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Abstract

Membrane proteins are critical functional molecules in the human body, constituting more
than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficul-
ties in overexpression and reconstitution into membrane mimetics severely limit our ability
to determine their structures. Computational tools are therefore instrumental to membrane
protein structure prediction, consequently increasing our understanding of membrane pro-
tein function and their role in disease. Here, we describe a general framework facilitating
membrane protein modeling and design that combines the scientific principles for mem-
brane protein modeling with the flexible software architecture of Rosetta3. This new frame-
work, called RosettaMP, provides a general membrane representation that interfaces with
scoring, conformational sampling, and mutation routines that can be easily combined to cre-
ate new protocols. To demonstrate the capabilities of this implementation, we developed
four proof-of-concept applications for (1) prediction of free energy changes upon mutation;
(2) high-resolution structural refinement; (3) protein-protein docking; and (4) assembly of
symmetric protein complexes, all in the membrane environment. Preliminary data show that
these algorithms can produce meaningful scores and structures. The data also suggest
needed improvements to both sampling routines and score functions. Importantly, the appli-
cations collectively demonstrate the potential of combining the flexible nature of RosettaMP
with the power of Rosetta algorithms to facilitate membrane protein modeling and design.

Author Summary

Over 30% of the human proteome consists of proteins embedded in biological membranes.
These proteins are critical in many processes such as transport of materials in and out of
the cell and transmitting signals to other cells in the body. They are implicated in a large
number of diseases; in fact, they are targeted by over 50% of pharmaceutical drugs on the
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market. Since the membrane environment makes experimental structure determination
extremely difficult, there is a need for alternative, computational approaches. Here, we
describe a new framework, RosettaMP, for computational modeling and design of mem-
brane protein structures, integrated in the Rosetta3 software suite. This framework
includes a set of tools for representing the membrane bilayer, moving the protein, altering
its sequence, and estimating free energies. We demonstrate tools to predict the effects of
mutations, refine atomic details of protein structures, simulate protein binding, and
assemble symmetric complexes, all in the membrane bilayer. Taken together, these appli-
cations demonstrate the potential of RosettaMP to facilitate membrane protein structure
prediction and design, enabling us to understand the function of these proteins and their
role in human disease.

This is a PLOS Computational Biology Methods paper.

Introduction

Membrane proteins are critical participants in a wide variety of biological processes including
cell adhesion, signaling, transport, and enzymatic activity [1]. They comprise more than 30%
of open reading frames [2] and are targeted by over half of currently available pharmaceutical
drugs [3,4]. Despite their importance, our knowledge of membrane protein structure and func-
tion remains severely limited, as shown by a constant 1-2% representation of structures in the
Protein Data Bank [5] over the past decade [6]. The paucity of experimentally determined
structures can be attributed to wide-ranging challenges in overexpression, reconstitution into
membrane mimetics, and ultimately structure determination by various methods [7]. Due to
these experimental challenges, computational approaches assume a pivotal role in advancing
our understanding of membrane protein structure and function.

Compared to modeling soluble proteins, membrane protein modeling has the advantage of
constraining the conformational search space into the two dimensions of the membrane
bilayer, which imposes structural constraints onto the protein. Whereas soluble proteins
exhibit enormous structural diversity, the structural motifs in the membrane environment are
either a-helical bundles or B-barrels. Since these folds are formed by secondary structure ele-
ments adopting preferred orientations in the ordered environment of the lipid bilayer, the use
of adapted sampling techniques could substantially increase conformational sampling effi-
ciency. A higher sampling efficiency is required because membrane proteins are typically much
larger in size, offsetting the reduction in conformational search space.

Additionally, computational methods for membrane protein modeling require reliable free
energy calculations or score functions to distinguish native-like from non-native conforma-
tions. Therefore, an accurate representation of the heterogeneous environment of the lipid
bilayer is needed. The membrane bilayer can be represented implicitly by using a layered, con-
tinuum solvation model, which is computationally inexpensive but unable to describe mem-
brane fluctuations or specific membrane protein—lipid interactions. An additional challenge
for the score function is that the precise location of the lipid bilayer surrounding the protein in
experimental structures is unknown because the membrane mimetic evades experimental
observation.
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The aforementioned challenges and the lack of experimental structures have delayed the
development and therefore availability of high-quality computational methods for membrane
protein modeling, compared to available methods for soluble protein modeling. Whereas solu-
ble protein modeling increasingly focuses on high-resolution structural features as in docking,
design and ligand docking applications, methods for membrane protein modeling still mainly
focus on obtaining models for unknown protein structures.

Four main techniques for computational modeling of membrane proteins are available: (1)
Since template structures for homology modeling are unavailable for many membrane proteins
of interest, ab initio modeling is an important technique (e.g. using BCL::MPFold [8-15]). Ab
initio structure prediction is one of the most difficult of the modeling tasks, yet it also has the
largest benefits because of its ability to predict novel folds. Additionally, in contrast to homol-
ogy modeling where the final model can contain artifacts from the template, models from ab
initio structure prediction are not biased by previously determined protein structures. (2) For
low (~25%) to very low (~5%) sequence similarities to a known structure, fold recognition
techniques generate a low-resolution protein model; the accuracy of these models rarely
achieves better than 3-4 A RMSD. (3) Homology modeling can be used to model the three-
dimensional structure of a query protein if the sequence similarity between the query sequence
and the sequence of a template structure is greater than ~30%. The recent increase in deter-
mined membrane protein structures (and therefore template availability) has elevated the qual-
ity and number of built homology models. Recently, GPCR homology models with an RMSD
aslow as 2.9 A from the target structure were created from starting templates with a sequence
identity as low as 15% [16]. (4) If the structure of the membrane protein is known, molecular
dynamics (MD) simulations can follow time trajectories of proteins and lipids in full-atom
representation with physics-based energy functions to investigate high-resolution phenomena
such as ion channel gating or transport across the membrane [17-19]. With the recent increase
in available membrane protein structures, high-resolution modeling methods including pro-
tein design have started to emerge [20-25]. Two notable achievements include a helix—helix
interface design [21] and a design of a four-helix bundle that selectively transports metal ions
across the membrane [20].

A limitation of many membrane protein modeling tools is high specialization to accomplish
a single task; thus these methods are not easily combined with other modeling tools. The mem-
brane protein community would benefit from an integrated tool that is able to carry out a vari-
ety of complex modeling tasks such as loop modeling, predicting the effects of mutations,
design, docking, symmetric complex assembly, and ligand docking, in addition to ab initio
structure prediction, homology modeling, and high-resolution refinement. Additionally, inte-
grated methods would enable testing of a score function in multiple contexts to more rapidly
converge on a universal score function in the bilayer environment. The Rosetta software suite
offers an integrated toolset for biomolecular modeling, docking, and design, including a
broadly tested and refined score function for soluble biomolecules. Moreover, Rosetta has two
pioneering membrane protein modeling applications, RosettaMembrane ab initio [26] and
relax [23].

The RosettaMembrane ab initio protocol [23,26] was one of the first methods for ab initio
structure prediction of membrane proteins. It combines Rosetta’s ab initio structure prediction
protocol for soluble proteins [27] with a low-resolution score function derived from a database
of structures of membrane proteins [26,28,29]. This method was later updated to include a
high-resolution refinement stage [23,30] that uses an all-atom score function based on the
Lazaridis implicit Gaussian-exclusion solvation model for atoms in the membrane [31].
Recently, RosettaMembrane was also used to model transmembrane helical proteins from dis-
tant homologues [16].
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Since the creation of the RosettaMembrane ab initio protocol in 2006, Rosetta has been
reorganized into a set of object-oriented libraries (“Rosetta3”) while RosettaMembrane
remained in its original implementation. Rosetta3 is now a cohesive, flexible software suite that
includes separate objects for conformation and scoring, interaction graphs, score functions
organized by multi-body dependencies, kinematics managed through a fold tree, maps to iden-
tify flexible portions of the molecule(s), job distribution, and scripting interfaces [32]. Continu-
ous improvements and additions to Rosetta’s extensive library of complex tools motivate its
use for membrane protein modeling. However, the scientific concepts of the original Rosetta-
Membrane require integration and generalization to be compatible with the object-oriented
architecture of Rosetta3.

Here, we present a new framework, called RosettaMP, integrated in the Rosetta software
suite, which enables the development of novel protocols for membrane protein modeling and
design. We describe the new, central building blocks to represent the membrane bilayer, and to
sample and score both conformations and sequences. We used RosettaMP to create four proof-
of-concept applications: (1) prediction of free energy changes upon mutation, (2) high-resolu-
tion structural refinement, (3) protein—protein docking, and (4) assembly of symmetric com-
plexes, all in the membrane bilayer. The protocols can be accessed via command line,
PyRosetta [33], and RosettaScripts [34], with various levels of customizability for both develop-
ers and users. Using a set of test cases, we are able to obtain information on the applicability of
the existing score function in these wider contexts. Collectively, the applications demonstrate
how RosettaMP and existing Rosetta protocols can be combined to quickly create powerful
new methods to answer a broad range of scientific questions. Because of its ability to interoper-
ate with existing Rosetta code and reusable representation of the lipid bilayer, RosettaMP sub-
stantially lowers the barrier in complexity for the development of new protocols to model and
design membrane proteins, opening the door to many new, critically needed methods.

Methods
Design of RosettaMP

RosettaMP extends the object-oriented architecture of Rosetta3. Our goal was to create
a flexible software architecture for modeling membrane proteins; we therefore used object-ori-
ented design principles [35] to encapsulate individual scientific concepts for membrane protein
modeling into a set of software ‘building blocks’, or objects. Each object includes information
(data) and actions (methods) required to represent a given scientific concept. Together, well-
designed objects interact within the larger infrastructure to perform specific tasks.

A Rosetta simulation is centered on one or more biomolecules (protein, protein-ligand com-
plex, nucleic acids, etc.), which are stored in an object called a Pose. Sampling in the conforma-
tional search space is accomplished by manipulating the Pose by Movers and evaluating the
resulting conformations using a ScoreFunction [32]. We expanded this infrastructure by
creating new objects to represent the membrane environment and enable scoring and sampling
routines that account for the lipid bilayer (Fig 1). Data that describes the membrane, such as
membrane location and thickness, is stored in an object encapsulated in the Pose. Membrane-
specific Movers sample the conformational search space exploiting the implicit constraints
imposed by the membrane bilayer. Membrane-specific ScoreFunction terms use the geo-
metrical information provided by the Pose. This code design separates conformation and score
evaluation, and preserves the score models of the original membrane score functions.

Membrane data is stored centrally in the Pose. To extend Rosetta’s description of a bio-
molecule to include the lipid bilayer, we created a class called MembraneInfo to store all
information necessary for representing a membrane Pose. MembraneInfo attaches a virtual
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Fig 1. RosettaMP directly extends the architecture of Rosetta3. Every Rosetta protocol requires at least
these three main objects for modeling or design tasks (light blue): a Pose to a represent a biomolecule, a
ScoreFunction to rank modeled structures and sequences, and Movers to sample new conformations of
the Pose. RosettaMP directly extends this architecture (blue) by adding an element to the Pose representing
the membrane bilayer, restructuring the original membrane ScoreFunction to rely on this membrane
representation, and implementing a new set of Movers to sample the conformational search space available
in the membrane bilayer.

doi:10.1371/journal.pchi.1004398.g001

residue to the Pose (see below and Fig B in S1 File) that represents the membrane bilayer
chemistry and geometry such as its center, normal and thickness. MembraneInfo also stores
descriptors of sequence- and structure-based membrane protein properties, such as transmem-
brane spans. MembraneInfo is a member of the Conformation object, which is part of
the Pose (Fig 2 and Fig A and Table A in S1 File). Because the Pose is the central object in
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Fig 2. Detailed architecture of RosettaMP. RosettaMP represents the membrane bilayer using three main
components connected to a central MembraneInfo object (blue). MembraneInfo stores information
needed to represent the membrane (line arrows) and tracks information present in the Pose (dotted arrows).
A special Residue type is added to the Pose, describing the geometry of the membrane bilayer by
coordinates storing the center, normal and thickness of the bilayer. A SpanningTopology object describes
the transmembrane regions of the Pose. The FoldTree uses a jump edge to establish the connection
between the membrane residue and the protein. MembraneInfo is also a central repository for membrane-
related features such as lipid accessibility of each residue (LipidAccInfo). A full Universal Markup
Language (UML) diagram is presented in Fig Ain S1 File.

doi:10.1371/journal.pcbi.1004398.9002
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Rosetta protocols, the information in MembraneInfo is readily accessible through the Pose,
enabling access to the membrane representation in any Rosetta protocol.

Membrane position and thickness is stored in a Residue object. Molecules in Rosetta
are represented as a set of Residue objects. For proteins or nucleic acids, the data structure
corresponds to the chemical residue (e.g., an alanine or cytosine), but in Rosetta a Residue
can be used more generally to encapsulate a set of related coordinates. Thus, to represent the
membrane ‘conformation,” we use a ‘Residue’ object with three ‘virtual’ atoms that define the
membrane center, normal vector, and thickness. As a Residue, the membrane can be fixed
or moveable during modeling using the same machinery as with the biomolecular residues.
The default membrane thickness is 30 A, including both the hydrophobic membrane core and
the membrane-water interfacial regions.

Connection between the protein and membrane is established through the Fold-
Tree. To allow either the membrane or the protein to be fixed or moveable in the coordinate
frame, we use Rosetta’s FoldTree object. As described previously [36], the FoldTreeisa
rooted, directed, acyclic graph that describes the chemical and geometric connectivity of the
Residues in the Pose. Since Rosetta uses an internal coordinate system, atomic coordinates
are described relative to each other by using distances, angles, and dihedral angles for cova-
lently bonded atoms, or rigid body transformations for non-covalently-bonded atoms. The
FoldTree defines the order of residues (i.e. connections) in which the coordinate update
takes place after a conformational sampling step. Coordinates are updated starting at a root
and propagate along the connections in the FoldTree, called Edges. These connections can
be peptide bonds, called peptide edges, or non-bonding connections, called jump edges. Jump
edges in the FoldTree therefore maintain long-range connections, such as interactions
between a protein and a ligand, positions of anchor residues for loop building, or relative posi-
tions of domains during the assembly of multi-domain proteins.

In RosettaMP, we use a jump edge in the FoldTree to connect the membrane residue to
the protein. Adjusting the position of the root in the Fo1ldTree will subsequently invert jump
and peptide edges (i.e. coordinate update takes place in the opposite direction) and therefore
changes which parts of the pose are fixed or movable. For instance, if the membrane residue is
at the root of the FoldTree, it will stay fixed, whereas the protein will move in the coordinate
system of the membrane. In contrast, if the root is a residue in the protein, this residue will stay
fixed and the membrane residue will move in the coordinate system of the protein.

Membrane protein topology is stored in the SpanningTopology object. Ab initio
structure prediction for membrane proteins often begins with an estimate of the number and
location of the transmembrane spans of secondary structure. Transmembrane spans can be
predicted from the protein sequence using servers such as OCTOPUS [37] or BCL::Jufo9D
[38]. In RosettaMP, the start and end residue numbers of a single transmembrane span are
stored in a Span object. All Span objects for the protein are gathered in a SpanningTo-
pology container. If an experimental protein structure is available, the span from pdb
application (S7 File) can be used to create a span file for RosettaMP protocols. The protein
structure must be transformed into the membrane coordinate frame, e.g. by using the PDBTM
[39] or OPM [40] databases or the TMDET [41] or PPM [42] servers.

RosettaMembrane score functions were restructured to use the new framework. The
original implementation of RosettaMembrane includes a low-resolution and high-resolution
score function [23,26,43]. We restructured both score functions to follow Rosetta3’s decompo-
sition of energies into one-body, two-body, and whole protein terms [32]. The new implemen-
tation uses the membrane position defined in the membrane residue to score per-residue and
residue pair interactions within the hydrophobic layers. The scientific integrity of the restruc-
tured membrane score function code was verified using continuous regression testing against
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Table 1. Rosetta membrane energy terms used by RosettaMP.

Term Resolution Scope' Description Ref
mp_env low 1b, z, Knowledge-based potential describing propensity for a single residue to be at a given depth in the  [26]
cd membrane and burial by residues
mp pair low 2b, z Knowledge-based pairwise interaction potential between two residues some distance apart at a [26]
given depth in the membrane
mp_cbeta low 1b, cd Knowledge-based residue density potential based on number of neighbor residues and [26,28]
conditional upon number of transmembrane helices
mp lipo low 1b Scores agreement between predicted lipophilicity (from LIPS server) and the model [29]
mp_nonhelix low 1b, z Penalty for non-helical secondary structure in the membrane [26]
mp_ termini low 1b, z Penalty for residues outside of the hydrophobic layer of the membrane [26]
mp_tmproj low ws Penalty for transmembrane helices that project outside of the membrane [26]
fa_mpenv high 1b, z Free energy of a single, isolated atom in solvent or lipid, depending on the depth in the membrane [23,31]
fa mpsolv high 2b, z, Atomic solvation free energy change due to the presence of surrounding atoms, modeled via [23,31]
cd Gaussian exclusion
fa _mpenv high 1b, z, Knowledge-based potential describing propensity for a single atom to be at a given depth in the [43]
smooth cd membrane
hbond high 2b, z Depth-adjusted Rosetta hydrogen bonding term with stronger hydrogen bonding in the membrane  [23,30]

1 Scope of individual energy terms. 1b indicates a per-residue or per-atom score (one-body), 2b indicates a two-body score, z indicates the score is
dependent upon depth in the membrane bilayer, cd indicates the score depends on context (typically the number of surrounding residues), and ws is a
score based on the whole structure.

doi:10.1371/journal.pcbi.1004398.t001

the original implementation. The new implementation is now compatible with a fixed or a
movable membrane and enables facile adjustment of the score functions. The score function
terms are explained in Table 1 with formulas in Table B in S1 File and weights in Tables C-D in
S1 File.

Specific Movers invoke RosettaMP and position the protein in the membrane. In
Rosetta3 protocols, Movers are used to manipulate the Pose by conformation or sequence
sampling. In RosettaMP, we use Movers to setup required membrane information and
manipulate conformations in accordance with the implicit constraints the membrane imposes
on the structure of these proteins.

The Mover that invokes RosettaMP and instantiates a membrane Pose is the AddMem-
braneMover. The AddMembraneMover adds the membrane residue to the Pose, sets up
a default FoldTree, and initializes MembraneInfo. The position of the root in the Fold-
Tree for either a fixed membrane/movable protein or movable membrane/fixed protein is
determined by the specific protocol.

The SetMembranePositionMover sets the center and normal of the membrane repre-
sentation to pre-computed values for a fixed protein. These values can be computed from PPM
[42] or TMDET [41], two servers that transform membrane protein structures into membrane
coordinates with the membrane center at z = 0 and membrane normal along the z-axis.

The MembranePositionFromTopologyMover uses knowledge of the transmem-
brane spans (stored in the SpanningTopology object) and protein coordinates to compute
the centers and normals of each transmembrane span, average them, and then set the mem-
brane center and normal to these values. Thus, this mover provides a first estimation that can
be subsequently refined (as for instance in the MPrelax application below).

Similar to the previous mover, the TransformIntoMembraneMover uses the trans-
membrane spans and the protein coordinates to compute the centers and normal of each trans-
membrane span, and averages those to estimate an initial membrane position for the whole
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protein. This Mover then transforms the protein into membrane coordinates such that the cen-
ters and normals of the overall estimated values and the membrane residue coincide [default
center at (0, 0, 0) and normal at (0, 0, 15), where 15 A represents half of the bilayer thickness].

Applications can invoke real-time visualization of a protocol in PyYMOL. Visualizing
the membrane bilayer is useful for evaluating the protein position in the membrane during the
simulation and for final models. Rosetta’s PyMOILMover transmits coordinate information
from the Pose in Rosetta to PyMOL in real time [44]. We extended this mover to additionally
transfer membrane information, allowing the membrane bilayer to be displayed in PyMOL [45]
when RosettaMP is in use (Fig J in S1 File). The PyMOLMover extracts the center, normal and
thickness of the membrane bilayer from the membrane residue and uses this information to
compute the location of two parallel planes representing the membrane. The planes are drawn
as compiled graphics objects (CGO) [46] and are automatically updated after a change in posi-
tion or orientation of the bilayer during a simulation. The visualization is demonstrated in the
protocol capture in S6 File and S1 Movie.

Results
RosettaMP Applications

Creating new membrane protein modeling and design applications is simplified. To
demonstrate the flexibility and potential of RosettaMP, we developed four proof-of-concept
applications that draw on the rich existing functionality of Rosetta3 and adapt them for mem-
brane proteins. The four applications are the prediction of free energy changes upon mutation
(MPdAdG), high-resolution structural refinement (MPrelax), protein-protein docking
(MPdock), and assembly of symmetric complexes (MPsymdock; Table 2). These protocols
demonstrate use of mutations (design), energetic optimization, rigid-body transformations,
and use of the symmetry machinery, all in the membrane environment. They further use three
interfaces with the Rosetta libraries: writing code in C++ and scripting in PyRosetta [33] and
RosettaScripts [34].

In Fig 3, we illustrate the simplicity of combining RosettaMP with existing Rosetta functions
to create a useful application. The PyRosetta script consists of six steps: initializing Rosetta,
loading a protein, adding a membrane, positioning the membrane using a predicted spanning
topology, initializing a score function, and then calling PyRosetta’s AAG calculation, a simpli-
fied version of a AAG calculation protocol described below. This AAG calculation simply opti-
mizes side chain conformations and scores the protein with the wild-type and mutant residue
at a given position.

Predicting free-energy changes (AAG) upon mutation in the membrane (MPddG).
Measuring the thermodynamic cost of a mutation provides insights into protein stability and
serves as the starting point for protein design. Rosetta has thus far been used to estimate the
free energy changes upon mutation (AAG) for proteins in solution [47] and for interfaces
between soluble proteins [48,49]. To predict the AAG of mutation in the membrane environ-
ment (protocol capture in S2 File), we combined RosettaMP with a fixed backbone AAG

Table 2. Applications developed with RosettaMP.

Application Description Platform
MPddG Prediction of AAG of mutation in the membrane PyRosetta
MPrelax High-resolution refinement in the membrane RosettaScripts
MPdock Protein-protein docking in the membrane Rosetta3
MPsymdock Assembly of symmetric complexes in the membrane Rosetta3

doi:10.1371/journal.pcbi.1004398.1002
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## PyRosetta Membrane Protocol
## Compute ddG of Mutation

# Step 1: Initialize Rosetta
from rosetta import *
rosetta.init() # Score native Pose
native_score = sfxn( pose )

def calc_ddG( pose, sfxn, resnum, aa ):

# Step 2: Load protein from PDB file

pose = pose_from_pdb( "1MPF.pdb" ) # Perform mutation at residue <resnum>

# to amino acid <aa>

mutated_pose = mutate residue( pose, resnum, aa, sfxn )

# Step 3: Add Membrane Representation
add_memb = AddMembraneMover()

add_memb.apply( pose ) # Pack at mutated residue position
pack_rot = PackRotamersMover()

# Step 4: Embed protein in the membrane pack_rot.apply( pose )

init_mem_pos = MembranePositionFromTopology()

init_mem_pos.apply( pose ) # Score mutated Pose

mutant_score = sfxn( mutated_pose )
# Step 5: Read score function from database

sfxn = create_score_function("mpframework_fa_smooth_2014") # Return scores
return mutant_score - native_score

# Step 6: Compute ddG of Mutation at residue 181 to alanine
ala_mut_ddG = calc_ddG( pose, sfxn, 181, ‘A’)
print ala_mut_ddG

Fig 3. PyRosetta script for calculating the AAG of mutation via RosettaMP. This example script loads Rosetta, adds the membrane representation, and
uses the membrane score function to compute the AAG of mutation in the membrane. Left: Python script used for AAG calculations. Right: calc_ddG
method used for computing AAG of mutation.

doi:10.1371/journal.pcbi.1004398.9003

prediction protocol, similar to the one described in Kellogg et al. [47]. After mutation, side
chain conformations were optimized for all residues within 8 A of the mutated residue, and the
AAG was computed as the difference in Rosetta Energy Units (REU) between the mutant and
native structure.

We tested the AAG application’s ability to reproduce experimental AAG values from two
data sets: (1) comprehensive mutations on outer membrane protein phospholipase A
(OmpLA) [50] at a single position at the center of the membrane (Fig 4A), and (2) mutations
from aromatic residues to alanine at several interfacial positions (Fig 4C) in outer membrane
protein A (OmpA) [51]. Calculated values are compared to the experimental measurements in
Fig 4B and 4D. A complete breakdown of predicted AAG values by Rosetta score term is shown
in Tables E-F in S1 File.

For OmpLA, an alanine at the center of the membrane is mutated into all 19 other amino
acids. Insertion of proline is significantly overestimated because unfavorable dihedral angles
cause a kink in the B-strand that cannot be resolved due to the fixed-backbone assumption.
The negatively charged residues aspartic acid and glutamic acid are also over-predicted, similar
to comparisons of these experimental values with published hydrophobicity scales [50]. When
aspartic acid, glutamic acid, and proline are excluded, the correlation between the experimental
and calculated values is R = 0.86, and the calculated Rosetta Energy Units (REU) correspond
roughly to the measurements in kcal/mol. RosettaMP predicts the insertion of an arginine at
the center of the membrane to be less disruptive than insertion of a lysine, and the side chain
stretches toward the membrane interface (Fig 5A). This result matches previous experimental
values [50,52,53] and occurs because the longer, positively charged side chain of arginine can
snorkel further towards the interface region (Fig C in S1 File) and interact with charged lipid
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Fig 4. MPddG computes free energy changes upon mutation in the membrane environment (AAG). (A) Outer membrane protein phospholipase A
(OmpLA, PDB 1qd6) with its native alanine at position 210 in red at the center of the membrane. (B) Plot of RosettaMP-calculated fixed-backbone AAGs
versus experimentally measured values of Moon & Fleming for variants at position 210 [50]. Proline is off-scale (AAG,eq = 193.2 REU) due to incompatible
backbone torsions yielding ring closure penalties. (C) Outer membrane protein A (OmpA, PDB 1qjp) with aromatic residues mutated to alanine at various
interfacial positions. (D) Plot of RosettaMP-calculated AAGs versus experimentally measured values of Hong & Tamm [51]. The mutation W15A is off-scale
(AAGpeq = -43.0 REU) due to the loss of repulsive interactions upon mutation to alanine. Both (B) and (D) include a line for y = x.

doi:10.1371/journal.pcbi.1004398.9004

head groups or interfacial water molecules [54]. The preference for arginine over lysine arises
from the ~0.7 REU difference in the environment score (fa_mpenv_smooth) while small varia-
tions in the other score terms balance out. AAG values for the polar residues asparagine and
glutamic acid are consistent with the published values [50].

The Lazaridis membrane environment energy (fa_mpenv) correctly identifies both threo-
nine and serine to be unfavorable, yet the AAG value of serine is under-predicted. The AAG of
threonine is calculated to be greater than for serine due to larger van der Waals repulsive scores
from a clash with leucine 225 (Fig 5B and Fig D in S1 File). Mutations into aromatic residues
(phenylalanine, tryptophan and tyrosine) are calculated to be disruptive, which is in agreement
with other hydrophobicity scales [55-57] but disagrees with published values [50]. In the
RosettaMP calculations, the positive AAG mainly arises from unfavorable van der Waals
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Fig 5. Structures of mutant residues at position 210 of OmpLA. (A) The charged residues arginine and lysine (superimposed) cannot reach the interface
region. The z-coordinate shows the difference in membrane depth of the two charged side chains. Membrane environment scores are unfavorable for both,
with lysine being slightly more unfavorable. (B) Insertion of threonine at position 210 is penalized by a mild clash from the neighboring leucine 225; serine at
this position is accommodated more easily (Fig D in S1 File). (C) The tryptophan side chain is close to the neighboring leucine 197, resulting in large repulsive
scores. All aromatic mutations have a comparably large repulsive van der Waals and rotamer scores, resulting in over-prediction of their AAG values.

doi:10.1371/journal.pcbi.1004398.9005

repulsive energy (fa_rep) (Fig 5C) and the rotamer score (fa_dun) due to clashes with leucine
225 (Fig E in S1 File). Insertion of negatively charged residues, aspartic acid and glutamic acid,
is significantly overestimated, accounting for the cost of placing a charged species into the
membrane, which should add about 2 kcal/mol [50]. These findings suggest that further
improvements to the score function are necessary.

Our second data set is from OmpA. The data points cluster from calculated values of 0-3
REU and experimental values 04 kcal/mol, capturing disruption of m-orbital stacking interac-
tions with neighboring aromatic residues, as shown by large changes in the van der Waals
attractive scores. Although the correlation between predictions and published values is low
(R =0.13), the data in Fig 4D demonstrate that the MPddG application correctly identifies 9 of
12 mutations as unfavorable, attributed to loss of van der Waals attractive energy and an unfa-
vorable knowledge-based membrane environment score (Table F in S1 File). The two tyrosine
residues and single tryptophan whose mutation to alanine are predicted to be favorable
(AAGpreq < 0) are isolated residues without any n-stacking interactions that would be disrupted
by the mutation. In each case, alanine is predicted to be more stable because the unfavorable
van der Waals attractive score difference is outweighed by the sum of the favorable repulsive
and rotamer score differences. To achieve high-quality predictions of AAGs of mutation, possi-
ble improvements include consideration of backbone and side chain flexibility [47] and
advances in the score function, both of which require extensive benchmarking on a large data-
set, which is currently difficult to obtain. Therefore, identification of favorable vs. disruptive
mutations is an important first step towards this goal.

High-resolution refinement of membrane protein structures (MPrelax). High-resolu-
tion refinement of protein structures is necessary to advance low-resolution structures to
atomic level detail and to create high-resolution models as inputs for protein-protein docking,
protein-ligand docking, and design. For membrane proteins, this task is complicated by lack of
knowing the precise embedding of the protein in the membrane.

We combined RosettaMP with Rosetta’s high-resolution refinement protocol FastRelax
[58,59], the high-resolution membrane score function [23,43], and a minimization-based tech-
nique for optimizing the protein embedding to create MPrelax (protocol capture in S3 File).
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Fig 6. MPrelax for high-resolution refinement of a membrane protein. (A) FoldTree representation for the MPrelax protocol with the residue closest to
the center-of-mass of the protein being at the root of the Fo1dTree (circled X). The membrane residue (M) is attached via a flexible jump edge (dashed
arrow). Protein chains are shown as gray boxes with N- and C- termini marked and peptide edges shown as solid arrows. (B) Rosetta total score vs.
backbone RMSD to the crystal structure for 1000 models of meta-rhodopsin. Models in blue are created with the original membrane relax protocol of
RosettaMembrane; models in red are created with MPrelax. (C) Crystal structure of meta-rhodopsin in gray (PDB 3pxo) superimposed with the lowest
scoring models from both the original RosettaMembrane protocol (blue) and the MPrelax protocol (red).

doi:10.1371/journal.pcbi.1004398.9006

The membrane residue is initially placed at the center-of-mass of the transmembrane spans
and is allowed to move during the simulation by placing the FoldTree root in the protein
(Fig 6A). The protein is then refined using FastRelax, performing eight iterations of rotamer
trials and minimization of the backbone and side chains. During these iterations, the position
and orientation of the membrane is optimized by gradient-based minimization.

We tested MPrelax on four test cases (Fig F in S1 File). As a representative example, Fig 6B
and 6C show results for meta-rhodopsin II (PDB 3pxo) in the apo form [60] (calculations with
retinal present are shown in Fig G in S1 File). For comparison, we also refined the structures
with the original RosettaMembrane relax application [23]. The relaxed structures from both
protocols are similar to each other and to the crystal coordinates (Fig 6C), and the new MPre-
lax protocol samples conformations at lower energies than the original RosettaMembrane relax
(Fig 6B). The RosettaMP models have slightly different positions and orientations (embedding)
in the membrane, since this method allows optimization of membrane embedding through
minimization across the jump between the protein and the membrane residue. When Roset-
taMP outperforms RosettaMembrane, favorable hydrogen bonds result in lower scores
(Table G in S1 File). Interestingly, the lower hydrogen bonding scores do not arise from an
increase in the number of hydrogen bonds, but from better positioning within the membrane
since the hydrogen bonding energy is dependent upon membrane embedding. In the original
RosettaMembrane relax application, the membrane embedding is computed at the beginning
of the protocol and then kept constant. For MPrelax, the minimization-based routine uses the
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membrane score function to optimize the position and orientation of the membrane based on
the evolving protein conformation.

Similar to the meta-rhodopsin case, the new relax protocol also leads to lower scores in
methyltransferase (PDB 4a2n) and histidine kinase receptor QseC (PDB 2kse) as shown in
Supplementary Fig F and Tables H and I in S1 File. One more case (disulfide bond protein B,
PDB 2leg, Table ] in S1 File) shows higher scores with MPrelax than with the original relax pro-
tocol. Since this protein does not fully span the hydrophobic thickness of the membrane, this
data suggests the minimization routine used by RosettaMP requires adjustment to sample a
larger conformational space for embedding. For all cases, the range of sampled structures typi-
cally covers 1-6 A RMSD, but often with a lack of structures close to native (within 1-2 A).
This may indicate that Rosetta scores the near native structures poorly, perhaps due to clashes
in these structures, errors in the score function, or artifacts of the artificial lipid environment in
the experiments that preclude these structures from being the low-energy conformation in an
ideal, implicit, slab-like membrane.

Protein-protein docking in the membrane bilayer (MPdock). Structure determination
of protein-protein complexes in the membrane bilayer is extraordinarily difficult due to the
requirement for the membrane mimetic to maintain stability of the complex and because many
complexes exceed the molecular weight limit for NMR spectroscopy. We combined RosettaMP
with the RosettaDock algorithm [61,62] to predict structures of protein-protein complexes in
the membrane bilayer (protocol capture in S4 File). The protocol consists of two steps: (1) a
prepacking step to create a starting structure, and (2) protein-protein docking in the membrane
bilayer. In the pre-packing step, the two partners are first separated by a large distance (keeping
their membrane embedding constant), the side chains are repacked using rotamer trials, and
the partners are moved back together. Next, the docking step samples random interface confor-
mations using a score function that is created by combining the standard docking score func-
tions with the membrane score terms (both in the low-resolution and all-atom stages, see
Tables C-D in S1 File). The membrane bilayer is kept fixed during this simulation (Fig 7A).

MPdock was tested on five protein-protein complexes in the membrane. We created 1000
models for each complex and examined the structures, interface scores, fraction of native resi-
due contacts, and RMSD values to the crystal structures (Fig H in S1 File). As an example, Fig 7
shows data for vitamin B12 importer BtuCD (PDB ID: 2qi9, docking partners are chains A and
B), a dimer with 10 transmembrane helices per subunit. The score vs. RMSD plot in Fig 7B
shows that the score function is able to distinguish near-native from non-native conformations;
the model with the lowest interface score has an RMSD of 1.8 A. Across our test set, the score
function is able to distinguish native-like from non-native conformations in about half of the
targets (Fig H in S1 File). In these cases, it recovers greater than 50% of native contacts meeting
the CAPRI criteria for high quality predictions [63]. Scoring failures are seen for glycophorin A
and for the SecYG complex, where the refined crystal structures have higher scores than the
models with the lowest interface score. The native conformation for the methionine transporter
has higher scores than the lowest scoring models, which have larger interfaces. These models
suggest either valid alternate conformations of the transporter or imbalances in the score func-
tion. While these preliminary data are encouraging, it is important to note that these proof-of-
concept calculations were restricted to a local vicinity of the interface in the crystal structure
and that crystal backbone coordinates were used. Improvements to both the sampling routine
as well as the score function are needed for docking of unbound complexes or homology mod-
els, or to carry out blind, global docking in the membrane environment while simultaneously
moving both partners in the membrane.

Assembly of symmetric membrane protein complexes (MPsymdock). Many membrane
proteins assemble into symmetric complexes in the membrane environment. We developed an
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Fig 7. Protein-protein docking in the membrane bilayer using MPdock. (A) FoldTree representation used in MPdock with the membrane residue (M)
being fixed at the root (circled) of the FoldTree and the protein chains as docking partners attached via jump edges. (B) Interface score vs. backbone RMSD
to the native structure for 1000 models of the vitamin B12 importer BtuCD. The RMSD is the ‘ligand’ RMSD, which is computed only over the moving partner
after superimposing the fixed partner and membrane. The green dots represent ten models created by minimizing the crystal structure. The interface score of
the crystal structure (180.5 REU) is outside of the plotting range due to clashes. (C) Native structure of the vitamin B12 importer (gray, PDB 2qi9)
superimposed with the model having the lowest interface score (red).

doi:10.1371/journal.pcbi.1004398.9007

application for symmetric assembly of complexes in the membrane bilayer; we achieved this by
combining Rosetta’s symmetric docking protocol [64] with RosettaMP (Fig 8 with protocol
capture in S5 File). The FoldTree maintains internal symmetry of the complex and its posi-
tion in the membrane bilayer, with the membrane residue being at its root, hence keeping it
fixed (Fig 8A). The subunits are arranged in C,, symmetry around the membrane normal axis
(defined consistently in this protocol as the z-axis), where 7 is the number of subunits in the
complex. To account for symmetry in the protein, the FoldTree uses two additional virtual
residues per subunit, V, ; and V,;, where i is the number of the subunit and 1 <i < n. The
jump from V7 ; to V7 ;,; describes the rotation and translation required to transform the i sub-
unit to the (i+1)™ subunit based on the C,, symmetry, and the jump from V;;to V,; describes
the rotation and translation between the V; ; and the protein subunit root residue. This setup
allows the protocol to respect both symmetry and the membrane environment while allowing
efficient sampling moves, side chain packing, and scoring.

MPsymdock was tested on four examples (Fig I in S1 File) with one example shown in Fig 8:
the crystal structure of the homo-tetrameric KcsA potassium channel (PDB 1bl8). Because the
membrane protein docking score function had a low tolerance for initial clashes in the struc-
ture, each complex was first refined using the MPrelax protocol described above. Ten models
were generated, and one asymmetric unit of the lowest scoring model was used as input to the
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extracellular side of the membrane. (C) Membrane plane view of (B). (D) Interface score vs. backbone RMSD to the native structure for 1000 models of the
KcsA potassium channel. The lowest scoring model, shown in (B) and (C), is indicated in red.

doi:10.1371/journal.pcbi.1004398.9008

symmetric docking protocol. From the asymmetric unit, the full complex was reassembled by
the symmetric docking routine and the interface score was computed as the cumulative score
of all symmetric interfaces [65]. The interface score vs. RMSD plot (Fig 8D) indicates that the
high-resolution membrane score function, adapted for symmetric docking, is able to distin-
guish near-native from non-native conformations; the model with the lowest interface score
has an RMSD of 1.8 A to the native crystal structure. This is an encouraging result, especially
since for this target the interface in the selectivity filter contains a number of proximal carbonyl
oxygen atoms. The large interface size between the subunits may compensate for adverse
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effects in the selectivity filter. This example suggests the requirement for a more sophisticated
membrane model accounting for channels in the membrane. Glycophorin A is similarly suc-
cessful (Fig Iin S1 File). In both cases, the RMSD is elevated by the asymmetry in tail regions
of each subunit in the native reference structure; calculations without the tails may be more
physically realistic and produce lower RMSDs.

While the low-RMSD docked complexes of KcsA and glycophorin A are encouraging, the
remaining two examples were unable to form native-like complexes with well-packed inter-
faces; instead the subunits separated during the search to relieve clashes (Fig I in S1 File). To
obtain high-quality models, several improvements are necessary. A new symmetric refinement
protocol could generate symmetric starting structures while removing clashes [66]. Another
approach to remove clashes would be through backbone flexibility in the protocol itself; this
approach will require a gradual transition to introduce repulsive van der Waals energies to
avoid the high gradients that currently cause the subunits to separate.

Discussion

Here, we describe the use of a software suite for biomolecular modeling, docking, and design to
enable rapid development of new applications targeted at membrane proteins, a class for which
structure determination efforts are notoriously difficult. We used the scientific concepts in the
RosettaMembrane structure prediction and refinement applications and created a modular
framework within Rosetta3’s object-oriented architecture [32]. The four proof-of-concept
applications demonstrate flexibility, generality, and simplicity of RosettaMP. The new frame-
work enables combination of the membrane environment with a variety of Rosetta features:
with the fold tree [36], jumps in membrane proteins can be used to model multiple protein
chains, flexible loops, and ligands; and with symmetry [64], symmetric protein structure pre-
diction, refinement and design will be feasible. RosettaMP will serve as the starting point for
future protocol development, and each new application can be extensively tested and bench-
marked. Our preliminary results show that RosettaMP has the potential to answer long-stand-
ing questions involving membrane proteins and lays the groundwork for the challenges that
still remain.

RosettaMP complements many existing tools for membrane protein modeling. MPrelax can
be used to refine proteins inserted into the membrane using tools such as iMembrane [67].
MPrelax can also be used in combination with a contact prediction method to predict structures
with low sequence similarities to their template (similar to I-TASSER [68,69]). MPddG can
directly be used for alanine scanning and extended for membrane protein- and interface-design.
Homology models from MEDELLER [70] and Rosetta [16] can be used as input to MPdock and
MPsymdock for modeling of large membrane protein complexes. In principle, the MPsymdock
protocol can also be used to distinguish biological interfaces from non-native crystal contacts
(similar to COMP [71] or PISA for soluble proteins [72]). The variety of these potential applica-
tions shows that RosettaMP forms an important basis for new protocol development.

The key components of any structure prediction or design algorithm are sampling and scor-
ing. Conformational sampling routines are improved via RosettaMP through the connection of
the membrane bilayer to the modeled biomolecule. This representation allows flexibility in
choosing which object should be fixed vs. movable (protein or membrane) by representing the
membrane as a ‘residue’ and using a jump in the fold tree. For example, a fixed bilayer enables
sampling of membrane-embedded docking conformations in the MPdock and MPsymdock
protocols, whereas a movable membrane decreases the computational cost of the MPrelax pro-
tocol. The latter allows optimizing the membrane position and orientation using minimization
algorithms, resulting in lower scores for three of four cases. Moreover, the flexible linkage now
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permits constraining spans, chains, or proteins to the membrane in various depths and orienta-
tions, features that could not be modeled previously. The framework also simplifies implemen-
tation of enhanced sampling protocols through specialized movers that favor meaningful
protein conformations in the membrane, for instance for ab initio prediction of a-helical and
B-barrel membrane proteins using particular fragment types or favoring appropriate orienta-
tions and pairings of the secondary structure elements.

For scoring, the new framework allows us to test Rosetta’s membrane score functions in
new contexts. The four applications collectively demonstrate that the existing low- and high-
resolution membrane protein score functions are generally effective, yet require further optimi-
zation. The preliminary MPddG application is able to identify favorable vs. disruptive muta-
tions in the two tested cases and even produces a reasonable correlation for predicted vs.
experimental AAG values for an intra-membrane residue in OmpLA. Refinement, which is
minimally modified from its original, tested implementation, captures the same minima. The
naive score functions for docking and symmetric docking exhibit minima for native-like inter-
faces in about half of the asymmetric and symmetric cases. These results are encouraging, espe-
cially since we have not made any changes to the RosettaMembrane score functions originally
developed for folding and refinement.

For future work, several improvements to the score function seem possible. Since the number
of determined membrane protein structures has increased substantially in recent years, the low-
resolution, knowledge-based score functions can be updated to reduce statistical errors. Further,
existing score functions were solely derived from o-helical membrane proteins, and data from
B-barrels could be used to create a distinct score function that could be tested with large-scale
folding and refinement of these proteins. For instance, a recently derived hydrophobic potential
for outer membrane B-barrels has been found to be condensed compared to that for a-helical
membrane proteins, since bacterial outer membranes have a smaller membrane thickness
[55,57]. An updated formulation of Rosetta’s distance-dependent dielectric electrostatic score
[73] is needed to accommodate the low dielectric constant in the membrane. It is also now feasi-
ble in principle to sample protonated and deprotonated forms of ionizable residues with Rosetta
pH [74,75]; however parameterization is needed to account for the insertion of charged species
in the membrane. An advantage of RosettaMP is that new score functions can now be more eas-
ily derived than previously by using the score function machinery in Rosetta3.

The current membrane model is a flat bilayer model of fixed thickness, i.e. a slab model.
RosettaMP could be a stepping-stone for tackling complex biological questions with more
sophisticated membrane models. Effects needed to create the next generation of this model
include intrinsic curvature, charge asymmetry [76-78], and variable thickness [79], attributed
to the diverse repertoire of lipids that constitute the membrane environment [80]. Membrane
thickness might play a role in the accurate estimation of AAG values for interfacial aromatic
residues [51] and in reproducing snorkeling of arginine and lysine to the membrane interface
[54,81]. More sophisticated membrane models will be required for proteins that form pores or
toroidal pores [82]. Another challenge is the modeling of membrane-anchored proteins or pep-
tides [83] especially for small and/or unstructured peptides or half-helices inserting into the
bilayer that are not identified as such by sequence-based prediction methods.

RosettaMP will also enable the development of design protocols, an important yet challeng-
ing task with potential impact in synthetic biology and gene therapy. The latest membrane pro-
tein design efforts focused on helix-helix interfaces [20], protein chimeras [84], and used
protein display [85] and combinatorial libraries [86] to identify promising designs. These
efforts require manual processes and use full-atom energy functions derived mostly from MD
force fields. With robust score functions and sampling routines, methods developed with
RosettaMP will add to these emerging tools and complement MD simulation packages,
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enabling investigation of membrane protein structure, dynamics, and function from low- to
high-resolution representations.

In summary, we anticipate new progress by combining the power of existing Rosetta appli-
cations with RosettaMP. By making membrane protein modeling and design accessible to the
broad scientific community, we hope to drive understanding of membrane protein structure,
function and ultimately enable drug design for this essential class of proteins.

Supporting Information

S1 File. Object-oriented design, detailed methods, and results. This file contains a discussion
of the object-oriented design of the RosettaMP framework. Both the low-resolution and high-
resolution score functions are described in detail. Finally, we discuss detailed methods and
results for development and testing of each RosettaMP application.

(PDF)

S2 File. Protocol capture for MPddG. This protocol capture contains the steps, input files and
example output files necessary to run the MPddG protocol described in this manuscript. While
both mutations in OmpLA and OmpA are discussed, we only describe the protocol for com-
puting AAGs for OmpLA for simplification. The supplementary files are included with the
Rosetta3 software suite under the directory Rosetta/demos/protocol_capture/MPddG.

(GZ)

$3 File. Protocol capture for MPrelax. This protocol capture contains the steps, input files,
and example output files necessary to run the MPrelax protocol described in this manuscript.
For simplification, we only describe refinement of meta-rhodopsin II in these files. The supple-
mentary files are included with the Rosetta3 software suite under the directory Rosetta/demos/
protocol_capture/MPrelax.

(G2)

$4 File. Protocol capture for MPdock. This protocol capture contains the steps, input files,
and example output files necessary to run the MPdock protocol described in this manuscript.
For simplification, we only describe refinement of Glycophorin A in these files. The supple-
mentary files are included with the Rosetta3 software suite under the directory Rosetta/demos/
protocol_capture/MPdock.

(G2)

S5 File. Protocol capture for MPsymdock. This protocol capture contains the steps, input
files, and example output files necessary to run the MPdock protocol described in this manu-
script. For simplification, we only describe docking of Glycophorin A in these files. The supple-
mentary files are included with the Rosetta3 software suite under the directory Rosetta/demos/
protocol_capture/MPdock.

(GZ)

S6 File. Protocol capture for MPPyMOLViewer. This protocol capture contains the steps,
input files, and example output files necessary to run the MPPyMOLViewer protocol described
in this manuscript. For simplification, we only describe visualization of bacteriorhodopsin
these files. The supplementary files are included with the Rosetta3 software suite under the
directory Rosetta/demos/protocol_capture/MPPyMOLViewer.

(GZ)

S7 File. Protocol capture for MPSpanFromPDB. This protocol capture contains the steps,
input files, and example output files necessary to run the MPPyMOLViewer protocol described
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in this manuscript. For simplification, we only describe visualization of bacteriorhodopsin. The
supplementary files are included with the Rosetta3 software suite under the directory Rosetta/
demos/protocol_capture/MPSpanFromPDB.

(GZ)

S1 Movie. Real-Time Visualization of Membrane Simulation in PyMOL. Visualization of a
symmetric docking simulation of the protein complex potassium channel KcsA (PDB ID 1bI8).
For every conformational change in the simulation, Rosetta sends an updated structure to
PyMOL via the PyYMOL Mover. The new structure is displayed in real-time in PyMOL. Asym-
metric subunits colored independently. The complex is first assembled from a single asymmet-
ric subunit, docked in low-resolution, and then refined in high-resolution.

(MP4)
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