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Abstract
Decisions involve two fundamental problems, selecting goals and generating actions to pur-

sue those goals. While simple decisions involve choosing a goal and pursuing it, humans

evolved to survive in hostile dynamic environments where goal availability and value can

change with time and previous actions, entangling goal decisions with action selection.

Recent studies suggest the brain generates concurrent action-plans for competing goals,

using online information to bias the competition until a single goal is pursued. This creates a

challenging problem of integrating information across diverse types, including both the

dynamic value of the goal and the costs of action. We model the computations underlying

dynamic decision-making with disparate value types, using the probability of getting the

highest pay-off with the least effort as a common currency that supports goal competition.

This framework predicts many aspects of decision behavior that have eluded a common

explanation.

Author Summary

Choosing between alternative options requires assigning and integrating values along a
multitude of dimensions. For instance, when buying a car, different cars may vary for their
price, quality, fuel economy and more. Solving this problem requires finding a common
currency to allow integration of disparate value dimensions. In dynamic decisions, in
which the environment changes continuously, this multi-dimensional integration must be
updated over time. Despite many years of research, it is still unclear how the brain inte-
grates value information and makes decisions in the presence of competing alternatives. In
the current study, we propose a probabilistic theory that allows dynamically integrating
value information into a common currency. It builds on successful models in motor con-
trol and decision-making. It is comprised of a series of control schemes with each of them
attached to an individual goal, generating an optimal action-plan to achieve that goal start-
ing from the current state. The key novelty is the relative desirability computation that
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integrates good- and action- values to a single dynamic variable that weighs the individual
action-plans as a function of state and time. By dynamically integrating value information,
our theory models many key results in movement decisions that have previously eluded a
common explanation.

Introduction
A soccer player moves the ball down the field, looking for an open teammate or a chance to
score a goal. Abstractly, the soccer player faces a ubiquitous but challenging decision problem.
He/she must select between many competing goals while acting, whose costs and benefits can
change dynamically during ongoing actions. In this game scenario, the attacker has options to
pass the ball to one of his/her teammates. An undefended player is preferred, but this opportu-
nity will soon be lost if the ball is not quickly passed. If all teammates are marked by opposing
players, other alternatives like holding the ball and delaying the decision may be better. Criti-
cally, the best option is not immediately evident before acting. To decide which strategy to fol-
low at a given moment requires dynamically integrating value information from disparate
sources. This information is diverse relating to both the dynamic value of the goal (i.e., relative
reward of the goal, probability that reward is available for that goal) and the dynamic action
cost (i.e., cost of actions to pursue that goal, precision required), creating a challenging problem
in integrating information across these diverse types in real time. Despite intense research in
decision neuroscience, dynamic value integration into a common currency remains poorly
understood.

Previous explanations fall into two categories. The goods-based theory [1–7] proposes that
all the decision factors associated with an option are integrated into a subjective economic
value independently computed for each alternative. This view is consistent with evidence sug-
gesting convergence of value information in the prefrontal cortex [3–5, 7]. Critically, action
planning starts only after a decision is made. While this view is sufficient for decisions like buy-
ing or renting a house, modifications are needed for decisions while acting. Alternatively, an
action-based theory proposes that options have associated action-plans. According to this the-
ory, when the brain is faced with multiple potential goals, it generates concurrent action-plans
that compete for selection and uses value information to bias this competition until a single
option is selected [8–14]. This theory has been received apparent support from neurophysio-
logical [8–10, 15–19] and behavioral [11, 12, 20–23] studies. Although the action-based theory
explains competition, it leaves mysterious how action cost is integrated with good value (also
referred as stimulus value in some decision-making studies [13]) that have different currencies
and how goods-based decisions that do not involve action competition are made. To solve
complex decision problems, the brain must dynamically integrate all the factors that influence
the desirability of engaging in an action-plan directed towards a goal.

We propose a theory of dynamic value integration that subsumes both goods-based and
action-based theories. We provide a simple, computationally feasible way to integrate online
information about the cost of actions and the value of goods into an evolving assessment of the
desirability of each goal. By integrating value information into a common currency, our
approach models many key results in decision tasks with competing goals that have eluded a
common explanation, including trajectory averaging in rapid reaching tasks with multiple
potential goals, a common explanation for errors due to competition including the global-effect
paradigm in express saccadic movements [24], and a unified explanation for the pattern of
errors due to competition in sequential decisions [25].
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Materials and Methods
This section describes analytically the computational theory developed in this study to model
decisions in tasks with competing goals. We used a reaching task as a paradigm. Full details of
the architecture and stochastic optimal control methodology that underlies the control
schemes of our theory is in S1 Text for reaching and S2 Text for saccade models.

Action selection in reaching tasks with competing goals
Stochastic optimal control has proven a powerful tool at modeling goal-directed movements,
such as reaching [26], grasping [27] and walking [28] (for review see [29]). It involves solving
for a policy π that maps states into actions ut = π(xt) by minimizing a cost function penalizing
actions and deviations from a goal. Despite the growing popularity of optimal control models,
most of them are limited to tasks with single goals, because policies are easily defined towards a
single goal. On the other hand, it is unclear how to define policies in the presence of multiple
goals, each of which may provide different reward and may require different effort. The core
difficulty is to develop a single policy that selects actions that pursue many targets but ulti-
mately arrives at only one.

One of the simplest solutions is to carefully construct a composite cost function that incor-
porates all targets. However, naive applications of this approach can produce quite poor results.
For instance, an additive mixture of quadratic cost functions is a new cost function with a mini-
mum that does not lie at any of the competing targets. The difficulty is that quadratic cost func-
tions do not capture the winner-take-all implicit reward structure, since mixtures of quadratics
reward best for terminal positions in between targets. Even when such a cost function can be
constructed, it can be very difficult to solve the policy, since these types of decision problems
are P-SPACE complete—a class of problems more intractable than NP-complete. Any dynamic
change in targets configuration requires a full re-computation, which makes the approach diffi-
cult to implement as a real-time control strategy [30].

To preserve simplicity, we propose to decompose the problem into policy solutions for the
individual targets. The overall solution should involve following the best policy at each
moment, given incoming information. We can construct a simple cost function that has this
property using indicator variables ν(xt). The indicator variables encode the policy that has the
lowest future expected value from each state—in other words, it categorizes the state space into
regions where following one of the policies to a goal i is the best option. In essence, a goal i
“owns” these regions of the state space. We can write the cost function that describes this prob-
lem as a ν-weighted mixture of individual cost functions J 0j s:

J ¼
XN
j¼1

njðxtÞJjðxt; pjÞ

J ¼
XN
j¼1

njðxtÞ ðxTj
� SpjÞTQTj

ðxTj
� SpjÞ þ

XTj
t¼1

pjðxtÞTRpjðxtÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Jjðxt ;pjÞ

0
BBBBBBB@

1
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ð1Þ

where N is the total number of targets and νj is the indicator variable associated with the target
j. The cost function Jj(xt, πj) describes the individual goal for reaching the target j starting from
the current state xt and following the policy πj for time instances t = [t1, � � �, tTj

]. Tj is the time-
to-contact that target j and S is a matrix that picks out the hand and target positions from the
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state vector. The first term of the cost Jj is the accuracy cost that penalizes actions that drive the
end-point of the reaching trajectory away from the target position pj. The second term is the
motor command cost that penalizes the effort required to reach the target. Both the accuracy
cost and the motor command cost characterize the “action cost” Vπj(xt) for implementing the
policy πj at the state xt. Matrices QTj

and R define the precision- and the control- dependent
costs, respectively (see S1 Text for more details).

When there is no uncertainty as to which policy to implement at a given time and state (e.g.,
actual target location is known), the ν-weighted cost function in Eq (1) is equivalent to the clas-
sical optimal control problem. The best policy is given by the minimization of the cost function
in Eq (1) with νj = 1 for the actual target j and νi 6¼ j = 0 for the rest of the non-targets. However,
when there is more than one competing target in the field, there is uncertainty about which
policy to follow at each time and state. In this case, the best policy is given by minimizing the
expected cost function with expectation across the probability distribution of the indicator var-
iable ν. This minimization can be approximated by the weighted average of the minimization
of the expected individual cost functions, Eq (2).

pmixðxtÞ ¼
XN
j¼1

hnjðxtÞin arg min
pj

Jjðxt; pjÞ ¼
XN
j¼1

hnjðxtÞinp�
j ðxtÞ ð2Þ

where h.iν is the expected value across the probability distribution of the indicator variable ν,
and p�

j ðxtÞ is the optimal policy to reach goal j starting from the current state xt. For notational

simplicity, we omit the � sign from the policy π, and from now on πj(xt) will indicate the opti-
mal policy to achieve the goal j at state xt.

Computing policy desirability
The first problem is to compute the weighting factor hνj(xt)iν, which determines the contribu-
tion of each individual policy πj(xt) to the weighted average πmix(xt). Let’s consider for now
that all the alternative targets have the same good values and hence the behavior is determined
solely by the action costs. Recall that Vπj(xt) represents the value function—i.e., cost that is
expected to accumulate from the current state xt to target j including the accuracy penalty at
the end of the movement, under the policy πj(xt). This cost partially characterizes the probabil-
ity of achieving at least Vπj(xt) starting from state x(t) at time t and adopting the policy πj(xt) to
reach the target j, Eq (3):

P Vpj
ðxtÞjpjðxtÞ;xt;Dt

� �
¼ le

�
1

l
Vpjðxt Þ ð3Þ

where λ is the free “inverse temperature” parameter (S3 Text). This assumption can be taken as
is, or justified from the path integral approach in [31] and [32]. The probability that the value
function of the policy πj at the current state xt is lower than the rest of the alternatives P(Vπj(xt)
< Vπi 6¼ j

(xt)) can be approximated by the softmax-type equation in Eq (4), which gives an esti-
mate of the probability of νj at xt:

PðVpj
ðxtÞ < Vpi 6¼j

ðxtÞÞ � PðnjjxtÞ ¼
le

�
1

l
Vpjðxt Þ

PN
i¼1 le

�
1

l
Vpiðxt Þ

ð4Þ

where N is the total number of targets (i.e., and total number of policies) that are available at
the current state.
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Given that all targets have the same good values, the probability P(νjjxt) characterizes the
“relative desirability” rD(πj(xt)) of the policy πj to pursue the goal j at a given state xt. It reflects
how desirable is to follow the policy πj at that state with respect to the alternatives. Therefore,
we can write that:

rDðpjðxtÞÞ ¼ PðVpj
ðxtÞ < Vpi 6¼j

ðxtÞÞ ð5Þ

However, in a natural environment the alternative goals are usually attached with different
values that we should take into account before making a decision. We integrate the good values
into the relative desirability by computing the probability that pursing the goal j will result in
overall higher pay-off rj than the alternatives, P(rj > ri 6¼ j):

rDðpjðxtÞÞ ¼ PðVpj
ðxtÞ < Vpi6¼j

ðxtÞÞPðrj > ri 6¼jÞ ð6Þ

To integrate the goods-related component on the relative desirability, we consider two
cases:

1. The reward magnitude is fixed and equal for all targets, but the receipt of reward is probabi-
listic. In this case, the probability that the value of the target j is higher than the rest of the
alternatives is given by the reward probability of this target P(target = jjxt) = pj:

Pðrj > ri 6¼jÞ ¼ pj ð7Þ

2. The target provides a reward with probability pj, but the reward magnitude is not fixed.

Instead, we assume that it follows a distribution rj � ð1� pjÞdðrjÞ þ pjNðmj; s2j Þ, where δ
(rj) is the Delta dirac function, and μj and σj are the mean and the standard deviation of the
reward attached to the target j. For simplicity reasons, we focus on the case with two poten-
tial targets, in which the goal is to achieve the highest pay-off after N trials. In this case, the

goods-related component of the desirability function is Pð�r1 > �r2Þ, where �rj ¼
1
N

PN
k¼1 rjðkÞ; j ¼ 1; 2 is the net reward attached to the target j—i.e., the average reward

received from the target j across N trials.

To compute the probability Pð�r1 > �r2Þ, we need the probability distribution of
Pð�r jÞ; j ¼ 1; 2. Given p(n) = Binomial(n, pj, N) is the probability of receiving n-times reward

after N trials, the probability distribution of �r j is:

Pð�r jÞ ¼
XN
n¼0

pðnÞ 1

N

Xn
k¼1

rj ið Þ
 !

ð8Þ

We can show that a mean based on n samples has a Normal distribution N n
N
mj;

s2j
n

� �
. Therefore,

the distribution of �r j can be written as:

Pð�r jÞ ¼
XN
n¼0

pðnÞN �r j;
n
N
mj;

s2
j

n

� �
ð9Þ

For a large number of trials N>> 0, p(n) is concentrated around n = pj N and

�r j � N pjmj;
s2j
pjN

� �
; j ¼ 1; 2. To compute Pð�r1 > �r2Þ ¼ Pð�r1 � �r2 > 0Þ, we define a new random

variable, Z ¼ �r1 � �r2, which has Normal distribution with mean p1 μ1 − p2 μ2 and variance
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s2
1

p1N
þ s2

2

p2N
. We can show that Pð�r1 > �r2Þ ¼ PðZ > 0Þ is given as:

Pð�r1 > �r2Þ ¼
1

2
erfc

p2m2 � p1m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

s2
1

p1N
þ s2

2

p2N

� �s
0
BBBB@

1
CCCCA ð10Þ

where erfc is the complementary error function. Using that erfc(x) = 1 − erf(x), where erf is the
error function, we can write that:

Pð�r1 > �r2Þ ¼
1

2
þ 1

2
erf

p1m1 � p2m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

s2
1

p1N
þ s2

2

p2N

� �s
0
BBBB@

1
CCCCA ¼ CumNorm Z; p1m1 � p2m2;

s2
1

p1N
þ s2

2

p2N

� �
ð11Þ

This result is consistent with the common practice of modeling choice probabilities as a soft-
max function between options. For example, the cumulative normal distribution can be
approximated by the following logistic function [33]:

Pðr1 > r2Þ ¼ l �r1 � �r2; p2m2 � p1m1;

ffiffiffiffiffiffiffi
S
1:6

r� �
ð12Þ

where S ¼ s2
1

p1N
þ s2

2

p2N
.

Target probability encodes the order of policies in sequential movement
tasks
In the preceding sections we developed a theory for the case that targets are presented simulta-
neously and the expected reward depends only on successfully reaching the target—i.e. reward
availability is not state- and time- dependent. However, decisions are not limited only to this
case but often involve goals with time-dependent values. In this section, we extend our
approach to model visuomotor tasks with sequential goals, focusing on a pentagon copying
task.

The theory precedes as before, with a set of control schemes that instantiate policies πj(xt)—
where (j = 1, � � � 5)—that drive the hand from the current state to the vertex j. However, to
draw the shape in a proper spatial order, we cannot use the same policy mixing as with simulta-
neously presented goals. Instead, we have to take into account the sequential constraints that
induce a temporal order across the vertices. We can conceive the vertices as potential goals that
provide the same amount of reward, but with different probabilities (i.e., similar to scenario 2
in the reaching task) with the exception that we design the target probability to be time- and
state- dependent, so that it encodes the order of policies for copying the pentagon. The target
probability P(vertex = jjxt) describes the probability that the vertex j is the current goal of the
task at the state xt after departing from the vertex j − 1, or in other words, it describes the prob-
ability that we copy the segment defined by the two successive vertices j − 1 and j.

We define an indicator function ej that is 1 if we arrive at vertex j and 0 otherwise.

Pðvertex ¼ jjxtÞ ¼ Pðej ¼ 0; ej�1 ¼ 1jxtÞ ¼ Pðej ¼ 0jxtÞpðej ¼ 1jxtÞ ¼ ð13Þ

¼ ð1� Pðtjarrive < tÞÞPðtj�1
arrive < tÞ ð14Þ

Dynamic Integration of Value Information
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where tjarrive is the time to arrive at vertex j -i.e, time to complete drawing the segment defined
by the vertices j − 1 and j.

Let’s assume that we are copying the shape counterclockwise starting from the purple vertex
(see right inset in Fig 1A), at the initial state at time t = 0. The probability distribution of time

to arrive at vertex j, tjarrive, is given by Eq (15).

PðtjarriveÞ ¼
Xj

k¼1

Pðtkarrivejtk�1
arriveÞPðtk�1

arriveÞ ð15Þ

where Pðtkarrivejtk�1
arriveÞ is the probability distribution of time to arrive at vertex k given that we

started from vertex k − 1. We generated 100 trajectories between two successive vertices and
found that Pðtkarrivejtk�1

arriveÞ can be approximated by a Normal distribution Nðmtarrive
; s2

tarrive
Þ. Using

Eq (15), we show that PðtjarriveÞ is also Gaussian distribution, but with j times the mean and var-
iance—Nðjmtarrive

; js2
tarrive

Þ as shown in Fig 1A. Considering that, we estimate that target proba-

bility P(vertex = jjxt), Fig 1B. Each time that we arrive at a vertex, we condition on completion,
and P(vertex = jjxt) is re-evaluated for the next vertices.

Results

Model architecture
The basic architecture of the model is a set of control schemes, associated with individual goals,
Fig 2. Each scheme is a stochastic optimal control system that generates both a goal-specific
policy πj, which is a mapping between states and best-actions, and an action-cost function that
computes the expected control costs to achieve the goal j from any state (see S1 Text for more

Fig 1. Encoding the order of policies in sequential movements. A: Probability distribution of time to arrive at vertex j starting from the original state at time
t = 0 and visiting all the precedent vertices. Each color codes the segments and the vertices of the pentagon as shown in the right inset. The pentagon is
copied counterclockwise (as indicated by the arrow) starting from the purple vertex at t = 0. The gray trajectories illustrate examples from the 100 reaches
generated to estimate the probability distribution of time to arrive at vertex k given that we started from vertex k − 1, Pðtkarrivejtk�1

arriveÞ. B: Probability distribution P
(vertex = jjxt), which describes the probability to copy the segment defined by the two successive vertices j − 1 and j at state xt. This probability distribution is
estimated at time t = 0 and when arriving at the next vertex, we condition on completion, and P(vertex = jjxt) is re-evaluated for the next vertices.

doi:10.1371/journal.pcbi.1004402.g001
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Fig 2. The architectural organization of the theory. It consists of multiple stochastic optimal control schemes where each of them is attached to a
particular goal presented currently in the field. We illustrate the architecture of the theory using the hypothetical scenario of the soccer game, in which the
player who is possessing the ball is presented with 3 alternative options—i.e., 3 teammates—located at different distances from the current state xt. In such a
situation, the control schemes related to these options are triggered and generate 3 action plans (u1 = π1(xt), u2 = π2(xt) and u3 = π3(xt)) to pursue each of
the individual options. At each time t, desirabilities of the each policy in terms of action cost and good value are computed separately, then combined into an
overall desirability. The action cost of each policy is the cost-to-go of the remaining actions that would occur if the policy were followed from the current state

Dynamic Integration of Value Information
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details). It is important to note that a policy is not particular a sequence of actions—rather it is
a controller that tells you what action-plan uj (i.e., sequence of actions ui) to take from a state xt
to the goal (i.e., πj(xt) = uj = [ut, ut+1, � � � utend]). In addition, the action-cost function is a map
cost(j) = Vπj(xt) that gives the expected action cost from each state to the goal.

Let’s reconsider the soccer game scenario and assume a situation in which the player has 3
alternative options to pass the ball (i.e., 3 unmarked teammates) at different distances from the
current state xt. In such a situation, the control schemes related to these options become active
and suggest 3 action-plans (u1 = π1(xt), u2 = π2(xt) and u3 = π3(xt)) to pursue the individual
options. Each of the alternative action-plans is assigned with value related to the option itself
(e.g., teammates’ performance, distance of the teammates to the goalie) and with cost required
to implement this plan (e.g., effort). For instance, it requires less effort to pass the ball to the
nearby teammate No.1, but the distant teammate No.2 is considered a better option, because
he/she is closer to the opponent goalie. While the game progresses, the cost of the action-plans
and the estimates of the values of the alternative options change continuously. To make a cor-
rect choice, the player should integrate the incoming information online and while acting.
However, the value of the options and the cost of the actions have different “currencies”, mak-
ing the value integration a challenging procedure. The proposed theory uses a probabilistic
approach to dynamically integrate value information from disparate sources into a common
currency that we call the relative desirability function w(xt). While common currency usually
refers to integration in value space, relative desirability combines in the space of policy weights.
Using relative desirability, integration of disparate values is accomplished by combining each
different type of value in its own space, then computing the relative impact of that value on the
set of available policies.

Relative desirability function
The crux of our approach is that to make a decision, we only need to know what is the current
best option and whether we can achieve it. This changes the complex problem of converting
action costs to good values into a simple problem of maximizing the chances of getting the best
of the alternatives that are currently available. To integrate value information with different
“currencies”, we compute the probability of achieving the most rewarding option from a given
time and state. This probability has both action-related and goods-related components with an
intuitive interpretation: the probability of getting the highest reward with the least effort. We
call this value relative desirability (rD) because it quantifies the attractiveness of the policy π
for each goal i from state xt relative to the alternative options:

rDðpiðxtÞÞ ¼ PðcostðiÞ < costðj 6¼ iÞjxtÞPðrewardðiÞ > rewardðj 6¼ iÞjxtÞ ð16Þ
The first term is the “action-related” component of the relative desirability and describes the
probability that pursuing the goal i has lowest cost relative to alternatives, at the given state xt.
The second term refers to the “goods-related” component and describes the probability that
selecting the goal i will result in highest reward compared to the alternatives, at the current

xt to the target. These action costs are converted into a relative desirability that characterizes the probability that implementing this policy will have the lowest
cost relative to the alternative policies. Similarly, the good value attached to each policy is evaluated in the goods-space and is converted into a relative
desirability that characterizes the probability that implementing that policy (i.e., select the goal i) will result in highest reward compare to the alternative
options, from the current state xt. These two desirabilities are combined to give what we call “relative-desirability” value, which reflects the degree to which
the individual policy πi is desirable to follow, at the given time and state, with respect to the other available policies. The overall policy that the player follows is
a time-varying weighted mixture of the individual policies using the desirability value as weighted factor. Because relative desirability is time- and state-
dependent, the weighted mixture of policies produces a range of behavior from “winner-take-all” (i.e., pass the ball) to “spatial averaging” (i.e., keep the ball
and delay your decision).

doi:10.1371/journal.pcbi.1004402.g002
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state xt. Note that the relative desirability values of the alternative options are normalized so
that they all sum to 1.

To illustrate the relative desirability function, consider a reaching task with two potential
targets presented in left (target L) and right (target R) visual fields (gray circles in Fig 3A). For
any state xt where the policy to the right target is more “desirable” than to the left target, we
have the following inequality:

rDðpRðxtÞÞ > rDðpLðxtÞÞ ð17Þ

This inequality predicts two extreme reaching behaviors—a direct movement to the target R
(i.e., winner-take-all) when rD(πR(xt))>> rD (πL(xt)), and a spatial averaging movement
towards an intermediate position between the two targets when rD(πR(xt))� rD(πL(xt)). Rear-
ranging this equation, using P(reward(L)> reward(R)) = 1 − P(reward(R)> reward(L)) we see

Fig 3. Relative desirability function in reachingmovements with multiple potential targets. A: A method followed to visualize the relative desirability
function of two competing reaching policies (see results section for more details).B: Heat map of the log-transformed action cost for reaching the left target
(gray circle) starting from different states. Red and blue regions correspond to high and low cost states, respectively. The black arrows describe the average
hand velocity at a given state.C: Similar to panel B but for the right target. D: Heat map of the relative desirability function at different states to reach to the
right target, when both targets provide the same amount of reward with equal probability. E: Similar to D, but for a scenario in which the right target provides
the same amount of reward with the left one, but with 4 times higher probability. F: Similar to D, but for a scenario in which the mean reward provided by right
target is 4 times higher than then one provided by the left target.

doi:10.1371/journal.pcbi.1004402.g003
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that the relative desirability to pursue the target R increases with the odds that target L has
more reward and lower cost:

rD pRðxtÞð Þ> rD pLjxtÞð Þ! PðrewardðRÞ> rewardðLÞÞ
1� PðrewardðRÞ> rewardðLÞÞ
� �

PðcostðRÞ< costðLÞjxtÞ
1� PðcostðRÞ< costðLÞjxtÞ
� �

>1 ð18Þ

To gain more insight on how action cost and good value influence the reaching behavior,
we visualize the relative desirability to reach the right target in 3 scenarios (the desirability
related to the left target is a mirror image of the right one):

• Scenario 1: Both targets provide the same reward magnitude with equal probability.

For this case,

PðrewardðRÞ > rewardðLÞÞ ¼ 1� PðrewardðRÞ > rewardðLÞÞ

which means target R is more desirable when

PðcostðRÞ > costðLÞjxtÞ < 0:5

Now the action cost (and hence relative desirability) is a function of the hand-state, making
them difficult to illustrate. For a point-mass hand in 2D, the hand state is captured by the 4D
position-velocity. To visualize this 4D relative desirability map in two dimensions, we “slice”
through the 4D position-velocity space by making velocity a function of position in the follow-
ing way. All trajectories are constrained to start at position (0, 0) with zero velocity. We then
allow the trajectory to arrive at one of a set of spatial positions (100 total) around a circle of
radius 85% of the distance between the start point and the midpoint (black star) of the two
potential targets. For each of these points, we constrain the hand velocity to have direction (red
arrows in Fig 3A) in line with the start point (gray square in Fig 3A) and the hand position on
the circle (black dots in Fig 3A). We set the magnitude of the velocities to match the speed of the
optimal reaching movement at 85% of completion (blue trace for left target in Fig 3A). From
each position-velocity pair on the circle, we sample 100 optimal movements to each of the two
targets (solid and discontinuous traces are illustrated examples for reaching the left and the right
target, respectively). We discretize the space and compute the action cost to reach the targets
from each state—the expected cost from each state to the goal following the policy for that goal,
including an accuracy penalty at the end of the movement. Fig 3B and 3C depict these action
costs, where blue indicates low cost and red indicates high cost, respectively. Fig 3D illustrates
the action costs converted into relative desirability values to reach the right target (indicted by a
solid gray circle), where blue and red regions correspond to states with low and high desirability,
respectively. Notice desirability increases rapidly as the reach approaches a target, resulting in
winner-take-all selection of an action-plan once moving definitely towards a target. However,
when the hand position is about the same distance from both targets (greenish areas) there is no
dominant policy, leading to strong competition and spatial averaging of the competing policies.

• Scenario 2: Both targets provide the same reward magnitude but with different
probabilities.

In this case, desirability also depends on the probability of reward. Since both targets provide
the same amount of reward, but with different probabilities, the goods-related term simplifies:
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PðrewardðRÞ > rewardðLÞÞ ¼ Pðtarget ¼ RÞ ¼ pR

where pR describes the probability of earning reward by pursuing the right target. Hence, the
target R is more desirable in a state xt when

PðcostðRÞ > costðLÞjxtÞ < pR

The relative desirability function for the right target is illustrated in Fig 3E, when pR is 4 times
higher than the probability of the left target (pR = 0.8, pL = 0.2). The right target is more desir-
able for most states (reddish areas), unless the hand position is already nearby the left target
(blue areas), predicting frequent winner-take-all behavior -i.e., direct reaches to the right
target.

• Scenario 3: Probability and reward magnitude differ between the two targets.

More generally, the reward magnitude attached to each target is not fixed, but both the reward
magnitude and reward probability vary. We assume that target j provides a reward with proba-
bility pj, and that the magnitude follows a Normal distribution with mean μj and standard devi-
ation σj. Hence, the distribution of the rewards attached to the left target (L) and right target
(R) is a mixture of distributions:

rewardðLÞ � ð1� pLÞdðrewardðLÞÞ þ pLNðmL; s
2
LÞ ð19Þ

rewardðRÞ � ð1� pRÞdðrewardðRÞÞ þ pRNðmR; s
2
RÞ ð20Þ

where δ is the Dirac function.
In visuomotor decision tasks, the ultimate goal is usually to achieve the highest reward after

N trials. In this case, the probability that the right target provides overall higher reward than
the left one over N trials can be approximated by a logistic function l with argument pR μR − pL
μL (see Materials and Methods section for more details). When the reward values are precisely
encoded, this simplifies to:

PðrewardðRÞ > rewardðLÞÞ � lðpRmR � pLmLÞ ð21Þ

Hence, pursuing the target R is more desirable in a state xt when

PðcostðRÞ > costðLÞjxtÞ < lðpRmR � pLmLÞ ð22Þ

Fig 3F illustrates the heat map of the relative desirability values at different states of the pol-
icy to reach the right target (solid gray circle), when both targets have the same reward proba-
bility pL = pR = 0.5, but μR = 4μL, i.e. reward(R)* 0.5δ(reward(R)) + 0.5N(2, 1) and reward(L)
* 0.5δ(reward(L)) + 0.5N(0.5, 1). Similar to the previous scenario, reaching behavior is domi-
nated mostly by the goods-related component and consequently reaching the right target is
more desirable than reaching the left target for most states (reddish areas), leading frequently
to “winner-take-all” behavior.
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Desirability predicts reaching behavior in decision tasks with multiple
potential goals
Several studies have shown that reaching decisions made while acting follow a “delay-and-
mix” policy, with the mixing affected by target configuration and task properties [11, 12, 22,
23]. Subjects were trained to perform rapid reaching movements either to a single target or to
two equidistant, equiprobable targets (i.e., actual target location is unknown prior to movement
onset in two-target trials). Black and green traces in Fig 4A show single-target trials, character-
ized by trajectories straight to the target location. Red and blue traces show the delay-and-mix
policy for reaches in two-target trials—an initial reaching movement towards an intermediate
position between the two stimuli followed by corrective movements after the target was
revealed. Relative desirability predicts this behavior (Fig 3D), for equiprobable reward (scenario
1). In this case, the relative desirability is determined solely by the distance from the current
hand position to the targets. Since targets are equidistant, the reaching costs are comparable
and hence the two competing policies have about the same desirability values for states between
the origin and the target locations (see the greenish areas in Fig 3D). Hence, the weighted mix-
ture of policies produces spatial averaging trajectories (red and blue traces in Fig 4E). Note that
each controller i, which is associated with the potential target i, generates an optimal policy
πi(xt) to reach that target starting from the current state xt. On single-target trials, the actual

Fig 4. Rapid reachingmovements in tasks with competing targets. Top row illustrates experimental results in rapid reaching tasks with multiple potential
targets [12, 22, 23] (images are reproduced with permission of the authors). When the target position is known prior to movement onset, reaches are made
directly to that target (black and green traces inA), otherwise, reaches aim to an intermediate location, before correcting in-flight to the cued target (red and
blue traces in A). The competition between the two reaching policies that results in spatial averaging movements, is biased by the spatial distribution of the
targets (B), by recent trial history (C) and the number of targets presented in each visual field (D). The bottom row (E-H) illustrates the simulated reaching
movements generated in tasks with multiple potential targets. Each bottom panel corresponds to the reaching condition described on the top panels.

doi:10.1371/journal.pcbi.1004402.g004
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location of the target is known prior to movement onset and hence the desirability is 1 for the
cued target. Consequently the simulated reaches are made directly to the actual target location
(green and black traces in Fig 4E).

The competition between policies is also modulated by spatial location of the targets [12].
When one of the targets was shifted, reaching trajectories shifted towards a new intermediate
position Fig 4B. This behavior is also captured by our framework—perturbing the spatial distri-
bution of the potential targets, the weighted policy is also perturbed in the same direction Fig
4F. This finding is somehow counterintuitive, since the targets are no longer equidistant from
the origin and it would be expected that the simulated reach responses would be biased towards
the closer target. However, the magnitude of the perturbation is too small to change the action
costs enough to significantly bias the competition. More significant are the action costs
required to change direction once the target is revealed, and these costs are symmetric between
targets.

Reaching behavior is also influenced by goods-related decision variables, like target proba-
bility. When subjects were informed that the potential targets were not equiprobable, the reach
responses were biased towards the target with the highest reward probability [11]. This finding
is consistent with relative desirability predictions in scenario 2—targets with higher reward
probabilities are more desirable than the alternative options for most of the states. Reward
probabilities learned via feedback can also be modeled in the same framework. Instead of
informing subjects directly about target probabilities, the experimenters generated a block of
trials in which one of the targets was consecutively cued for action [22]. Subjects showed a bias
towards the cued target that accumulated across trials (Fig 4C) consistent with probability
learning. We modeled this paradigm by updating the reward probability using a simple rein-
forcement learning algorithm (see S4 Text for more details). In line with the experimental find-
ings, the simulated reach responses were increasingly biased to the target location that was
consecutively cued for action on the past trials, Fig 4G.

Unlike most value computation methods, our approach can make strong predictions for
what happens when additional targets are introduced. A previous study showed that by varying
the number of potential targets, reaching movements were biased towards the side of space
that contains more targets [12], Fig 4D. Our approach predicts this effect due to normalization
across policies. When there are more targets in one hemifield than the other, there are more
alternative reaching policies towards this space biasing the competition to that side, Fig 4H.
Overall, these findings show that weighting individual policies with the relative desirability val-
ues can explain many aspects of human behavior in reaching decisions with competing goals.

Desirability predicts errors in oculomotor decision tasks
A good theory should predict not only successful decisions, but also decisions that result in
errors in behavior. Experimental studies provide fairly clear evidence that humans and animals
follow a “delay-and-mix” behavior even when it appears pathological. A typical example is the
“global effect” paradigm that occurs frequently in oculomotor decisions with competing goals.
When two equally rewarded targets are placed in close proximity—less than 30° angular dis-
tance—and the subject is free to choose between them, saccade trajectories usually end on
intermediate locations between targets [24, 34, 35]. To test whether our theory can capture this
phenomenon, we modeled the saccadic movements to individual targets using optimal control
theory (see S2 Text for more details) and ran a series of simulated oculomotor decision tasks.
Consistent with the experimental findings, the simulated eye movements land primarily in a
position between the two targets for 30° target separation (gray traces in Fig 5A), whereas they
aim directly to one of them for 90° target separation (black traces in Fig 5A).
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We visualize the relative desirability of the left target (i.e., desirability to saccade to the left
target) at different states, both for 30° and 90° target separation. We followed a similar proce-
dure as for the reaching case but used an ellipse. Particularly, individual saccadic movements
are constrained to start at (0, 0) and arrive at one of the sequence (100 total) of spatial positions
with zero velocity around an ellipse with center intermediate between the two targets (black
star), with minor axis twice the distance between the origin and the center of the ellipse, and
major axis double the length of the minor axis (Fig 5B). For each position on the ellipse, we
generate 100 optimal saccadic movements and evaluate the relative desirability to saccade to
the left target (solid gray circle) at different states. Fig 5C depicts the heat-map of the relative
desirability for 30° target separation. The black traces represent the average trajectories for
direct saccadic movements, when only a single target is presented. Notice that regions defined
by the starting position (0, 0) (gray square) and the locations of the targets is characterized by
states with strong competition between the two saccadic policies (greenish areas). Conse-
quently the weighted mixture of policies results frequently in spatial averaging movements that
land between the two targets. On the other hand, when the targets are placed in distance, such

Fig 5. Saccadic movements in tasks with competing targets. A: Simulated saccadic movements for pair of targets with 30° (gray traces) and 90° (black
traces) target separation. B: A method followed to visualize the relative desirability function of two competing saccadic policies (see results section for more
details). C: Heat map of the relative desirability function at different states to saccade to the left target, at a 30° target separation. Red and blue regions
corresponds to high and low desirability states, respectively. Black traces correspond to averaged trajectories in single-target trials. Notice the strong
competition between the two saccadic policies (greenish areas). D: Similar to panelC, but for 90° target separation. In this case, targets are located in areas
with no competition between the two policies (red and blue regions). E: Examples of saccadic movements (left column) with the corresponding time course of
the relative desirability of the two policies (right column). The first two rows illustrate characteristic examples from 30° target separation, in which competition
results primarily in saccade averaging (top panel) and less frequently in correct movements (middle panel). The bottom row shows a characteristic example
from 90° target separation, in which the competition is resolved almost immediately after saccadic onset, producing almost no errors. F: Percentage of
simulated averaging saccades for different degrees of target separation (red line)—green, blue and cyan lines describe the percentage of averaging
saccades performed by 3 monkeys [24].

doi:10.1371/journal.pcbi.1004402.g005
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as the 90° case presented in Fig 5D, the targets are located in areas in which one of the policies
clearly dominates the other, and therefore the competition is easily resolved.

Fig 5E shows examples of saccadic movements (left column) with the corresponding time
course of relative desirability values to saccade to the left and the right target (right column).
The first two rows show trials from the 30° target separation task, where the competition
between the two saccadic policies results in global effect (upper panels) and saccadic movement
to the right target (middle panels). The two policies have about the same relative desirability
values at different states resulting in a strong competition. Because saccades are ballistic with
little opportunity for correction during the trajectory, competition produces the global effect
paradigm. However, if the competition is resolved shortly after saccade onset, the trajectory
ends up to one of the targets. On the other hand, when the two targets are placed in distance,
the competition is easily resolved and the mixture of the policies generates direct movements
to one of the targets (lower panel).

These findings suggest that the competition between alternative policies depends on the
geometrical configuration of the targets. We quantified the effects of the targets’ spatial distri-
bution to eye movements by computing the percentage of averaging saccades against the target
separation. The results presented in Fig 5F (red line) indicate that averaging saccades were
more frequent for 30° target separation and fell off gradually as the distance between the targets
increases (see the Discussion section for more details on how competition leads to errors in
behavior). This finding is also in line with experimental results from an oculomotor decision
study with express saccadic movements in non-human primates (green, blue and cyan lines in
Fig 5F describe the performance of 3 monkeys [24]).

Desirability explains the competition in sequential decision tasks
In previous sections we considered decisions between multiple competing goals. However, eco-
logical decisions are not limited only to simultaneous goals, but often involve choices between
goals with time-dependent values. Time-dependent values mean that some of the goals may
spoil or have limited period of worth such that they must be reached within a time window or
temporal order. A characteristic example is sequential decision tasks that require a chain of
decisions between successive goals. Substantial evidence suggests that the production of
sequential movements involves concurrent representation of individual policies associated
with the sequential goals that are internally activated before the order is imposed upon them
[25, 36–39]. To model these tasks using our approach, the critical issue is how to mix the indi-
vidual control policies. State-dependent policy mixing as described previously will dramatically
fail, since the desirability values do not take into account the temporal constraints. However, it
is relatively easy to incorporate the sequential constraints and time-dependence into the
goods-related component of the relative desirability function. We illustrate how sequential
decision tasks can be modeled using a simulated copying task used in neurophysiological [25,
40] and brain imaging studies [41, 42].

Copying geometrical shapes can be conceived as sequential decisions with goal-directed
movements from one vertex (i.e., target) of the shape to another in a proper spatial order. To
model this, each controller j provides a policy πj to reach the vertex j starting from the current
state. We encode the order of the policies using a time-dependent target reward probability p
(vertex = jjxt) that describes the probability that vertex j is the current goal of the task at state xt
(see Materials and Methods section for more details). In fact, it describes the probability to
copy the segment defined by the successive vertices j − 1 and j at a given state xt.

We evaluated the theory in a simulated copying task with 3 geometrical shapes (i.e., equilat-
eral triangle, square and pentagon). Examples of movement trajectories from the pentagon
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task is shown in Fig 6A. Fig 6B depicts the time course of the relative desirability values of the
segments from a successful trial. The desirability of each segment peaks once the model starts
copying that segment and falls down gradually, whereas the desirability of the following seg-
ment starts rising while copying the current segment. Notice that the competition is stronger
for middle segments than the first or the last segment in the sequence. Consequently, errors,

Fig 6. Sequential movements. A: Examples of simulated trajectories for continuously copying a pentagon.B: Time course of the relative desirability values
of the 5 individual policies (i.e., 5 segments) in a successful trial for copying a pentagon. The line colors correspond to the segments of the pentagon as
shown in the top panel. The shape was copied counterclockwise (as indicated by the arrow) starting from the gray vertex. Each of the horizontal
discontinuous lines indicate the completion time of copying the current segment. Notice that the desirability of the current segment peaks immediately after
the start of drawing that segment and falls down gradually, whereas the desirability of the following segment starts rising while copying the current segment.
Because of that, the consecutive segments compete for action selection frequently producing error trials, as illustrated in panelC. Finally, the panels (D) and
(E) depict examples of simulated trajectories for continuously copying an equilateral triangle and a square, respectively, counterclockwise starting from the
bottom right vertex.

doi:10.1371/journal.pcbi.1004402.g006
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such as rounding of corners and transposition errors (i.e., copying other segments than the cur-
rent one in the sequence) are more frequent when copying the middle segments of the shape,
than during the execution of the early or late segments. These simulation results are congruent
with studies showing that human/animal accuracy in serial order tasks is better during early or
late elements in the sequence [25, 43]. A characteristic example is illustrated in Fig 6C, in
which the competition between copying the “blue” and the “green” segments resulted in an
error trial.

Notice also that the temporal pattern of desirability values is congruent with populations of
neural activity in prefrontal cortex during the copying task that encode each of the segments
[25]. The strength of the neuronal population corresponding to a segment predicted the serial
position of the segment in the motor sequence, providing a neural basis for Lashley’s hypothe-
sis. Interestingly, the temporal evolution of the population activities resembles the temporal
evolution of the relative desirabilities of policies in our theory. This finding provides a direct
neural correlate of relative desirability suggesting that the computations in our model are bio-
logically plausible. Finally, Fig 6D and 6E illustrate examples of movement trajectories for
copying an equilateral triangle and a square.

Discussion
How the brain dynamically selects between alternatives challenges a widely used model of deci-
sions that posit comparisons of abstract representations of “goods” [1–7]. According to this
model, the brain integrates all the decision variables of an option into a subjective economic
value and makes a decision by comparing the values of the alternative options. Most impor-
tantly, the comparison is taking place within the space of goods, independent of the sensorimo-
tor contingencies of choice [5]. While abstract representation of values have been found in
brain areas like orbitrofrontal cortex (OFC) and ventromedial prefrontal cortex (vmPFC) [4,
44], these representations do not necessarily exclude the involvement of sensorimotor areas in
decisions between actions. Recent studies provide evidence for an “action-based” theory
involving competition between concurrent prepared actions associated with alternative goals
[9, 10, 12–14, 17]. The main line of evidence of this theory is recent findings from neurophysio-
logical studies [15, 16, 45, 46] and studies that involve reversible inactivation of sensorimotor
regions [47, 48]. According to these studies, sensorimotor structures, such as the lateral intra-
parietal area (LIP) [48], the dorsal premotor cortex (dPM) [16], the superior colliculus (SC)
[47] and the parietal reach region (PRR) [45, 46] are causally involved in decisions.

Despite the attractiveness of the “action-based” theory to model decisions between actions,
what has been missing is a computational theory that can combine good values (e.g., money,
juice reward) with action costs (e.g., amount of effort) into an integrated theory of dynamic
decision-making. Previous studies have used principles from Statistical Decision Theory (SDT)
to model human behavior in visuomotor decisions [49]. According to these studies, action-
selection can be modeled as a decision problem that maximizes the desirableness of outcomes,
where desirableness can be captured by an expected gain function. Despite the significant con-
tribution of these studies to the understanding of the mechanisms of visuomotor decisions,
they have focused mostly on static environments, in which the availability and the value of an
option do not change with time and previous actions. Additionally, the expected gain functions
usually involve the integration of decision values that have the same currency, such as expected
monetary gains and losses—e.g., humans perform rapid reaching movements towards displays
with regions that, if touched within a boundary lead to monetary reward, otherwise to mone-
tary penalty [50, 51]. In the current study, we propose a probabilistic model that shows how
value information from disparate sources with different “currencies” can be integrated in a
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manner that is both online and can be updated during action execution. The model is based on
stochastic optimal control theory and is consistent with the view that decision and action are
merged in a parallel rather than serial order. It is comprised of a series of control schemes that
each of them is attached to an individual goal and generates a policy to achieve that goal start-
ing from the current state. The key to our model is the relative desirability value that integrates
the action costs and good values to a single variable that weighs the individual control policies
as a function of state and time. It has intuitive meaning of the probability of getting the highest
pay-off with the least cost following a specific policy at a given time and state. Because the
desirability is state- and time- dependent, the weighted mixture of policies produces a range of
behavior automatically, from “winner-take-all” to “weighted averaging”. By dynamically inte-
grating in terms of probabilities across policies, relative-desirability varies with decision con-
text. Relative desirability’s effective exchange rate changes whenever action costs increase or
decrease, the set of options change, or the value of goods increase. Moreover, relative desirabil-
ity is dynamic and state-dependent, allowing for dynamic changes in the effective exchange
rate between action costs and the good values. We believe these properties are critical for main-
taining adaptability in a changing environment. Throughout our evolutionary history, new
opportunities and dangers constantly present themselves, making a fixed exchange rate
between action costs and good value maladaptive.

The proposed computational framework can be conceived as analogous to classical value-
comparison models in decision making, such as the drift diffusion model (DDM) [52] and the
leaky competing accumulator (LCA) model [53], but for decisions that require continuous
evaluation of in-flowing value information during ongoing actions. In the standard version of
these models, choosing between two options is described by accumulator-to-threshold mecha-
nisms. Sensory evidence associated with each alternative is accumulated, until the integrated
evidence for one of them reaches a decision threshold. Despite the success of these frameworks
to model a variety of decision tasks, they are difficult to extend beyond binary choices, require
a pre-defined decision threshold and are mainly applied in perceptual decisions, in which deci-
sion precedes action. Unlike these models, the proposed computational theory can model deci-
sions between multiple alternatives that either are presented simultaneously or sequentially,
does not require any pre-defined decision threshold and can handle tasks in which subjects
cannot wait to accumulate evidence before making a choice. The relative desirability integrates
dynamically both sensory and motor evidence associated with a particular policy and reflects
the degree to which this policy is best to follow at any given time and state with respect to the
alternatives.

We tested our theory in a series of visuomotor decision tasks that involve reaching and sac-
cadic movements and found that it captures many aspects of human and animal behavior
observed in recent decision studies with multiple potential targets [11, 12, 21–23]. In line with
these studies, the theory predicts the “delay-and-mix” behavior, when the competing goals
have about the same good values and action costs and the “pre-selection” behavior, when one
of the alternative goals is clearly the best option.

The present computational theory bears some similarities with the Hierarchical Reinforce-
ment Learning (HRL) models used extensively in decision-making studies [54]. According to
HRL theory, decision-making takes place at different level of abstractions, where the higher lev-
els select the best current goal and the lower levels generate the optimal policy to implement
the choice. Although, the HRL implements the dynamic aspects of decision-making by re-eval-
uating the alternative options and selecting the best one at a given time and state, there are two
fundamental differences with the present theory. First, HRL always selects the best policy and
typically pursues it until all the actions in the sequence have been performed. On the other
hand, our computational theory generates a weighted average of the alternative policies and
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executes only part of it before re-evaluating the alternative option (i.e., see S5 Text about the
“receding horizon control” theory). Second, the HRL uses a softmax transformation to evaluate
the alternative options, whereas the proposed computational theory uses both the expected
reward and the effort cost associated with each alternative. Additionally, other similar modular
frameworks consisting of multiple control systems, such as the MOSAIC model [55] and the
Q-decomposition framework [56], have been previously proposed to model tasks with multiple
goals. However, these frameworks do not incorporate the idea of integrating both the good val-
ues and action costs into the action selection process. Hence, they fail to make predictions on
how value information from disparate sources influences the motor competition and how this
competition can lead to erroneous behavior.

Decisions between conflicting options
We developed our model for cases where the competing options are similar. These are also
cases where the relative effort and reward desirabilities are similar. For two options, it means
the relative desirabilities would be far from zero or one. Here we consider extreme situations
where one option requires much more effort or supplies much less reward. For extreme cases,
the relative desirability calculation appears to break down and produces an “indeterminate”
form for each alternative option. Here we explain why that happens, and how the indetermi-
nacy is avoided by adding even a tiny amount of noise in implementing the calculation.

To illustrate the indeterminacy, consider selecting between an “extremely hard but very
rewarding” and an “extremely easy but unrewarding” option. The hard option offers signifi-
cantly higher reward than the easy option reward(Hard)>> reward(Easy), but it requires sig-
nificantly higher effort to get it than the easy one cost(Hard)>> cost(Easy). According to the
definition of the relative desirability, the reward-related component of the desirability will
approach 1 for the hard option and 0 for the easy option, since P(reward(Hard)> reward
(Easy)) = 1. On the other hand, the effort-related component of the desirability will be 0 for the
hard option and 1 for the easy option, since P(cost(Hard)> cost(Easy)) = 1. The relative reli-
ability multiplies these values and renormalizes, leading to the indeterminate form rD(option
(1)) = 0�1/(0�1+1�0) = 0/0 and rD(option(2)) = 1�0/(0�1+1�0) = 0/0. In this case the model
apparently fails to make a coherent choice. As long as the probability formula for reward and
effort are continuous mappings, this indeterminacy will only be experienced in the limit that
one option is infinitely harder to get (inaccessible) while the accessible option is comparably
worthless.

However, the indeterminacy is an extreme example of an important class of problems
where effort and reward values for the two options are in conflict with each other. Because
there is a trade-off associated with reward vs effort neither option is clearly better than the
other. While none of the decisions modeled here have extreme conflict, we nevertheless believe
that the indeterminacy described above will never occur in a biological decision-making system
due to the effects of even tiny amounts of noise on the relative desirability computation. If we
assume that desirability values are the brain’s estimate of how “desirable” one option is with
respect to alternatives in terms of expected outcome and effort cost, then it is reasonable to
assume these estimates are not always precise. In other words, biological estimates of desirabil-
ity should manifest stochastic errors, which we model by including noise in the estimates. In
the S6 Text we show the effect of this noise is profound. For the extreme scenario in which P
(reward(Hard)> reward(Easy)) = 1 and P(cost(Hard)> cost(Easy)) = 1, in the presence of
noise the relative desirability of each option is 0.5. Thus, indeterminacy produces a lack of pref-
erence—since the “easy” option dominates the “hard” option in terms of effort, but the “hard”
option is better than the “easy” option in terms of reward. In general, cases with extreme
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conflict will produce lack of preference, but these cases are also unstable—small changes in fac-
tors affecting the valuation such as the internal states of the subject (e.g., hunger level, fatigue
level) can produce large shifts in preference. In the S6 Text, we further discuss the effects of
noise in decisions with multiple options.

Does the brain play dice?
One of the key assumptions in our study is that the brain continuously evaluates the relative
desirability—i.e., the probability that a given policy will result in the highest pay-off with the
least effort—in decisions with competing options. Although this idea is novel, experimental
studies provide evidence that the brain maintains an explicit representation of “probability of
choice” when selecting among competing options (for a review see [9]). For binary perceptual
decisions, this probability describes the likelihood of one or another operant response, whereas
for value-based decisions it describes the probability that selecting a particular option will
result in the highest reward. Classic experimental studies reported a smooth relationship
between stimulus parameters and the probability of choice suggesting that the brain translates
value information to probabilities when making decisions [57, 58]. Additionally, neurophysio-
logical recordings in non-human primates revealed activity related to the probability of choice
in the lateral intraparietal area (LIP) both in “two-alternative force-choice eye movement deci-
sions” and in “value-based oculomotor decisions”. In the first case, the animals performed the
random-dot motion (RDM) direction discrimination task while neuronal activity was recorded
from the LIP [59]. The activity of the LIP neurons reflects a general decision variable that is
monotonically related to the logarithm of the likelihood ratio that the animals will select one
direction of motion versus the other. In classic value-based decisions, the animals had to select
between two targets presented simultaneously in both hemifields [15]. The activity of the LIP
neurons is modulated by a number of decision-related variables including the expected reward
and the outcome probability. These experimental findings have inspired previous computa-
tional theories to model perceptual- and value-based decisions [9]. According to these studies,
when the brain is faced with competing alternatives, it implements a series of computations to
transform sensory and value information into a probability of choice. The proposed idea of the
relative desirability value can be conceived as an extension of these theories taking into account
both the expected reward and the expected effort related to a choice.

Action competition explains errors in behavior
One of the novelties of this theory is that it predicts not only successful decisions, but decisions
that result in poor or incorrect actions. A typical example is the “global effect” paradigm that
occurs frequently in short latency saccadic movements. When the goal elements are located in
close proximity and subjects are free to choose between them, erroneous eye movements usu-
ally land at intermediate locations between the goals [24, 35]. Although the neural mechanisms
underlying the global effect paradigm have not been understood fully yet, the prevailing view
suggests that it occurs due to unresolved competition between the populations of neurons that
encode the movements towards the two targets. Any target in the field is represented by a pop-
ulation of neurons that encodes the movement direction towards its location as a vector. The
strength of the population is proportional to the saliency (e.g., size, luminance) and the
expected pay-off of the target. When two similar targets are placed in close proximity, the pop-
ulations corresponding to them will be combined to one mean population with the direction of
the vector towards an intermediate location. If one of the targets is more salient or provide
more reward than the other, the vector is biased to this target location. Since subjects have to
perform saccadic movements to one of the targets, the competition between the two
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populations has to be resolved in time by inhibiting one of them. The time to suppress the neu-
ronal activity that encodes one of the alternatives may be insufficient for short latency saccades
resulting in averaging eye movements. Our findings are consistent with this theory. The
strength of the neuronal population is consistent with relative desirability of the policy that
drives the effector directed to the target. When the two equally rewarded targets are placed in
close proximity, the two policies generate similar actions. Given that both targets are attached
with the same goods-related values, the relative desirability of the two policies are about the
same at different states, resulting in a strong competition. Because saccades are ballistic with lit-
tle opportunity for correction during movement, the competition produces averaging saccades.
On the other hand, placing the two targets in distance, the two saccadic policies generate dis-
similar actions and consequently the competition is easier to be resolved in time.

Competition between policies in closely aligned goals can also explain errors in sequential
decision tasks that involve serial order movements as described by Lashley [36]. The key idea
in Lashley’s pioneer work (1951) is that the generation of serial order behavior involves the par-
allel activation of sequence of actions that are internally activated before each of the actions are
executed. The main line of evidence of this hypothesis was the errors that occur frequently in
serial order tasks, such as speech [37], typing [38], reaching [39] and copying of geometrical
shapes [25]. For instance, a common error in typing and speaking is to swap or transpose
nearby letters, even words. Lashley suggested that errors in sequential tasks would be most
likely to occur when executing nearby elements within a sequence. Recent neurophysiological
studies provide the neural basis of the Lashley’s hypothesis showing that the serial characteris-
tics of a sequence of movements are represented in an orderly fashion in the prefrontal cortex,
in time before the start of drawing [25, 40]. Training monkeys to copy geometrical shapes and
recording the activity of individual neurons in the prefrontal cortex, the experimenters were
able to identify populations of neurons that encode each of the segments [25]. The strength of
the neuronal population corresponding to a segment predicted the serial position of the seg-
ment in the motor sequence. Interestingly, the temporal evolution of the strength of the seg-
ment representation during the execution of the trajectories for copying the shapes resembles
the temporal evolution of the relative desirabilities of policies in our theory. This finding sug-
gests that the strength of the neuronal population of a particular segment may encode the rela-
tive desirability (or components of the desirability) of copying that segment at a given time
with respect to the alternatives. This hypothesis is also supported by error analysis in the serial
order tasks, which showed that errors more frequently occurred when executing elements with
nearly equal strength of representation. In a similar manner, our theory predicts that when two
policies have about equal relative desirabilities over extended periods of the movement, the
competition between them may lead to errors in behavior.

A conceptual alternative in understanding the pathophysiology of the
hemispatial neglect syndrome
Finally, our theory provides a conceptual alternative in understanding important aspects of
neurological disorders that cause deficits in choice behavior, such as the spatial extinction syn-
drome. This syndrome is a subtle form of hemispatial neglect that occurs frequently after brain
injury. It is characterized by the inability to respond to stimuli in the contralesional hemifield,
but only when a simultaneous ipsilesional stimulus is also presented [60]. Recent studies
reported contralesional bias that reminiscent the extinction syndrome, in oculomotor decision
tasks after reversible pharmacological inactivation of the LIP [48] and the Pulvinar [61] in
monkeys. According to our theory, this effect could be related to a deficit in value integration
after inactivation, rather than simply sensory attention deficit.
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Conclusion
In sum, decisions require integrating both good values and action costs, which are often time
and state dependent such that simple approaches pre-selection of goals or fixed weighted mix-
ture of policies cannot account for the complexities of natural behavior. By focusing on a fun-
damental probabilistic computation, we provide a principled way to dynamically integrate
these values that can merge work on decision making with motor control.
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