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Abstract

The vast majority of mutations in the exome of cancer cells are passengers, which do not
affect the reproductive rate of the cell. Passengers can provide important information about
the evolutionary history of an individual cancer, and serve as a molecular clock. Passengers
can also become targets forimmunotherapy or confer resistance to treatment. We study the
stochastic expansion of a population of cancer cells describing the growth of primary tumors
or metastatic lesions. We first analyze the process by looking forward in time and calculate
the fixation probabilities and frequencies of successive passenger mutations ordered by
their time of appearance. We compute the likelihood of specific evolutionary trees, thereby
informing the phylogenetic reconstruction of cancer evolution in individual patients. Next,
we derive results looking backward in time: for a given subclonal mutation we estimate the
number of cancer cells that were present at the time when that mutation arose. We derive
exact formulas for the expected numbers of subclonal mutations of any frequency. Fitting
this formula to cancer sequencing data leads to an estimate for the ratio of birth and death
rates of cancer cells during the early stages of clonal expansion.

Author Summary

Cancer is the consequence of an evolutionary process, which lasts several decades, is
impossible to observe during most of its time, and only becomes apparent in late stages.
We use mathematical modeling to shed light on the evolutionary dynamics of cancer by
studying the accumulation of passenger mutations. We show that the frequencies obtained
by passenger mutations depend strongly on the ratio of death and birth rates of cancer
cells. We use genetic data of colorectal cancer to estimate this important quantity in vivo.
We estimate the size of the cancer cell population that was present when a specific muta-
tion first emerged. Our theory informs the analysis of cancer sequencing data and the phy-
logenetic reconstruction of cancer evolution.
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Introduction

In healthy tissues, cell division and cell death are tightly controlled processes, which enable a
precise balance assuring that the number of cells in the body remains approximately constant.
However, during each cell division mistakes in DNA replication can occur, leading to accumu-
lation of mutations in individual cells [1, 2]. The majority of such mutations are effectively neu-
tral (passengers), but some of them (drivers) can provide selective advantage to the cell, by
tipping the balance of cell division and death slightly in favor of increased proliferation [3-5].
This unwanted evolution [6-8] of somatic cells can lead to a clonal expansion of cells with
driver mutations, which can ultimately result in the formation of tumors and seeding of new
lesions in distant tissues [9-11].

Sequencing efforts over the past decades have resulted in a compendium of genetic alter-
ations in the exomes of common human cancers and revealed that adult cancers harbor dozens
(leukemias) to hundreds (lung cancer and melanoma) of somatic mutations. A typical tumor is
thought to contain 2-8 driver gene mutations, with the rest being neutral passengers [9]. Unlike
driver mutations, passengers cannot be attacked by conventional targeted therapy, but some of
them can become targets for immunotherapy or induce resistance to treatment [12-14]. In
addition, passenger mutations can provide information about the timing of cancer evolution in
individual patients by acting as a molecular clock [15].

Recent studies found that the evolution of metastases in colorectal [16] and pancreatic can-
cer [15], and even the evolution of primary colorectal cancer follows largely neutral evolution
[17], in which the founding cell starts a clonal expansion during which cells accumulate neutral
mutations (passengers) rather than drivers. Here we study neutral evolution during clonal
expansion and show that passenger mutations can be used to infer the parameters of the
tumorigenic process. Our model is a generalization of the famous Luria-Delbriick model for
studying resistance mutations in bacteria [18, 19]. In contrast to the original Luria-Delbriick
model, in which wild type and mutant populations grew deterministically and mutation
occurred stochastically, in our model all cell types grow stochastically; our model also includes
cell death. Many authors have studied the fully stochastic version of the Luria-Delbriick model
in which all mutants are treated as a single population [20-25]. In these models there are only
two cell populations: wild type and mutant. In contrast, here we study populations started by
individual passenger mutations separately.

Results

We model the accumulation of passenger mutations during clonal expansion of cancer using a
multi-type branching process [26, 27] that starts with a single type-0 cell. All cells in the process
divide with rate b and die with rate d. At each division, one of the daughter cells receives a new
passenger mutation with probability u, which starts a new type. We are interested in the muta-
tions accumulating in the exome during tumor evolution, so we are mostly interested in the
mutation rate u = 0.015, which is the product of the normal point mutation rate per cell divi-
sion (~5 - 107'%) and the number of base pairs in the exome (~3 - 107) [5].

Any new mutation that appears in the population can be lost due to stochastic fluctuations.
The probability that its lineage will not survive is & = d/b, the ratio of the death and the birth
rates [26], and we will see later that the limiting behavior of the process is strongly dependent
on ¢ and not the individual values of b and d. We label the mutations with surviving lineages
(“successful” mutations) according to their order of appearance. We are interested in the frac-
tion of cells harboring mutation k, for k > 1, and the phylogenetic relationships [28] between
first appearing successful mutations (Fig 1).
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Fig 1. Evolutionary dynamics of passenger mutations during clonal expansion. (A) New passenger mutations can be lost due to stochastic drift
(diamonds). Successful mutations form surviving lineages. We order successful mutations by their time of appearance. Individual cells can harbor many
passenger mutations and various different phylogenies can arise (B). In the example shown, mutation 2 appears in a cell that already harbors mutation 1.
Thus all cells that have mutation 2 also have mutation 1. Similarly, all cells cells that have mutations 4 or 5 also harbor mutations 1 and 2. Mutation 3 forms an
independent clone. We calculate the likelihood of different phylogenies and the expected number of subclonal mutations of any frequency.

doi:10.1371/journal.pcbi.1004731.g001

Throughout the paper we mostly assume that the birth rate is b = 0.25 per day, a typical
value for colorectal cancer [5], but all results scale accordingly for other values of b. The ratio
of death and birth rates in cancer has been estimated to be on the order of 6 = 0.72 in fast-
growing colorectal cancer metastases [29] to 6 = 0.99 in early tumors [5], and we focus on & val-
ues in this range.

The average number of passenger mutations with surviving lineage that are present in a
population of M cells is Mu[14]. For a tumor containing M = 10° cells (~ 1 cm in diameter)
the number of passenger mutations is ~ 1.5 - 10”. The number of mutations is thus almost
half of the length of the exome, but the vast majority of those mutations are present in a
small number of cells, far below the detection limit of current sequencing technologies [30].
We are mostly interested in the mutations present in a sizable fraction of the population
(above 0.1% of all cells). We assume an infinite allele model, in which each mutation can
appear only once.

We perform Monte Carlo simulations of the multitype branching process using the Gilles-
pie algorithm [31]. Between 5,000 and 10,000 surviving runs are used for each parameter
combination.

Probability of fixation of new mutations

In a pure birth process, d = 0, the founding cell (type-0 and no other mutations) is always present
in the population, and thus all new mutations are subclonal; they are present in less than 100% of
tumor cells. However, with death rate d > 0, new mutations appearing during clonal expansion
can reach fixation in the population. We show in Methods that the probability that the k-th
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mutation with surviving lineage eventually fixates and becomes present in all cells is given by

k
u

If the k-th surviving mutation reaches fixation, it is implied that all preceding k — 1 surviving
mutations (labeled 1 to k — 1) also reach fixation. Therefore each cell in the lesion has the first k
mutations.

From formula (1) we see that the probability of fixation increases with both the mutation
rate, u, and the death-birth ratio, §. Assuming normal mutation rate in the exome we have
u =0.015. Thus, in a fast-growing population, in which & is significantly smaller than 1, it is
unlikely that any new mutation reaches fixation. For example, for § = 0.72, the probability that
the first appearing mutation with surviving lineage reaches fixation is p; ~ 0.04. For § = 0.96
this probability is p; &~ 0.27. When growth is particularly slow, for example 6 = 0.99, the first
mutation with surviving lineage has a p; ~ 0.6 chance of fixation, while the second has a
P2 ~ 0.36 chance and even the fifth can fixate with probability ps ~ 0.08.

Frequency and phylogenies

We show in Methods that the cumulative distribution function for the frequency of cells with
the k-th mutation is given by

Fila)~ 1= <u log[lua(lé)]>k @

for 0 < o < 1. Formula (2) is the probability that the frequency of cells carrying the k-th muta-
tion is less than a. Note that Fi() does not approach 1 as @ = 1 due to a non-zero fixation
probability. The excellent agreement between formula (2) and exact computer simulations of
the stochastic process is shown in Fig 2A and 2B. The fixation probability of the k-th mutation
is precisely px = 1 — F(1). For fast growing tumors, d = 0.72, the median frequencies of the first
three surviving mutations are all smaller than 5% (Fig 2A). In contrast, for slow growing
tumors, 6 = 0.99, the median frequencies of the first three mutations are all greater than 40%
(Fig 2B).

Another significant difference between slow growing and fast growing tumors is exhibited

by the phylogenetic relationships among the first surviving mutations. When & = 0.72, the
most likely phylogeny including the founding population (type-0) and the first surviving muta-
tions is star-like (first tree in Fig 3A). In contrast, when & = 0.99, the most likely phylogeny is
linear (last tree in Fig 3A).

Formulas for the probabilities of all six phylogenetic trees involving the founding population
and the first three surviving mutations are given in Methods. In Fig 3 we plot all six trees and
their probabilities for various values of 8. For all values of J, either the first or the last tree
are the most likely. However, if we do not possess the knowledge of the order in which the
first mutations appeared, then trees 2-4 (Fig 3A) are indistinguishable, and for intermediate
0 (ie. 6 = 0.97), the shape of trees 2-4 will be the most likely.

Frequency and time of appearance

Let us now assume that there were z other cells in the population when a certain mutation
(with surviving lineage) appeared. In Methods we calculate the probability distribution for the
eventual frequency of that mutation. We show that the expected frequency that the mutant
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Fig 2. Frequency of passenger mutations. (A-B) Cumulative distribution function for the first three successful mutations. The y-axis shows the probability
that the mutation has a frequency of less than a. Comparison between formula (2) and exact computer simulations of the stochastic process with death-birth
ratios =0.72 (A) and 6 = 0.99 (B). For 6 = 0.72, the median frequencies of the first three successful mutations are below 5%. For 6 = 0.99, they are all above
40%. (C-D) Mutation frequency versus time of appearance. (C) Mean frequency attained by a mutation which arose when there were z other cells in the
population, for different values of the death-birth ratio, &. (D) Maximum likelihood and maximum a posteriori estimate (which are approximately equal) for the
number of cells in the population when the mutation with frequency a arose. Passenger mutation rate u = 0.015 (product of the number of basepairs in the
exome, L ~ 3- 107, and the normal point mutation rate during cell division, y ~ 5-107'°).

doi:10.1371/journal.pcbi.1004731.9002

eventually achieves is

1— (3Z+1

ey

(3)

If 5 = 0, which means no cell death, d = 0, the expected frequency is 1/(z + 1). However, for

¢ > 0 and especially when ¢ is close to 1, which is the most relevant case for cancer growth, the
expected frequency is much higher than 1/(z + 1). For example, consider a mutation (with sur-
viving lineage) which appears when there are 100 other cells present in the tumor; for § = 0 this
mutations reaches an expected frequency of E(x) = 0.01; for § = 0.99 it reaches an expected fre-
quency of E(x) = 0.63 (Fig 2C).
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Fig 3. Likelihood of phylogenetic trees. (A) All six phylogenetic trees containing the first three surviving passenger mutations are shown. (B) Probabilities
of each tree for different values of the death-birth ratio, & (formulas shown in Methods). For 6 = 0.72, the first tree is the most likely. For & = 0.99, the sixth tree
is the most likely. For intermediate 6 = 0.97, the most likely tree shape is that of trees 2-4. Passenger mutation rate u = 0.015.

doi:10.1371/journal.pcbi.1004731.g003

So far we have studied the branching process by looking forward in time. We now derive
several results that are useful for inferring knowledge about the early evolutionary history of
the tumor obtained from data at late stages of its evolution. To start, we ask an inverse ques-
tion: if a mutation is present at frequency o, when did it first appear? We show in Methods that
the maximum likelihood and maximum a posteriori estimates for the number of cancer cells
that were present at the time when that mutation arose are approximately the same and given

by
1
2MAP ~ 2ML = - . (4)
log[1 —a(1 — 9)]

Note that the estimated number of cells at appearance increases with 8 (Fig 2D).

We see from formula (4) that a mutation that is present in 10% of the population has most
likely appeared when there were as few as 10 cells (if § = 0 which is unlikely in cancer) to as
many as 1000 cells (if 6 = 0.99). Similarly, a mutation that is present in 50% of cells most likely
appeared when there were as few as 1 other cell (if & = 0) to as many as 200 cells (if & = 0.99).

Expected number of clonal and subclonal mutations

We prove in Methods that the expected number of subclonal mutations present at a frequency
larger than o is

_ u(l—a)
G Sl 5
= (5)
Similarly, the expected number of clonal passenger mutations is given by

o ou
TS (6)

The number of sublclonal mutations is highly dependent on the ratio §. When there is no
cell death, § = 0, there is on average only a single passenger mutation that is present at a
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Table 1. Expected number of subclonal and clonal mutations for different values of & = d/b.

9 >0.1%
0 15.0
0.72 53.5
0.96 374.6
0.99 1498.5
0.999 14985

>1% >10% > 50% Clonal
1.5 0.14 0.015 0

5.3 0.48 0.05 0.04
37.1 3.37 0.38 0.36
148.5 13.5 1.5 1.48
1485 135 15 15

Values calculated using formulas (5) and (6). We assumed normal point mutation rate in the exome u = 0.015.

doi:10.1371/journal.pcbi.1004731.t001

frequency higher than 1%. On the other hand, if § = 0.99, there will be about 150 passenger
mutations present in more than 1% of cancer cells (Table 1).

Formula (5) can be fitted to cancer sequencing data to determine how well the branching
process model of neutral evolution describes the observed mutation frequencies and to extract
the most likely parameters of the process. We fit our formula to the TCGA (http://
cancergenome.nih.gov/) colorectal cancer dataset, publicly available at https://dcc.icgc.org/
releases/current/Projects/ COAD-US. All samples were classified as either microsatellite-stable
(MSS) or instable (MSI) based on the sample’s total number of mutations [32], and their purity
and ploidy have been assessed [33]. We required samples with ploidy between 1.8 and 2.2 so
that the cancer was not too far from diploid and chromosomal instability and LOH did not sig-
nificantly alter the distribution of allele frequencies. We further required a purity estimate of at
least 70%. A total of 42 samples passed both of these criteria and were fit to our formula, after
adjusting their allele frequency to account for sample purity.

In Fig 4 we plot the number of mutations with allele fraction between 0.12 and 0.25, found
in two colorectal cancer samples from the TCGA dataset. Mutations with allele frequency of
25% or more may be clonal (for example, a heterozygous mutation present in one copy of a tet-
raploid chromosome). On the other hand, mutations with allele frequency below 10% can be
difficult to detect (which translates to 12% corrected frequency as the average purity of our
samples is 85%). In [34], the authors fit the same data to a formula they derived using a deter-
ministic approximation with no cell death.

Assuming that there is no loss of heterozygosity and that all mutations are present in a sin-
gle allele of a diploid cell, the allele frequency of a mutation is 1/2 of its cancer cell frequency. It
follows from formula (5) that the number of mutations with allele frequency larger than o but
smaller than 0.25 is given by

Out of the 42 colorectal cancer samples that passed our filtering criteria, 16 had fits with
with R* > 0.9, and we show them in S1 Fig. For the two cancers in Fig 4, the best fit is obtained
for a=u/(1 - 8) = 1.23 (Fig 4A) and a = 62.1 (Fig 4B). More generally, the median value for a
in MSS cancers is 2.86, and 27.61 for MSI cancers. For MSS cancers, assuming a normal pas-
senger mutation rate in the exome u = 0.015 leads to birth-death ratio § = 0.997. This value is
between the estimates of net proliferation rates in premalignant colorectal tumors (6 ~ 0.999)
and colorectal cancers (6 ~ 0.99) obtained from cancer incidence data [35]. If the mutation
rate is elevated 10-fold, then the best fit is obtained with death-birth ratio & = 0.97. Note that
fitting formula (7) and assuming death rate d = 0 (which implies = 0) to the data means that
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Fig 4. Predicted and observed numbers of subclonal mutations in colorectal cancer. Exome sequencing data for two colorectal cancers from the
TCGA dataset, (A) microsatellite stable (MSS) and (B) microsatellite instable (MSI), show the corrected allele fraction of each detected mutation (observed

allele fraction divided by purity). Mutations with allele frequency of 25% or more may be clonal [34] and mutations with corrected allele frequency below 12%
can be difficult to detect reliably. Thus we focus on mutations with fractions between 0.12 and 0.25, and plot the number of mutations with fraction between a
and 0.25 as a function of a. The data are fit to the formula for the number of mutations with the corresponding allele frequency Eq (7). The best fitfora = -2

and its corresponding 95% confidence interval is shown for each sample.
doi:10.1371/journal.pcbi.1004731.9g004

the mutation rate during tumor evolution needs to be ~ 400 fold higher than the normal muta-
tion rate, which is unlikely.

Interestingly, for & close to 1, the number of subclonal mutations with frequency above 50%
is approximately equal to the number of clonal passengers collected during tumor progression.
Thus subtracting the number of subclonal mutations with frequency above 50% from the num-
ber of all clonal mutations in the cancer will be an estimate for the number of clonal mutations
present in the first malignant cell.

Discussion

In summary, we have shown that the frequencies of the first and thus most abundant passenger
mutations are influenced not only by the mutation rate, but also by the death-birth ratio,

0 =d/b, of the cancer cells. If § is close to 1, which is the relevant case for slow overall growth,
then several clonal passengers may not have been present in the first tumor cell, but were col-
lected during clonal expansion. The ratio 6 also determines the shape of the cancer’s phyloge-
netic tree, which is star-shaped for fast growth and linear for slow growth (Fig 3). Additionally,
if we consider a mutation that has a certain observed frequency in the population of cancer
cells, we can ask: how many cells were present when that mutation arose? The answer varies
hundred-fold as the death-birth ratio, 8, changes from 0 to 0.99. This is particularly relevant as
high levels of cell death are reported in both malignant and premalignant tissues [36, 37].

In this work, we derive a simple form Eq (7) for the cumulative distribution of mutant allele
frequencies under a neutral model of cancer evolution. Fitting the cumulative distribution of
allele fractions in a sample to this functional form and analyzing the goodness of fit provides
information about the nature of the process underlying the generation of mutant alleles. We
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computed this distribution with data from each patient by first dividing all allele fractions in a
single patient by the sample purity and then restricting our view to allele fractions in the inter-
val [.12,.25]. The high end of interval was chosen to minimize the chance clonal mutations
appeared in it and the low end was chosen to ensure that sequencing was powered to detect
such mutations. The cumulative distribution of allele fractions in this interval was computed at
each mutant allele fraction as the number of mutations greater than that fraction but less than
or equal to the cutoff at 0.25. Finally, we performed a least-squares fit to the functional form
described using MATLAB and report fits with R* values at least 0.9.

Our model is applicable to individual cancers in which there are no subclonal drivers at
observable cell frequencies. This includes both liquid and solid tumors. It has recently been
shown that colorectal tumors fit this model often [17, 34]. In contrast, some liquid cancers
such as chronic lymphocytic leukemia usually harbor subclonal drivers, and are thus not good
candidates for the application of our model [38].

In a previous paper [14], we have studied the accumulation of individual resistance muta-
tions in cancer using a fully stochastic Luria-Delbriick model. For targeted therapies, resistance
mutations are estimated to be rare: only about a hundred positions in the genome can give rise
to resistance if mutated [29, 39, 40]. Therefore all results in Ref. [14] were derived in the limit
of very small mutation rates, about ~ 10~ per cell division. In that scenario, two resistance
mutations are virtually never present in the same cell, and the fixation of mutations in the pop-
ulation is extremely unlikely. In contrast, here we are interested in the accumulation of passen-
ger mutations in the whole exome, which leads to a large number of passenger mutations in the
population. Even individual cells contain many different mutations. Therefore, new questions
arise and a new mathematical approach is needed.

Our model is a continuous time version of the infinite alleles branching process introduced
by Griffiths and Pakes [41], and is a special case (birth-death process) of the model studied
recently by Wu and Kimmel [42]. These works were mostly interested in the limiting frequency
spectrum of the process, namely the number of mutations present in j individuals as time
t — oo; for example, Wu and Kimmel provide an explicit expression for the mean limiting fre-
quency spectrum for the birth-death process in terms of the hypergeometric function. We
study the same process with respect to tumor size and derive explicit expressions for the fre-
quencies of mutations according to their order of appearance. We also study the expected num-
ber of mutations above a certain frequency, which has connections to the frequency spectrum.

Sottoriva and Graham [34] estimate the number of cells, including the new cell, that were
present when a mutation with observed frequency « appeared by 1/a, using a deterministic
model with no cell death. A deterministic model is always useful as it provides the simplest
approach to study evolutionary dynamics. Our formula (4) provides the stochastic correction
to their prediction.

Recently, Durrett [43] derived formulas for the expected number of passenger mutations
present at a frequency larger than a. His process differs from ours as in his model mutations
occur independent of cell division. Consequently, the founding cell can collect mutations prior
to the first cell division, and even for d = 0 there could be passenger mutations that are clonal.
In contrast, in our model for d = 0 all mutations are strictly subclonal.

In this paper we do not consider loss of heterozygosity (LOH), which implies that mutations
can be lost from the cell during cell division. The rate of LOH is on the order of 10~ or lower
per cell division in tumors that do not have chromosomal instability (CIN) [44]. For such
small LOH rate, if LOH events are neutral or deleterious, the fraction of cells that gained a
mutation but then lost it will be very small, and our results would still hold; our results would
also hold for LOH events that occur at higher rates but are deleterious. In a subsequent paper
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we will study the effect of LOH events on the evolutionary dynamics of passenger mutations,
and focus on situations where they occur with high frequency (CIN) [45, 46].

Similarly, here we do not consider the effect of new driver mutations that may appear dur-
ing clonal expansion of cancer [5, 47-49]. The addition of drivers may change both the
observed mutational frequencies and the phylogenies of the occurring mutations. Instead we
focus only on the accumulation of neutral mutations, which is the relevant case for studying
the growth of metastases and even some primary tumors [15-17].

While cancer spends much time in clonal expansion, plateau stages are also common. The
effects of plateau stages after clonal expansion on the frequency of passenger mutations can be
studied using a density-dependent branching process used previously in the context of resis-
tance to cancer therapy [50]. This density-dependent model can be approximated analytically
with a two phase model: a branching process with constant birth and death rates b and d corre-
sponding to the growth phase, and a plateau phase of length T in which birth rate of all cells is
approximately equal to d. In this model, mutations present at the end of the plateau phase can
be either “old” mutations that were present at the end of the growth phase, or “new” mutations
that appeared during the plateau phase and were not lost. In the large time T limit, all old
mutations will either reach fixation or be lost in the population, but for shorter times T fre-
quencies of old mutations can be approximated by their frequencies at the end of the exponen-
tial growth phase. On the other hand, the number of new mutations that are present above a
certain frequency can be studied analytically using techniques from [50] to show that new
mutations will in general not be present at observable frequencies if the population size at the
plateau is on the order of millions of cells or higher. Rodrigues-Brenes et al. recently studied
inhibited cancer growth in the context of stem-cell driven cancers [51].

In our model we do not explicitly take into account the possible existence of a differentiation
hierarchy within the cancer population: namely, the existence of cancer stem cells, which are
able to propagate the tumor population indefinitely, and differentiated cells, which have lim-
ited life-spans. However, our results can also inform the study of this more complicated situa-
tion, and our analysis in fact applies to cancer stem cells. To add differentiated cells, we can
consider the model in which, in addition to our basic assumptions, stem cells can also divide to
produce one stem cell and one differentiated cell of generation 1, differentiated cells of genera-
tion i divide to produce two differentiated cells of generation i + 1 and the lifespan of differenti-
ated cells is # divisions (i.e. differentiated cells of generation 7 are lost from the population). A
reasonable estimate for the number of divisions before mitotic arrest is # = 10 (e.g. 4-6 divi-
sions in colon [52] and 15-20 in hematopoietic system [53]), which means that each differenti-
ated cell of generation 1 produces ~ 1000 cells before they are lost from the population.
Typical detectable tumors contain billions of cells; mutations that occur in the lineage of a sin-
gle differentiated cell will remain confined to that lineage, which will contain no more than
~ 1000 cells (or no more than ~ 10° cells if n = 20), and will not reach a significant fraction in
the population (less than 1/10° for 7 = 10 or less than 1/10° for 7 as high as 20). Hence muta-
tions appearing in the lineages of differentiated cells will not be present at frequencies above
0.1% or 1% that we are interested in—mutations above these frequencies will be only those in
the stem cell population, which will behave as described in our model. The only adjustment
that needs to be made to our results when referring to cancer stem cells is the adjustment of the
mutation rate to account also for mutations that occur to stem cells during asymmetric
divisions.

We recently developed a spatial version of the model studied in this paper, which we mostly
analyzed through computer simulations [54]. In this spatial model, tumor growth occurs on a
3-dimensional lattice and birth rate is reduced in the presence of many neighboring cancer
cells. This results in the inside of the tumor being in the state of equilibrium between birth and
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death, while the surface of the tumor is able to expand. If the effective birth rate of cells in the
surface of the spatial model is comparable to the birth rate in the well-mixed model, there will
be more mutations present above a certain frequency in the spatial case, as the spatial tumor
experienced more divisions to reach the same size. However, the addition of migration of
tumor cells allows cells to explore less crowded spatial positions and in turn reduces the num-
ber of divisions needed to reach the same size as well as the number of mutations above a cer-
tain frequency, bringing this model closer to the model without space [54].

Methods
Eventual fraction and time of appearance

We are interested in the eventual fraction of cells carrying a successful mutation, which
appeared when there were z other cells in the population. Let Y be the population started by
these z cells (i.e. cells without the mutation) and X the population carrying the mutation. The
probability that exactly i out of z non-mutant cells have surviving lineage is

7, = (j) (1-8y6". (8)

When i = 0, the non-mutant fraction dies out and the eventual fraction of the mutant is 1. For
i > 1, the number of non-mutant cells Y =~ ¢V, + ... + V,), where V,, . .., V, are indepen-
dent exponentially distributed random variables with mean b/(b—d) [14, 49] and time ¢ is large
and measured from the time of appearance of the mutant. In other words, the number of cells
without the mutation is given by

©)

v eV, +---+V,)  with probability x,, i > 1
0 with probability

=Dty \where V is again exponentially distributed random variable with mean

Similarly, X ~ e
b/(b—d). Thus when the number of non-mutant cells with surviving lineage i > 0, the eventual

fraction of cells with the mutation is

X \%4

= = = 1' 10
=y vy - (10)

where f[1, i] is a beta-distributed random variable with probability density function i(1 — w)’
~![14]. This allows us to calculate the probability that the fraction of the population carrying
the mutation is smaller than e, for 0 < o < 1:

z

Prob[x < «|Y(0) =z] = Z (j) (1- 5)1'527:'(1 —(1- oc)i) (11)

i=1

=1—(1—o+dx) (12)

Probability density function for the fraction of mutants, the first of which appeared when there
were z other cells in the population is

f.(2) = (Prob[x < «|Y(0) = 2])’ (13)

=(1—-0)z(1 — o+ o0)"" (14)
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Then the mean fraction that the mutant will eventually achieve in the population is

E(x) = & + /O of (2)dox — #?HZ) (15)

We can obtain the maximum likelihood (ML) estimate for the number of cells that were
present in the population when the mutation that is present at a fraction o (for a < 1)
appeared, by maximizing the probability distribution for the mutant fraction f,(a) Eq (14):

R 1
b = — (16)

~ log[l — o+ 6q]

To calculate the maximum a posteriori (MAP) estimate for the number of cells that were
present in the population when the mutation that is present at a fraction o appeared, we let v
be the probability that a particular single mutation appears during cell division. Then v is also
the probability that this mutation apperas in the population when there are z cells and forms a
surviving lineage, for all z > 1. We note that v is very small and on the order of 10~°. The prob-
ability that the successful mutation first appeared when there were z cells is p(z) = v(1-v)"" so
to get the MAP estimate we will maximize p(z)f,(c):

1 1
Clog[l—v]+ log[l —a+dx]  log[l — o+ o0

(17)

Zmap =
since v is very small.

Probability of fixation of k-th mutation

In a pure birth process (with d = 0) the founding population (type-0 and no other mutations)
will always be present in the population, and thus all mutations will be present in less than
100% of tumor cells. However, when death rate d > 0, new mutations appearing during clonal
expansion can reach fixation in the population. Probability that the k-th mutation with surviv-
ing lineage eventually fixates and becomes present in all cells is approximately given by

Ol S T (18)

Here we use the fact that the population sizes at which mutations with surviving lineage appear
can be approximated by a Poisson process on [0,M] with rate u[14], that final population size
M is large and that if k-th mutation is produced when there are z other cells in the population,
it will reach fixation if and only if the lineages of the other z cells die out. Evaluating the integral

above we obtain
" k
~|——) . 19
pe~ (= ors) (19)

Fraction of cells with k-th mutation

Having already characterized the probability that the k-th passenger mutation reaches fixation
in the population, we will now investigate the size of the population with the k-th mutation
when it is subclonal.

We can derive the cumulative distribution function for the fraction of cells with the k-th
mutation by again using the fact that the population sizes at which mutations with surviving
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lineage appear can be approximated via a Poisson process on [0, M] with rate u, where M is the
final population size [14], together with result Eq (12).

k-1 _
e *u

Problx, < o] =~ / (zzllz——l)'[l — (1= o+ da)’dz (20)

=1- <1 _log(1 + (=1 + 5)a)>-k

u

From here we can derive the median fraction of cells with the k-th mutation

L)

Med(x,) = min< 1, T

Trees

In addition to the numbers of cells carrying specific mutations, we will also investigate the phy-
logenetic relationships between neutral mutations in tumors. We will show that the likelihood
of a particular configuration depends on the parameters on the process.

We first calculate the probability that mutation 2 appears in the lineage of mutation 1 (and
not 0). We will use the approximation that the probability that mutation 2 is offspring of muta-
tion 1 is equal to the eventual fraction of cells with mutation 1 in the population. Then the
probability that mutation 2 appears in the lineage of mutation 1 is

1
pra~E(x) = py + / g, (0)d, (23)
0

where g; is the probability distribution function for the fraction of cells with the first mutation.
In other words, g, is the derivative of the cumulative distribution function given in Eq (21) for
k=1.Forb=0.25,d=0.18and u = 0.015, p; _, , = 0.15, while for d = 0.2475 and b and u same
as before, p; _, , =0.77, in excellent agreement with simulations results.

Next we want to estimate the probabilities of each of the six trees (Fig 3) involving the first
three (successful) passenger mutations. For these calculations we will need the following two
quantities, sub; and sub,, mean fractions of cells with the first and the second mutation, condi-
tioned on their subclonality. Mean fraction of cells with the first mutation, conditioned on that
mutation being subclonal, is simply

fol ag, (o) do

— (24)

sub, =

On the other hand, mean fraction of cells with the second mutation, conditioned on that muta-
tion being subclonal, is

j;)l ag, (o) dot

, 25
S (25)

sub, =

where g, is the derivative of the cumulative distribution function given in Eq (21) for k = 2.
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We will also need sub,’, mean fraction of cells with mutation 2, conditioned on 1 being
clonal and 2 not being clonal, and sub,™, mean fraction of cells with mutation 2, conditioned

on 1 not being clonal and 2 not being clonal. sub,” = sub, and since
E(x,) = pi + (1= pi)sub, = p + py (1 = py)suby” + (1 — py)sub,” (26)
we have
sub,” = (1 + p,)sub, — p,sub,. (27)

We will start with calculating the probability of tree 2, p,, in which mutation 2 is not offspring
of 1 (event A) and mutation 3 is offspring of 1 (event B). We will denote the event that muta-
tion 1 does not fix as C. Then A C Cand

p, =P(ANB)=P(ANBNC)
— P(C)P(A|C)P(B|JANC) (28)
~ P(C)P(A|C)P(B|C)

In other words, we approximate P(B|[ANC) with P(B|C) and obtain
p2~ (1= p,)(1 — sub,)sub,. (29)

Thus tree 2 occurs only when mutation 1 is subclonal (which occurs with probability 1 — p;),
mutation 2 is offspring of mutation 0 (which occurs with probability 1 — sub;) and mutation 3
is offspring of mutation 1 (which occurs with probability ~ sub;). When calculating the proba-
bilities of individual trees, we again use the approximation that the probability that e.g. muta-
tion 2 is offspring of mutation 1 is equal to the eventual fraction of cells with mutation 1 in the
population.

Similarly, the probability of tree 4, p,, in which mutation 2 is offspring of 1 and mutation 3
is offspring of 0 is given by

py~ (1= py)sub (1 — sub,) ~ p,. (30)

We will calculate the probability of tree 1, p;, in a similar manner. Let A and C be the same
events as above and let event B now be that mutation 3 is not an offspring of either 1 or 2. Then

p, =P(ANnB)=P(ANBNC)
= P(C)P(A|C)P(B|AN C)
~(1—p,)(1—sub)(1—E(x]ANC)—E(x|ANC))
~ (1 —p,)(1 —sub,)(1 — sub, — sub,™)

(31)

Thus we have

py~ (1 —py)(1 —sub,)(1—sub, — (1 + p,)sub, + p;sub,) (32)

Similarly, the probability of tree 3, ps, is

Py = (1 - pl)(l - SUbl)Sub;m
= (1= p,)(1 —sub;)((1+ p,)sub, — p,sub,)
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We now turn to calculating the probability of tree 5, ps. Tree 5 can occur when mutation 1
either fixes or does not fix. Mutation 1 fixes with probability p;, and then mutation 2 must not
fix in the population with mutation 1 (which occurs with probability 1 — p;) and mutation 3
must not be offspring of mutation 2 (which occurs with probability 1 — sub,’ = 1 — sub,). If
mutation 1 does not fix (which occurs with probability 1 — p;), then mutation 2 is offspring of
mutation 1 with probability sub;, mutation 2 does not fix in the population with mutation 1
with probability 1 — p; and mutation 3 is offspring of mutation 1 but not 2 with probability
~ sub, — sub,"*"". Here sub,"*"" is the mean fraction of cells with mutation 2, conditioned on
mutation 1 not being clonal and mutation 2 being offspring but not clonal in 1. We have

ps =p(l—p)(1—su 25) + (1= p,)sub, (1 — p,)(sub, — Sub;mml)
=p(1=py)(1 —sub)) + (1 - pl)qubl(subl - Sub;nczm) (34)
~ (1= p,)[p,(1 —sub,) + (1 + p,)sub, (sub, — sub,)]

In the last equality we used the fact that

sub," — p,sub,
I—p

1ne2ncl
ub, ~

(35)
Using similar reasoning and 4 scenarios: 1) mutation 2 fixes, 2) mutation 1 fixes, but mutation
2 does not, 3) mutation 1 does not fix but mutation 2 fixes in the population with mutation 1
and 4) mutation 1 does not fix, mutation 2 does not fix in the population with mutation 1 we
obtain

P A py+py(1—py)sub, + (1= p,)p,(sub,)’ + (1 — p,)’sub, sub,"*"

(36)
~ (91)2 + p1(1 - p1)sub1(1 - SUbl) + (1 - p?)SUblsubz

The comparison between our formulas and simulation results for probabilities of each tree
are shown in Table 2.

Expected number of subclonal mutations

Let u, be the probability that, when there are z total cells in the population, a new mutation is
produced that will become subclonal and present in a fraction larger than o. The probability
that a new mutation with surviving linage is produced before going to z — 1 or z + 1 cells is bu/
(b+d)-(1-d/b)=u(l-6)/(1+96)forz>1. When z = 1, the probability that a new mutation
with surviving lineage is produced before going to 2 cells (the only option in the process with-
out extinction) is u - (1 — d/b) = u(1 — 8). For all z > 0, probability that the newly produced
mutation is subclonal is 1 — (d/b)®.

Using formula (12), probability that a subclonal mutation with surviving lineage, that
appeared when there are z other cells, is present in a fraction larger than a is

(1 —o+ o) —o°
1-0°

Prob[x > alx < 1] = (37)

This leads to

1-9

Z:um((l—a—i—éa)z—éz) (38)

u
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Table 2. Likelihood of phylogenetic trees.
[

Formulas 0.72
0.96
0.99
Simulations 0.72
0.96
0.99

1 2 3 4 5 6
71.1% 9.8% 3.8% 9.8% 4.5% 1.2%
26.4% 15.2% 9.9% 15.2% 16.1% 17.2%
5.5% 9.7% 8.2% 9.7% 15.1% 51.7%
73.9% 7.7% 3.5% 7.5% 6.2% 1.1%
30.7% 12.7% 8.8% 12.7% 18.1% 16.9%
7.4% 8.9% 7.6% 9.2% 15.2% 51.2%

Probability of each of the six trees for different values of death-birth ratio 6. Probabilities obtained using formulas from this section and results from 10,000
(surviving) runs of the computer simulation. Parameters: birth rate b = 0.25 and passenger mutation rate u = 0.015.

doi:10.1371/journal.pcbi.1004731.t002

forz>1and
u, = u(1—0)((1 — o+ da)' — ") (39)

We are interested in the expected value for the number of subclonal mutations with fraction
larger than a. Let m, be the expected value for the number of such mutations when the process
starts with k cells. We are again only interested in the process that does not go extinct. Thus we
have

my = Uy +m, (40)

m = w + pmy,, + (1= p)m,_y, (41)

for k > 1 and p = 1/(1 + ). Expressing m, in terms of m, we get

_ 2 1-p\ & 1-p\ 1 _
m=n ) (1) L () ¢y +2)

i=0 i=0

Taking the limit of the right-hand side when k — oo and noting that 777, — 0 when k — oo we

(59
i=0 p

get

()

i=0

Il
 ~

»—:

_|_

Mg

[ =
N—————
Mx +
0 M
“@’I ~ |8
\_? M*
B

Plugging in the expressions for u, and p we get that the expected value for the number of sub-
clonal mutations with fraction larger than «a is

1

1-0)((1 — o+ da)* — 5Z))m

(44)
1 — o+ da)° — &)

= (O
= >l
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Evaluating the last sum we obtain the expected number of subclonal mutations present in a
fraction larger than o

u(l —a)

= (45)

m,=m, =

N

Expected number of clonal mutations

Using the same reasoning as in the previous section we can calculate the expected number of
clonal mutations.

X 0
mczzwz:ljé (46)

z=1

Supporting Information

S1 Fig. Predicted and observed numbers of subclonal mutations in colorectal cancers from
the TCGA dataset. We fit the cumulative distribution of allele fractions (corrected for purity)
in the range [.12,.25], for 42 colorectal cancer patients in the TCGA to formula (7). 16 samples
with R? > 0.9 are shown here. We note that observed cumulative function sometimes deviates
from the formula for low allele fractions (0.12-0.15), which may be due to the lower power of
detecting mutations at this low frequency.

(PDF)
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