution of the corresponding variable conditioned on the variables corresponding to its parents. Variables within the
same plate (rectangle) are replicated according to the number of positions in a contig (the “Positions” rectangle) or the number of reads overlapping a given
position of a given contig (the “Reads” rectangle). Shaded variables represent the HiSeq error model, which is a component of the ploidy estimation model.

doi:10.1371/journal.pcbi.1004229.g003
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with ploidy ranging from one to 16, consistent with the vast majority of real data. For example,
potato is tetraploid (Solanum tuberosum, 2n = 4x = 48) [21], sweet potato is hexaploid (Ipo-
moea batatas, 2n = 6x = 90) [32], and sugarcane cultivars present different levels of ploidy,
from 5X to 12X or more, with further aneuploidy (Saccharum spp, 2n = ca 110 to 120) [33].
We simulated coverage levels varying from 10X per copy, which is typically less than optimal,
to a coverage of 75X per haploid copy, which is higher than the usually employed datasets, al-
though currently practicable given the continuously decreasing costs of next-generation se-
quencing data. Some eukaryote genome sequencing projects have already used such depth of
coverage [34,35].

To assess the effect of different levels of sequencing coverage, for each ploidy, we initially
simulated a 10 Mb long contig, which is a long enough sequence to contain thousands of SNPs
spaced at a reasonable distance. Our goal was to isolate the effect of sequencing coverage from
contig length in this first set of simulations. Results from such simulations are shown in S2 Fig
and S1 Table. When using the full error model, ploidy was correctly estimated in each experi-
mental condition for depths of coverage of 15X and above. For the lowest coverage of 10X per
haploid segment, ploidies from one to 11 were correctly called. However, for generated ploidies
of 12 through 16, estimates were consistently downward biased such that the estimated ploidy
was one unit below the underlying truth. Indeed, with low coverage, higher ploidies are ex-
pected to be harder to distinguish from one another, because of the increasingly smaller dis-
tances between the dosage-to-ploidy ratios. When using a “naïve” error model that only take
quality scores into account, ploidy estimate errors were more substantial. For 10X coverage,
the contig with ploidy eight was estimated as having ploidy 16, indicating that many sequenc-
ing errors were not correctly weighted by the error model. Furthermore, there was an error for
coverage of 15X, because ploidy 15 was called as 14, which did not happen with the full model.

Having called the most likely ploidy for each simulated scenario, we then checked whether
the dosages of both alleles were correctly inferred (S2 Fig and S1 Table). When using the full
model, correct dosage was obtained for over 95% of the SNPs for levels of coverage of 50X and
75X, across every simulated ploidy. As expected, dosage calling accuracy decreased with de-
creasing coverage, reaching a minimum of 76.12% for ploidy 16 at 15X coverage. With the ex-
ception of two cases (ploidy eight, with coverage levels of 50X and 75X), percentage of correct
dosages was always equal or lower when using the naïve error model. Discrepancies in dosage
calling accuracy between the two models tended to increase with higher ploidy and lower cov-
erage, such that in the most extreme situation of ploidy 16 at 15X coverage, the full model
made 3.24% more correct calls. Higher levels of coverage resulted in more similar accuracies,
with differences mostly below 2%. False positive and false negative levels of variant calling were
extremely low for all simulations, never going above 1.7%.

These initial results indicate that ploidy estimation is more challenging for higher levels of
ploidy, and that there can be random variation leading to errors in estimates. In order to pro-
vide estimates of ploidy calling accuracy with varying coverage levels, we simulated 100 sets of
200 kb-long contigs for each ploidy level and evaluated the performance of ConPADE in each
situation. Results are shown in Fig 4 and S2 Table, where warmer colors indicate higher ploidy
estimation accuracy. For a coverage level of 50X, ploidy estimation with the full error model
yielded correct results for all 100 simulated contigs, for all ploidy levels. The accuracy of ploidy
estimation decreased with decreasing coverage, particularly for higher ploidies. In that context,
we note that the lowest accuracies were 83%, 44% and 19% for coverages of 25X, 15X and 10X,
respectively, for a ploidy of 15. It is interesting to note that, whenever ploidy was incorrectly
called, the estimated and actual ploidy usually differed by at most two, and never more than
three. Specific ploidy calls for coverage of 15X are found in S3 Fig and S3 Table.

Genome Assembly Ploidy Estimation
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With regards to allele dosage estimation, we observed that 50X coverage resulted in correct-
ly estimated dosages for 94% or more of the SNPs, for every simulated ploidy. Again, accuracy
was reduced with decreasing coverage, reaching values as low as 86.08%, 75.56% and 64.32%
for coverages of 25X, 15X and 10X, respectively, for the ploidy of 16. Finally, the sensitivity of
variant detection was high for all simulated situations, with false negative rates for SNP calling
ranging from zero to 7.05%. As expected, higher false negative rates occurred for the lower cov-
erage levels. Similarly to what we observed for incorrect ploidy calls, estimated and actual allele
dosage calls differed by one or two. Particular dosage calls for a ploidy of 15 with sequencing
coverage of 15X are shown in S4 Fig and S4 Table. The latter table also shows that dosage call-
ing accuracy was lower for intermediate allele ratios, because of the larger variance of the Ber-
noulli distribution for intermediate probability values. For example, a SNP with allele ratio 7:8

Fig 4. Coverage simulation results.Color in each cell indicates the percentage of correct ploidy calls, out of 100 simulations of 200 kb-long contigs for each
ploidy level.

doi:10.1371/journal.pcbi.1004229.g004
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resulted in lower dosage accuracy than a SNP with allele ratio 13:2. It is worth mentioning that
we conducted some of the above simulations with 10 Mb-long contigs, but saw little improve-
ment over the 200 kb length. Similarly, coverage of 75X was only slightly superior to
50X coverage.

When using the naïve error model, ConPADE achieved substantially lower ploidy estima-
tion accuracy, especially for coverages of 10X and 15X at intermediate ploidy levels (Fig 4 and
S2 Table). Even for 25X coverage, with ploidies 14 and above, the naïve model failed to provide
correct estimates in many instances. Investigation of the likelihoods showed that the naïve
model did not appropriately control for the influence of sequencing errors, which led to overes-
timated ploidy levels. This can be seen more clearly for the ploidy of 16 at 10X coverage, which
displayed inflated accuracy due to the fact that this error model up-biased ploidy estimates. In
the cases where ploidy was correctly inferred, the naïve and full error models showed only
minor differences in dosage calling accuracy. For ploidies above three, the full model always
produced more correct dosage calls than the naïve model, with differences ranging from 0.10%
(ploidy level four, coverage of 50X) to 2.83% (ploidy 16, 15X coverage). The sensitivity of vari-
ant calling of the naïve error model was greater than that of the full error model, particularly
for low coverage situations, which is indicative of its less conservative nature (S2 Table). With
higher coverage levels, both models had similar false negative rates of SNP discovery.

Fig 5. Length simulation results.Color in each cell indicates the percentage of correct ploidy calls, out of 100 simulations of contigs sequenced at 50X
coverage for each ploidy level.

doi:10.1371/journal.pcbi.1004229.g005

Genome Assembly Ploidy Estimation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004229 April 16, 2015 9 / 25



Because a coverage level of 50X resulted in correct estimated ploidies and high dosage esti-
mation accuracy in the previous simulation sets, while still being viable in practice for de novo
genome assembly efforts, we chose this value for more detailed simulations regarding contig
lengths, the results of which are shown in Fig 5 and S5 Table. For contigs of 20,000 nucleotides
or longer, which in this case contain 100 informative variants on average, the full model re-
sulted in correct ploidy estimates in every simulated dataset. For very small contigs, containing
only a handful of SNPs, ploidy estimation accuracy decreased with increasing ploidy, with 60
to 70% of correct estimates for ploidies over 13. Once more, the percentage of correctly called
dosages was above or close to 95%, providing evidence that, given the correct ploidy, dosage es-
timation with this level of coverage is accurate. False negative rates were higher for shorter con-
tigs, due to the fact that there was lower or no read coverage on the edges of contigs (S5 Table).

ConPADE yielded less accurate ploidy estimates for short contigs when combined with the
naïve error model, especially for higher ploidy levels, with differences of up to 16% between the
two models, as was the case for ploidy 16. Contigs of 20,000 bases or more displayed similar re-
sults between both error models, with slightly lower dosage estimation accuracy for the naïve
model. Again, false negative rates tended to be slightly lower with the naïve model, indicating a
more conservative nature of the full model, because the simpler model resulted in a larger num-
ber of SNP calls (S5 Table).

Finally, to assess the ploidy estimation accuracy profile on different coverage levels and con-
tig length combinations, we downsampled the latter simulations to achieve coverages of 25X
and 15X, for ploidies varying from one to eight, which are the most commonly observed in
practice. The results are shown in S5 Fig. There was little effect of contig length for 50X se-
quencing coverage, and ploidies were called with a minimum accuracy of 93% across all condi-
tions. When coverage dropped to 25X, contigs of 2,000 bases yielded correct estimates 75% or
more of the time for ploidies of seven or less, and 20,000 bp contigs performed almost as well
as the longest ones for all ploidy levels. Lastly, coverage of 15X allowed accurate estimation
only for ploidies lower than or equal to four, in the case of short 2,000 bp contigs, while the in-
termediate contig length still afforded reliable ploidy estimates in all scenarios.

Collectively, these simulation results show that high ploidy levels can be reliably estimated
only with high sequencing coverage, even for long contigs. Short contigs require higher depths
of coverage, but still produce useful results in low coverage circumstances when the true ploidy
is low.

Switchgrass Dataset
To further evaluate our ploidy estimation model, we analyzed a real dataset for Switchgrass.
Switchgrass (Panicum virgatum L.) is a member of the grasses (Poaceae family) and has recent-
ly gained importance as a source of bioenergy [36]. It is believed that most grasses are poly-
ploids, with occurring instances of autopolyploidy, allopolyploidy and aneuploidy [37].
Switchgrass, in particular, is comprised of (pseudo)tetraploid and octoploid genotypes, some of
which are commonly aneuploid and display genome instability [38].

We used the preliminary Panicum virgatum AP13 genome reference as a test case for our
model. AP13 is a tetraploid clone with two sub-genomes, which are highly similar in some ge-
nomic segments, due to the recentness of the polyploidization event [36]. The reference ge-
nome consists of an assembly of 15X coverage of the expected 1.4 Gb genome with Roche 454
data, which resulted in a total of 410,030 contigs with L50 of 4.2 kb. The contig length distribu-
tion from this assembly is shown in S6 Fig. Total assembly length was 1.358 Gb. Next, we
downloaded from the NCBI Sequence Read Archive whole genome shotgun reads from the

Genome Assembly Ploidy Estimation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004229 April 16, 2015 10 / 25



same genotype, obtained through the Illumina HiSeq 2000 platform, in a total of 106.4 Gb of
sequence data, and aligned all read pairs against the reference genome.

From 5,000 randomly sampled contigs, 4,879 had at least one aligned read pair and could be
analyzed. Average sequencing coverage was 232.2X. The distribution of estimated ploidies for
these 4,879 contigs showed that almost 90% of them (4,381) represented more than four col-
lapsed haploid copies. In particular, we observed a peak at ploidy eight. The fact that many
contigs displayed ploidies higher than the expected organismal ploidy likely indicates contigs
containing paralogous regions collapsed into a single reference sequence.

Overall, we called 134,464 variants within the contigs, with an average density of one SNP
every 47 nucleotides. Manual examination of the called SNPs showed that, without explicitly
enforcing any filter or threshold, all heterozygous positions had at least three reads supporting
the minor allele, from a total of at least seven overlapping reads. We also performed variant
calling with GATK [27] and obtained a density of one SNP every 60 bases. We note that these
SNP densities may be inflated due to homoeologue collapse and may not reflect exclusively
allelic variation.

Fig 6 displays observed allele ratios for called variants, from examples of contigs representa-
tive of each estimated ploidy. Allele ratios were in agreement with possible values given esti-
mated ploidies, as visualized by distances of individual SNPs from the dashed lines. It is also
interesting to note that allele ratios provide a rough guide to sequence diversity within a given
segment. For instance, contig 238988 had an estimated ploidy of six and virtually all called vari-
ants displayed an allele ratio of 1:5 (Fig 6E). In other words, most identified SNPs presented
only one copy of the less frequent allele. A closer look at the reads aligned against a region con-
taining some of the variants in that contig provides a picture of how the alleles are organized in
haplotypes (S7 Fig). Interestingly, in this case, most minor alleles are linked to each other in
the same reads, forming a single haplotype. This haplotype is present in a roughly 1:5 ratio
with regards to the underlying reference sequence.

It is also interesting to investigate the distribution of estimated genotypes, because doing so
can provide insights about how the genome is structured. Because genotype AP13 is expected
to be a tetraploid, we focus on contigs with an estimated ploidy of four (Fig 7). The apparent
excess of SNPs with genotype 2/2 possibly reflects the (pseudo)tetraploid nature of this particu-
lar switchgrass individual, such that these SNPs likely arise from differences between the two
sub-genomes. Additionally, this result provides empirical evidence that our uniform parame-
terization for genotypes does not excessively constrain a posteriori estimates of allele dosage,
given moderate sequencing coverage levels.

Wheat Dataset
In the Switchgrass analysis, we saw examples where the estimated ploidy of a contig was greater
than the known organismal ploidy due to potential collapse of non-allelic regions in the assem-
bly. We also investigated possible collapse in wheat. Common wheat (Triticum aestivum L.) is
an important food source, cultivated worldwide to provide carbohydrates and protein for
human consumption. The genome is allohexaploid (2n = 6x = 42) containing three related sub-
genomes, denoted A, B and D. It is believed that the A genome was donated by a species related
to T. urartu (2n = 2x = 14), the B genome from a relative of Aegilops speltoides (2n = 2x = 14),
and the D genome from Aegilops tauschii (2n = 2x = 14). Cultivated common wheat thus has
genomic constitution AABBDD [39]. The complete polyploid genome is 17 Gb in length [34].

Because of its size and complexity, a draft sequence of the wheat genome was created by se-
quencing and assembly of isolated chromosome arms, instead of a complete de novo genome
assembly. Chromosome arms were sequenced with Illumina short read technologies and
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assembled with ABySS [40]. Owing to the employed strategy, based on physical separation of
individual chromosome arms, the true ploidy of each partial assembly is one.

To investigate the effectiveness of ConPADE in that situation, as a validation procedure, we
initially applied it to sequence data from the large arm of chromosome 5D—that is, chromo-
some 5 from the subgenome D. This data contains 236.8 Mb of sequence, with a contig L50 of
2,647 bp, and is expected to cover roughly half of the complete long arm of chromosome 5D.

After stringent read alignment, we could evaluate the ploidy of a set of 16,684 contigs with
varying levels of coverage. More than 80% of the contigs (13,385) were confirmed to have a
ploidy of one, that is, were inferred to represent a single haploid segment. Contigs with a ploidy
level of two represented almost 9% of the total (1,499), as did contigs with a ploidy of four
(1,471). Only 329 contigs (1.97% of the total) had an estimated ploidy of three (Fig 8).

Investigation of 30 contigs with estimated ploidy above one revealed that most contain re-
petitive DNA sequences, with enrichment for known mobile elements, particularly transposons
and retrotransposons, ribosomal RNA genes, centromeric and telomeric sequences (S6 Table).
Furthermore, common wheat has been shown to exhibit intrachromosomal gene duplication at
higher degrees than other grasses, likely arising by tandem duplication. Even more importantly,

Fig 6. Observed allele ratios of variants called by ConPADE for switchgrass contigs with various
estimated ploidies. Each dot represents a significantly identified variant position. For each estimated ploidy,
dashed lines represent expected genotypes.

doi:10.1371/journal.pcbi.1004229.g006

Fig 7. Genotype distribution for switchgrass contigs with a ploidy estimate of four. Bars represent the
frequency of each SNP genotype, for all identified variants in contigs estimated to have ploidy four.

doi:10.1371/journal.pcbi.1004229.g007
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there is evidence that the current individual chromosome arm assemblies may underestimate
the occurrence of gene duplication, due to inappropriate collapse of very similar duplicates
[40]. Our ploidy estimation results provide candidates of this phenomenon for further
investigation.

To gauge the applicability of ConPADE to an allopolyploid of known genomic origins, we
fashioned the scenario that would be obtained had the wheat genome been sequenced via a
whole genome shotgun strategy. With this goal, we pooled sequencing reads from the large
arm of chromosomes 5A, 5B and 5D and assembled them following a strategy similar to that
employed in the published assembly of the wheat genome [40]. This assembly yielded 771.3
Mb of sequence, with a contig L50 of 2,253 bp.

As a benchmark for our method, we aligned these assembled contigs to the three separate
published assemblies with BLAST [41], assessing in how many of the subgenomes any newly

Fig 8. Ploidy estimate distribution for commonwheat chromosome arm 5D contigs. Bars represent the
frequency of each ploidy estimated by ConPADE, for a set of 16,684 wheat contigs from the de novo
assembly of chromosome arm 5D.

doi:10.1371/journal.pcbi.1004229.g008

Table 1. Ploidy estimation for an artificially combined wheat dataset.

Number of subgenomes in which a contig was founda Estimated ploidy

One Two Three Four

One 40,642 244 230 2,345

Two 26 193 44 20

Three 1 18 44 12

Reads from the large arms of chromosomes 5A, 5B and 5D were pooled, assembled and used for ploidy estimation. Only contigs with average coverage

of 10X or above, and for which the individual ploidy in a given subgenome was estimated to be one were considered.
aBased on BLAST alignments to the individual assemblies.

doi:10.1371/journal.pcbi.1004229.t001

Genome Assembly Ploidy Estimation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004229 April 16, 2015 14 / 25



assembled contig was present. Interestingly, roughly 99% of the analyzed contigs (43,461 out of
43,819) were found in a single subgenome of the three original assemblies, providing evidence
that the three wheat subgenomes are different enough that the assembler was able to separate
them into different contigs.

Application of our method to this dataset revealed that approximately 93% of the contigs
had a ploidy estimate consistent with what was expected based on subgenome assignment by
the previous benchmark alignments (Table 1). In the case of contigs that could be assigned to a
single genome, ConPADE had an accuracy of 93.51%, and most of cases in which the ploidy
was incorrectly called were due to subregions of a given contig being contaminated with reads
from the other subgenomes, leading to an upward bias in ploidy estimates. In cases where there
was collapse of two or the three genomes, accuracy dropped to 68.20% and 58.67%, respective-
ly. However, manual inspection showed that these contigs were usually shorter than 2 kb and
had lower coverage. Confining the analysis to contigs for which the average coverage was 25X
or above yielded 100% correct ploidy calls.

Discussion
We have presented a ploidy estimation model and verified with both simulated and real data
that it gave correct results when sufficient read coverage was available. We have also observed
that it can be successfully applied to variant calling in newly assembled genomes.

When learning the parameters of the HiSeq error model, bacterial data was utilized and any
variations from the reference genome for the same strain were regarded as sequencing errors.
Even monomorphic bacterial strains may hold some genetic variability, and hence these varia-
tions may have erroneously inflated error rates. Moreover, some of the reference genomes were
originally assembled from HiSeq data, such that systematic errors may have been considered as
ground truth. Nonetheless, given the rarity of such events and the large amount of data used,
these sources of inaccuracies should have little effect on the final parameters learned, and as we
observed empirically, led to good performance of our model.

An underlying assumption of ConPADE is that ploidy is constant along each contig or scaf-
fold, a good assumption in practice for the task at hand. This is fundamentally different from
copy number variant detection algorithms, which look for changes in allele ratios (e.g., using a
Hidden Markov Model) [24] or read coverage [25] to find discrepancies from a reference se-
quence. The assumption of constant ploidy for any given contig makes inference computation-
ally more efficient than (e.g.) a Hidden Markov Model that allows for changes in copy number,
and is also particularly well suited given shorter contig lengths for polyploid genome assem-
blies. Furthermore, with the assumption of constant ploidy, all positions (SNP or not) can be
included in the model without compromising feasibility.

Ploidy estimation is also commonly done in cancer research. However, because cancer is an
abnormality derived from a naturally occurring diploid state, the nature of the polyploidy is
vastly different, and methods for ploidy estimation in cancer rely on different assumptions. In
the cancer framework, a single haplotype is usually expected to be present in multiple copies.
As a consequence, heterozygous positions in long stretches of the genome are expected to dis-
play the same allele ratio. Consequently, methods for ploidy estimation in cancer can make use
of segmentation algorithms to look for particular regions of the genome departing from diploi-
dy [42,43]. In contrast, for polyploid plants, there is no such restriction. The ancestral geno-
types leading to the polyploid genotype under analysis, which are potentially polyploid
themselves, may have varying allele dosages. In addition, evolution and/or artificial selection
during breeding will drastically alter the genomic constitution and shape different genomic
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configurations, and ploidy estimation in a plant research context needs to be more flexible to
accommodate multiple sources of polyploidy.

Another assumption that deserves attention is the fact that only biallelic variations are con-
sidered in the model. Combinatorial possibilities of up to four different alleles in different dos-
ages would result in an exceedingly large number of model states to be fit, which would make
analysis infeasible. Nonetheless, there is some evidence that SNPs, even for species with high
degrees of ploidy, are generally biallelic [31]. In our default implementation, we assumed a uni-
form distribution for possible dosages within any given ploidy. Because genotypes being se-
quenced for de novo assembly of important crop species are usually chosen from a pool of bred
cultivars, the recurrent cycles of crossing and selection make expectations about allele dosage
distribution non-trivial. In other situations, such as when a wild genotype is sequenced, it may
be more appropriate to assume an exponential distribution for dosages, due to the presence of
rare mutations. When more sequencing and SNP data becomes available for higher ploidy spe-
cies, the empirical distribution of dosages might become more apparent for many distinct sce-
narios. As such data is gathered, it is straightforward to change the underlying assumption and
incorporate such knowledge into our framework. Accurate information about the dosage of
each variant will be very useful for downstream analyses such as association studies, where the
number of copies of a given locus can have an effect on a phenotype of interest.

In principle, it is possible to leverage information both from SNPs and indels for ploidy esti-
mation. However, ConPADE utilizes only SNPs, because (1) current sequencing technologies
lack sensitivity to identify indels, (2) indel processing is more complex than SNP processing
[44] and (3) indels are usually less abundant than SNPs [45,46] and would thus contribute little
information for ploidy estimation.

From a computational standpoint, exact inference in our model can be performed efficiently
for scaffolds that are millions of base pairs long and covered at high sequencing depth. Proba-
bilities arising from the error model can be cached, enhancing efficiency. Also, because each
contig/scaffold is analyzed independently from all the others, execution is easily parallelized.

The single input required by the method is a BAM file with alignments of reads or read
pairs against the final assembly. The user has control over which short read aligner to use and
how to filter alignments. During our experiments with real and simulated data, only reads that
aligned to a unique point in the genome with high mapping quality were included in the analy-
sis to reduce occurrence of spurious alignments. In addition, whenever mate information is
available, only pairs aligned with the expected range of distances should be considered.

Because ConPADE is based on allele ratios in heterozygous positions, alignment parameters
may have a significant impact on the results obtained. In particular, if two distinct genomic re-
gions are sufficiently different such that the assembly software is able to separate them into two
distinct contigs, some of the sequencing reads will ambiguously align with both contigs, and
will thus have low mapping quality. This situation can be avoided by excluding low quality
reads from the analysis.

It is important to stress that our model accommodates all possibleM−1 heterozygous allele
ratios for a genomic region with ploidyM, but it is not necessary that they all be present simul-
taneously. Furthermore, it is interesting to note that SNPs in which the major/minor alleles are
present in aM−1 to 1 ratio are the most informative ones, since they cannot be present in
lower ploidy levels. Because this particular configuration is expected to be more frequent than
others in some cases, we note that this situation affords the ideal ploidy estimation scenario.

Simulation results also indicated that ConPADE works well for contigs of small size, on the
order of a few thousand nucleotides in length. This is crucial for de novo assemblies of poly-
ploid genomes, which are naturally more fragmented due to genomic complexity. Although
high sequencing coverage is necessary for accurate ploidy and allele dosage estimation, we
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expect that high coverage data will be available for many species with complex genomes in the
near future, affording more reliable results and the chance for important insights into their
genomic organization.

Variant calling performance was also good, showing that the error model was slightly more
conservative than a simple model that only takes quality scores into account. However, the full
model was able to leverage information that would otherwise be disregarded. Such a conserva-
tive model that performs well on high coverage situations is naturally suited to a newly assem-
bled genome, where large numbers of reads are usually available due to the difficulty of de novo
assembly. Notwithstanding, because the correct estimation of ploidy is not overly sensitive to
the error model used, it is important to note that our goal in developing this model was to
make it complex enough to ensure accurate results, while keeping it simple enough to allow ef-
ficient computation. Complexity of the ploidy estimation algorithm is only marginally in-
creased with the full model—that is, we only need to gather auxiliary information within the
neighborhood of each nucleotide. In such context, the more informative error model is
nevertheless advantageous.

Analysis of a real switchgrass dataset revealed potential issues with the current reference as-
sembly—namely the fact that several contigs may represent paralogs or anciently duplicated re-
gions, which should ideally be separated. We analyzed a small fraction of the switchgrass
genome assembly because these data are not yet openly released for whole genome-scale analy-
ses. Indeed, polyploid datasets are only now being extensively obtained; and we propose Con-
PADE in anticipation of such datasets becoming more commonly analyzed. Additionally,
because this is a novel task, to the best of our knowledge, there are currently no other ap-
proaches for solving it.

We also analyzed a fraction of the latest wheat genome assembly, which leverages physical
chromosome arm separation to reduce assembly complexity. Results for this haploid assembly
provided clues about the annotation of repetitive elements, known or putative, and further pro-
vided candidates for the inference of intrachromosomal gene duplication. This scenario illus-
trates other possible applications for ConPADE. Furthermore, we have shown that application
of our method to a mock whole genome shotgun assembly of the polyploid wheat genome
would correctly identify the ploidy of almost 93% of the contigs, indicating that most of them
could be separated by the genome assembler, with very limited collapse of the three subge-
nomes. When additional WGS data from polyploid species become available, this method can
be more extensively tested and improved as necessary. Particularly, the HiSeq error model can
be improved to take into account other sources of information about errors or to represent
more complex models, for example the inclusion of interactions between variables, or the use
of models other than logistic regression to assign error probabilities.

ConPADE is available as a binary executable at https://github.com/microsoftgenomics.
Source code will be available in the near future.

Methods

HiSeq Error Model
We downloaded data from six different bacterial organisms from the NCBI Sequence Read Ar-
chive, according to the following accession numbers: Eschericia coli (SRX131047), Klebsiella
oxytoca (SRX101577),Mycobacterium tuberculosis (SRX084335), Rhodobacter sphaeroides
(SRX160387), Staphylococcus aureus (SRX096307) and Streptococcus pneumoniae
(SRX110128) (Table 2). These species were chosen to represent different bacterial groups with
a range of genomic GC contents, and to meet the following criteria: (1) high coverage obtained
from whole genome sequencing with the Illumina HiSeq platform, and (2) availability of a
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finished reference genome for the corresponding strain with a single contig/scaffold closely
representing the entire chromosome. We gave preference to curated reference genomes se-
quenced through capillary methods, whenever possible.

We downloaded reference genomes from the NCBI genome archive according to the follow-
ing assembly numbers: ASM584v1 (E. coli), PB_Kleb_oxyt_10–5248_V1 (K. oxytoca),
ASM19595v1 (M. tuberculosis), ASM1290v1 (R. sphaeroides), ASM1150v1 (S. aureus) and
ASM688v1 (S. pneumoniae). We aligned the reads against the corresponding reference genome
with the Scalable Nucleotide Alignment Program (SNAP) [47] using default parameters, which
are tuned for short reads: seed size of 20, maximum combined edit distance of 15 for both
reads in a pair, with 25 seeds per read and a maximum of 250 hits considered per seed. We
only considered uniquely aligned read pairs for which the distance between mates was within
the expected library range.

Next we compared the observed and reference nucleotide, assuming all reference genomes
contained no errors. Because real variability is rare in monomorphic bacterial strains, differ-
ences between an observed and reference nucleotide are likely due to sequencing errors. We
also collected a set of informative features from each available nucleotide: (1) the associated
quality score, (2) the neighboring quality score—that is, the average of ten adjacent bases, five
on each side, (3) whether the nucleotide was preceded by the 2-mer GG, and (4) the specific
nucleotide substitution that took place. Previous studies showed that these features provide
more information about the occurrence of (systematic) errors beyond the quality score
[30,48,49]. We used these data to estimate parameters of our model relating to the probability
of there being a sequencing error, that is, parameters associated with arcs pointing to the Se-
quencing error and Observed nucleotide variables in the graphical model of Fig 3.

We held the model structure fixed and estimated parameters for two sets of models. First,
we fit a logistic regression model to assign an error probability to each nucleotide observation,
with input features representing the logarithm of the quality score, the logarithm of the neigh-
boring quality score, and for each of the four possible nucleotides, whether the base at hand
was preceded by the 2-mer GG [49]. The model can be represented as follows:

PðE ¼ 1jT ¼ t;GG ¼ gg;QS ¼ qs;NQS ¼ nqsÞ ¼ 1

1þ eat;gg;qþbt;gg;q logðqsÞþgt;gg;q logðnqsÞ ;

where E = 1 represents the event of a sequencing error; T represents the true nucleotide, with
t = {A, C, G, T}; GG is an indicator variable taking value 1 if the nucleotide is preceded by GG
and 0 otherwise; QS represents the Phred quality score; NQS is the average neighboring quality
score (i.e., the average of the 10 closest bases, five on each side); αt,gg,q, βt,gg,q and γt,gg,q are

Table 2. Bacterial datasets used to learn the error model.

Species Strain Genome size (Mb) GC content (%) Coverage (X)

S. aureus MRSA252 2.90 32.8 1,096.43

S. pneumoniae Tigr4 2.16 39.7 533.43

E. coli K-12 sub. MG1655 4.64 50.8 239.63

K. oxytoca 10–5248 6.03a 55.0 122.59

M. tuberculosis H37Rv 4.41 65.6 633.32b

R. sphaeroides 2.4.1 3.19+0.94 68.8 234.80

aFor K. oxytoca, only the largest contig was used, representing approximately 96.95% of the genome.
bFor M. tuberculosis, we sampled a small portion of the data to avoid oversampling a single genome (original coverage for downloaded data was

5,598.69X).

doi:10.1371/journal.pcbi.1004229.t002
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parameters of the model, with q an indicator variable taking value 1 if the sequenced base at
hand has a quality score of 2 and 0 otherwise. Parameters βt,gg,1 were fixed at zero, to take into
account the fact that nucleotides with quality 2 deviate from the general trend. We used the sci-
kit-learn Python package to train this model [50]. We applied a 4-fold cross validation scheme
to compare this model with the naïve error model that only uses the Phred quality score and
sets the probability of observing an error to be P(E = 1|QS = qs) = 10(−qs/10).

Second, we also used the data to learn specific substitution rates—that is, to estimate proba-
bilities that a given nucleotide was replaced by another specific one. To that end, we estimated
multinomial probabilities to represent specific substitution rates, both for cases where the nu-
cleotide was preceded by GG or not. We employed a 10-fold cross validation step to evaluate
the fit of the model.

Ploidy Estimation Model
The likelihood of the model depicted in Fig 3 is given by:

LðM ¼ mjDÞ / PðDjM ¼ mÞ

¼
YC

p¼1

Xm

gp¼0

PðGp ¼ gpjM ¼ mÞ

Ynp

ip¼1

X2

tip¼1

PðTip
¼ tip jM ¼ m;Gp ¼ gpÞPðGGip

¼ ggipÞPðQSip ¼ qsipÞPðNQSip ¼ nqsipÞ

X1

eip¼0

PðEip
¼ eip jTip

¼ tip ;GGip
¼ ggip ;QSip ¼ qsip ;NQSip ¼ nqsipÞ

PðOip
¼ oip jTip

¼ tip ; Eip
¼ eip ;GGip

¼ ggipÞ

where p = 1,� � �, C corresponds to a position in a contig of length C, ip = 1,� � �, np is the ith read
covering position p and np is the total number of reads covering the same position, GGip

is an

observed variable indicating whether a nucleotide is preceded by GG, QSip is the associated

quality score; NQSip is the neighboring quality score (i.e., the average of the 10 closest bases,

five on each side), Eip
represents whether the current base is a sequencing error or not, Oip

de-

notes the observed nucleotide for read i in position p, and other variables are as previously de-
fined. Because many variables are always observed, this expression can be simplified to:

LðM ¼ mjDÞ /

¼
YC

p¼1

Xm

gp¼0

PðGp ¼ gpjM ¼ mÞ
Ynp

ip¼1

X2

tip¼1

PðTip
¼ tip jM ¼ m;Gp ¼ gpÞ

X1

eip¼0

PðEip
¼ eip jTip

¼ tip ;GGip
¼ ggip ;QSip ¼ qsip ;NQSip ¼ nqsipÞ

PðOip
¼ oip jTip

¼ tip ; Eip
¼ eip ;GGip

¼ ggipÞ

As most variables are observed, marginalization has to be done only for the unknown true
nucleotide (variable Tip

) and the possible occurrence of a sequencing error (Eip
), which makes

such inference efficient for scaffolds millions of nucleotides long covered at high sequencing
depth. The remaining summation and product terms gather information from all reads in all
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positions, for all possible genotypes under a given ploidy. The above computations are done for
the desired range of ploidies. The ploidy with the maximum likelihood is chosen.

Simulations
For the first set of simulations, we created a 10 Mb long consensus sequence for each ploidy
level, from one to 16. We then simulated heterozygous sites at an average interval of 1,000
bases, and for each SNP we uniformly sampled the dosage from 1 to (ploidy−1). Illumina short
reads were simulated through SimSeq [51], in pairs of 100 bases, at different levels of coverage:
10X, 15X, 25X, 50X and 75X per haploid unit (i.e., per contig copy). SimSeq uses real Illumina
runs to generate empirical short read profiles including sequencing errors and quality scores.
We note that such sequencing runs are completely independent from the ones we used to train
our error model. We aligned the reads against the corresponding scaffold with SNAP and ap-
plied our method to estimate ploidy and call variants for each scenario. We conducted dosage
analyses only for cases where the correct ploidy was estimated and employed a Phred-like
threshold of 40 to call variants.

To further evaluate the effect of sequencing coverage on ploidy and dosage estimation, we
subsequently simulated 100 sets of consensus contigs with 200 kb in length each, for ploidy lev-
els again ranging from one to 16. We simulated variant positions and dosages using the same
criteria as before, and simulated sequencing reads at coverage levels of 10X, 15X, 25X and 50X.
Analysis of each simulated contig followed the same approach as for the previous scenario,
comprising read alignment, ploidy estimation, variant calling and dosage inference.

Next, to evaluate the effect of contig length on ploidy estimation, we simulated contigs with
lengths 2,000, 20,000 and 200,000 bases, for each ploidy. We simulated one SNP every 200
bases, such that the number of informative variants was on average 10, 100 and 1,000, respec-
tively, for the different contig lengths. We employed the same uniform distribution to simulate
allele dosages. Finally, we simulated short reads at 50X coverage per haploid copy. We simulat-
ed each combination of ploidy and contig length 100 times to provide an estimate of ploidy es-
timation accuracy. Again, for each simulation, we aligned reads against the original contig and
applied ConPADE.

We also analyzed all simulated datasets with the ploidy estimation model, but replacing our
calculated HiSeq error model with the naïve model that only takes quality scores into account.
Our goal is not in exhaustively comparing both error models, but rather assessing how strongly
the error model affects ploidy estimates and variant dosage calls.

Analysis of a Switchgrass Dataset
We downloaded the Panicum virgatum AP13 genome reference from Phytozome (http://www.
phytozome.com/panicumvirgatum.php). For all analyses, we utilized the genomic assembly
hardmasked for repetitive sequence, to ensure spurious alignments to repetitive regions did not
affect results. We also downloaded from the NCBI Sequence Read Archive whole genome shot-
gun reads from AP13, from accession numbers SRX109496, SRX109498, SRX109499,
SRX109501, SRX109503, SRX109505, SRX110233 and SRX110234. We only used the first run
for the latter accession. There were a total of 106.4 Gb of sequence in 354,733,809 read pairs of
150 nucleotides each, 102 Gb in 340,008,647 read pairs of 157 and 143 nucleotides, and 103 Gb
in 515,426,302 read pairs of 100 nucleotides each.

Next we then aligned all read pairs against the reference genome with Bowtie 2 [52], using
very sensitive parameters. If the distance between paired reads was outside the expected frag-
ment size, the Phred mapping quality was below 40, or the reads were marked as PCR dupli-
cates, the read pair was discarded. Finally, we randomly sampled 5,000 contigs and used the
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alignment results as input for the ploidy estimation method and for variant calling. For this
analysis, we set P(SNP) equal to one variant every 200 bases, to represent SNP densities com-
monly observed in higher plants [53–55]. We estimated the most likely ploidy for each sampled
contig and calculated SNP posterior probabilities, which were subsequently used for variant
calling. The existence of variants at positions with Phred score over 40 were deemed
significant.

Analysis of a Wheat Dataset
We downloaded the survey sequence assembly of the large arm of chromosomes 5A, 5B and
5D from Triticum aestivum L., genotype Chinese Spring line 42 (CS42) (http://urgi.versailles.
inra.fr/download/iwgsc/). Next we downloaded from the EMBL-EBI European Nucleotide Ar-
chive shotgun reads from the same chromosome arms, also from genotype CS42, obtained
through the Illumina Genome Analyzer IIx and HiSeq 2000 technologies, corresponding to ac-
cession numbers ERR277132 through ERR277135 (large arm of chromosome 5A), ERR277139
and ERR277140 (large arm of chromosome 5B), and ERR277146 and ERR277147 (large arm of
chromosome 5D). These runs comprised 25.72 Gb, 60.58 Gb and 46.26 Gb of sequence for
chromosomes 5A, 5B and 5D, respectively. Based on the estimated wheat chromosome arm
sizes [56], these data correspond to coverage levels of 48.35X, 104.45X and 94.41X, for chromo-
somes 5A, 5B and 5D, respectively.

As an initial validation procedure, we aligned all read pairs from chromosome 5D against
its corresponding reference arm assembly with Bowtie 2 [52], using very sensitive parameters.
We only kept reads for which the distance between mates was within the empirically deter-
mined library fragment length distribution, and for which the Phred mapping quality was
higher than 40. Reads marked as PCR duplicates were removed from the analysis. We used
these alignment results as input for the ploidy estimation method and for variant calling, again
setting P(SNP) to one variant every 200 bases. Ploidy estimation and variant calling followed
the same strategy as for the switchgrass dataset.

After ploidy estimation analyses, we sampled 30 contigs with a ploidy estimate of four and
conducted manual annotation via BLAST searches [41]. To that end, we aligned these contigs
to the NCBI nucleotide (NT) database with BLASTN, using default parameters. We filtered
alignments with an E-value cutoff of 1e−10 and manually parsed the results. When a contig
aligned to a BAC or other long sequence with multiple annotations, we only considered the
portion to which said contig actually aligned.

Next, we performed similar analyses for a dataset obtained by pooling data from the three
individual wheat subgenomes. To that end, we firstly downsampled data from chromosomes
5B and 5D, such that the coverage levels for the three subgenomes were equivalent. We then as-
sembled the combined reads with ABySS [11], using a k-mer size of 71 to mirror the strategy
utilized for the assembly of the wheat genome [40]. In order to assess the presence or absence
of each resulting contig in the original subgenome assemblies, we aligned the contigs to the in-
dividual assemblies using BLAST [41], and considered a contig to be present in a given subge-
nome if an alignment to a reference contig covered more than 95% of the query length with
more than 95% identity. Finally, we aligned the pooled short reads to our newly created assem-
bly and conducted ploidy estimation using the same criteria applied to the individual analysis
of the large arm of chromosome 5D. We supplemented these analyses by estimating the ploidy
of each contig in each individual subgenome, by separately aligning reads from the three subge-
nomes and applying ConPADE.
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Supporting Information
S1 Fig. Distribution of Phred quality scores for combined bacterial datasets.
(TIF)

S2 Fig. Coverage simulation results. A white cell indicates an error in ploidy estimation, with
the corresponding called ploidy overlaid. Color in each cell indicates the percentage of correct
variant dosage calls for scenarios where ConPADE identified the correct ploidy.
(TIF)

S3 Fig. Ploidy calls for 100 contigs with different simulated ploidies and sequencing cover-
age of 15X. Each panel represents the distribution of ploidy calls from 100 contigs, 200 kb in
length each, with a given simulated ploidy level. Ploidy calls made with the full error model.
(TIF)

S4 Fig. Allele dosage calls of SNPs in contigs with ploidy 15 and coverage 15X. Each panel
represents the distribution of ConPADE dosage calls from a set of variants with a given simu-
lated allele dosage. Data from 33 contigs with a correctly estimated ploidy of 15, with 200 SNPs
each. Only significantly called SNPs included. Dosage calls made with the full error model.
(TIF)

S5 Fig. Ploidy estimation accuracy for varying contig lengths and coverage levels. Accuracy
indicates the number of correct calls out of 100 simulations. Ploidy calls made with the full
error model.
(TIF)

S6 Fig. Distribution of contig lengths from the switchgrass genome assembly. Only contigs
shorter than 30 kb are shown.
(TIF)

S7 Fig. Stack of short reads aligned against a sub-region of switchgrass contig 17625.
(TIF)

S1 Table. Coverage simulation results. Top (bottom) number in each cell represents the most
likely ploidy estimated for a 10 Mb-long contig with the full (naïve) error model. Correspond-
ing percentages of correct variant dosage calls are inside parentheses. Variant calling accuracy
was not measured when the ploidy was incorrectly estimated.
(DOCX)

S2 Table. Results from the coverage simulations. Top (bottom) number in each cell displays
the results with the full (naïve) error model, out of 100 simulations of 200 kb-long contigs for
each scenario. FNR denotes false negative rate of SNP detection.
(DOCX)

S3 Table. Results of ploidy calls for a simulated coverage of 15X. The number in each cell
represents the frequency of each estimated ploidy for a set of 100 contigs, 200 kb in length
each, for each simulated ploidy level. Ploidy calls made with the full error model.
(DOCX)

S4 Table. Results of SNP dosage calls for a simulated ploidy of 15 and coverage of 15X. The
number in each cell represents the frequency of each estimated dosage for a set of SNPs from
33 contigs, with 200 SNPs each, for each simulated dosage level. Only cases in which the esti-
mated ploidy was correct and the SNP was deemed significant are included. Dosage calls made
with the full error model.
(DOCX)
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S5 Table. Results from the length simulations. Top (bottom) number in each cell displays the
results with the full (naïve) error model, out of 100 simulations for each scenario, each with
50X coverage. FNR denotes false negative rate of SNP detection.
(DOCX)

S6 Table. Wheat annotation results. Annotation results of 30 wheat (Triticum aestivum) con-
tigs from chromosome arm 5D with an estimated ploidy of four. Results based on BLASTN
alignments against the nucleotide database of NCBI (NT).
(DOCX)
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