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Abstract

A collective-risk social dilemma arises when a group must cooperate to reach a common target in order to avoid the risk of
collective loss while each individual is tempted to free-ride on the contributions of others. In contrast to the prisoners’
dilemma or public goods games, the collective-risk dilemma encompasses the risk that all individuals lose everything. These
characteristics have potential relevance for dangerous climate change and other risky social dilemmas. Cooperation is costly
to the individual and it only benefits all individuals if the common target is reached. An individual thus invests without
guarantee that the investment is worthwhile for anyone. If there are several subsequent stages of investment, it is not clear
when individuals should contribute. For example, they could invest early, thereby signaling their willingness to cooperate in
the future, constantly invest their fair share, or wait and compensate missing contributions. To investigate the strategic
behavior in such situations, we have simulated the evolutionary dynamics of such collective-risk dilemmas in a finite
population. Contributions depend individually on the stage of the game and on the sum of contributions made so far. Every
individual takes part in many games and successful behaviors spread in the population. It turns out that constant
contributors, such as constant fair sharers, quickly lose out against those who initially do not contribute, but compensate
this in later stages of the game. In particular for high risks, such late contributors are favored.
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Introduction

Cooperation, between selfish individuals in public goods games

[1–8], becomes particularly challenging when the prospects are

uncertain and a critical number of cooperative acts is required.

Investing in the prevention of climate change is in vain if too many

other do not invest [9–13]. In this context, it may not only be

important if we cooperate at all, but also when we cooperate.

Motivated by the prospect of dangerous climate change, Milinski

et al. have conducted a behavioral experiment to address such a

situation [9]. The experiments were designed to capture a

collective-risk social dilemma which arises when a group of

individuals must cooperate to reach a common target in order to

avoid the risk of collective loss. Subjects were distributed into

groups of six players and given an initial endowment of 20 money

units (in their case, each unit was worth 2 J). Over 10 rounds,

each player could invest 0, 1 or 2 units into a common account.

Preceding each investment decision, players were informed about

the individual contributions in the previous round. At the end of

the game subjects were allowed to keep their savings only if the

common account contained at least half of the total endowment of

the group; otherwise, all members lost all their savings with a

certain risk probability. Milinski et al. found that when this risk is

high, contributions increased overall. However, the majority of

groups missed the target by a small margin, which is the worst

possible outcome; investing nothing would lead to a higher

expected payoff.

The experiment of Milinski et al. has triggered numerous

theoretical investigations [14–17]. The focus has been to use an

evolutionary game in order to analyze the consequences of a target

threshold, which represents a serious complication over the usual

public goods games [8,17–21]. However, these studies considered

only two behaviors, cooperation or defection, and assumed that

individuals do not react to the contributions of their co-players

over the course of the game. This means that effectively in these

previous investigations the game was limited to a single round even

though the full game consists of multiple rounds. However, a direct

influence of co-players on individuals’ decision emerges when

there are several subsequent stages [22–24] of investment and it is

not clear whether individuals should contribute in early or in late

stages of the game. Herein, we explore the evolutionary dynamics

of strategic behavior in such multi-round game by analyzing the

timing of the contributions. With this method, we aim to

understand the natural behavior in such kind of situations. This

behavior is of particular relevance in the context of dangerous

climate change, which has been modelled as a collective-risk

dilemma [9]. Should we be pessimistic towards the prevention

method used for climate change, especially when major industrial

nations fail to fulfill their targets in CO2 reduction in time? Or is

this a natural behavior in such collective-risk dilemmas? Under

which circumstances would early contributions be favored? In

order to investigate strategic behavior in this game, we explore the

general characteristics of such behavior through large scale

computer simulations. We use evolutionary game dynamics [25–
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27] to infer which strategies are particularly stable in collective-risk

games.

Results

Evolutionary Game Dynamics in the Collective-Risk
Dilemma

We employed an evolutionary game, in which success is

measured by the average payoff over many collective-risk dilemmas.

Such a collective-risk game is played among M individuals selected

at random from a well mixed population of size N . An individual

player commences each game with an initial endowment of 2R,

where R is the total number of rounds played in a game. In each

round r, players simultaneously invest Ir units into a common pool.

The total investment of a player is C~
PR

r~1 Ir. In our analysis, we

focused on a six player game in which players can invest 0, 1 or 2

units for ten rounds, as in [9]. We also discuss the consequences of

relaxing these assumptions.

The whole group collectively has to invest a target sum T~MR
by the end of the game after R rounds. If they succeed, they can

keep what they have not invested. If they fail, they lose what they

have not invested with probability prisk and keep it with probability

1{prisk. Thus, a player obtains a payoff of 2R{C when the target

is reached and an average payoff (1{prisk)(2R{C) when the

target is missed. Note that the individual payoff is independent of

the timing of the contributions – but this timing can be crucial for

the interactions among the players.

This collective-risk dilemma has a large strategy space and a

large set of Nash equilibria. Each situation in which the group of

players collectively contributes exactly T and no player invests

more than 2R:prisk is a Nash equilibrium, irrespective of the

distribution of contributions within the group. For example, for

prisk~1, half of the players could invest 2 units in each round and

half of them nothing is a Nash equilibrium, despite being unfair. In

this situation, the target is exactly met. If those who invest 2 units

would invest less, the target would not be met. If those who invest

nothing start contributing, these contributions would be in vain. In

general, such deviations from the Nash equilibrium are disadvan-

tageous for the individual in high risk situations. In addition, the

situation in which no one contributes is a Nash equilibrium,

because it takes more than one player to reach the target.

A behavior can be defined from the individual contributions

over the R rounds. In our case, each player can choose between

three actions in each round, thus there are 3R different behaviors,

increasing exponentially with R. If behaviors are independent of

the actions of others, we can collapse the whole dynamics into a

single round game and identify strategies such as defectors

(someone who does not contribute, C~0), fair sharers (contrib-

uting half of the endowment, C~R), altruists (contributing

everything they have, C~2R), or many others. However, when

behaviors also depend on the actions of the other M{1 players,

identifying the underlying strategies becomes much more

challenging. In our case, the 3R different behaviors are only

based on the total amount that has been invested so far, a

reasonable assumption in a context where it is difficult to monitor

individual actions. Nevertheless, this assumption can lead to

complex strategies and behaviors. A player’s strategy determines

how much to contribute in a given round, depending on the

collective contributions so far. We assume that players invest more

(or less) once the collective contributions have reached a certain

amount Cr. A player could aim to invest less when contributions

are high, but it may also be reasonable to compensate the missing

contributions of others. We defined a player’s strategy based on a

threshold and the contributions when the invested sum so far is

above or below this threshold. For instance, a player could invest 2

in round r if the total investment so far is above his threshold value

and 1 otherwise. The contributions and thresholds can be different

for each round, see Methods for a concrete example. This

combination produces a large strategy space. Note that, an

individual with a specific strategy (defined by the thresholds and

contributions) can show a wide range of behaviors based on the

common pool and hence on the strategies of other co-players.

In evolutionary game dynamics, the payoff determines the

fitness and thus more successful strategies spread in the population.

In our setup, ‘evolution’ operates at the level of strategies while

‘selection’ operates at the behavioral level. Evolutionary game

dynamics were simulated using a mutation-selection process in a

population of finite size [27], cf. Methods. The evolutionary game

dynamics of strategic behavior depends crucially on the risk

probability prisk. As an illustration, Fig. 1 shows typical simulations

for low risk (prisk~0:1) and high risk (prisk~0:9), the parameter

values analyzed in a behavioral experiment with students by

Milinski et al. [9]. Within the first 200 generations, the average

contributions and the average payoff values stabilize. As expected,

for prisk~0:1 individuals do not contribute and the average payoff

is 0:9 of the initial endowment, cf. Fig. 1a. In contrast, for

prisk~0:9, individuals on average contribute half of their

endowment (C~T=M~R), cf. Fig. 1b. In this case, the target

is reached with a probability larger than 80%, leading to an

average payoff substantially larger than (1{prisk)2R. Note that

the average payoff when the target is met, R, is identical to the

average payoff with zero contributions for prisk~0:5.

When priskv0:5, it is not worthwhile to contribute to the

common account, because the expected payoff for not reaching

the target is still higher than the payoff when the target is met and

everyone contributes half of their endowment, (1{prisk)2RwR.

We find that, simulations for risk values up to prisk&0:7 lead to an

average payoff of (1{prisk)2R. Our simulations show that for

priskw0:75 the average payoff increases to values close to half of

the initial endowment, which would be the optimal solution for

high risks. This happens when the probability to meet the target

reaches values much larger than 50%, see Fig. 2a.

Author Summary

The evolution of cooperation is a fascinating topic with a
wide range of applications, from microbial evolution to
global cooperation of humans in the context of climate
change. Motivated by the prospect of dangerous climate
change, behavioral experiments of a ‘collective-risk dilem-
ma’ were conducted, where cooperation is in vain unless a
threshold is met. This game requires multilateral efforts
over several rounds in order to reach a known target and
avoid collective loss. We have conducted large scale
computer simulations to explore the evolutionary dynam-
ics of strategic behavior in such collective-risk dilemmas.
Individuals can react to the contributions of their co-
players over the course of the game and adopt their own
contributions. The timing of contributions to the public
good is a very important issue for long-term problems
such as climate change. In this context, it is imperative to
know when individuals (or countries) would naturally
contribute. We show that a specific behavior, late
contributions, is favored, especially when risk is high.
Collective-risk dilemmas can by their very nature lead to a
detrimental outcome for all involved, and, thus it is crucial
to understand the behavior that is expected in such a
situation.

Timing of Cooperation
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The probability to reach the target decays when there are more

errors in strategy inheritance - they lead to changes in the

contribution patterns which make it more difficult to evolve a

solution for the game. We incorporate errors in our evolutionary

process with probability m, cf. Methods. Consequently, the average

payoff decreases with increasing error probability m. The diversity

also increases for smaller intensity of selection b. Increasing b
stabilizes the population faster and quenches the overall effects of

m.

Behavioral Analysis
The dynamics of strategies can also be addressed on the

behavioral level, which reflects the interaction of players and the

corresponding strategic aspects. We use the contributions of

individuals to differentiate between the different behaviors for

games under various prisk. A behavior with C~0 represents the

classical defector, such players would always invest 0. E.g. in a four

round game investing 0 in each round, they would have 0000 as

the corresponding behavior. The opposite behavior, an uncondi-

tional altruist, is represented by C~2R, which means the player

contributes 2 in each round, e.g. 2222 in a four round game. A

behavior with a C~R represents any behavior where a player

contributes half of the endowment over the rounds; there are

many corresponding behaviors, e.g. in a four round game such a

player could contribute a total of 4 units in 19 different patterns, 1

in each round (1111), 1 in two rounds and 2 one round (i.e. 0112,

0121, 0211, 1012, 1021, 1102, 1120, 1201, 1210, 2011, 2101,

2110), or 0 in half of the rounds (i.e. 0022, 0202, 0220, 2002, 2020,

2200). In general, there are
PR=2

r~0 R!=(r!2(R{2r)!) behaviors with

C~R, increasing rapidly with R. Note that each of them – and

any mixture of them – is a Nash equilibrium. For an efficient

analysis we divided strategies into four behavioral categories,

C~0, CvR, C~R, and CwR, see Fig. 2b. The C~0 behavior

occurs at high frequencies for priskƒ0:75, while the C~R
behavior dominates for priskw0:75. Behaviors where CvR occur

for all prisk at low frequencies, while over-contributors, CwR, are

also rare but only seen for very large prisk. There is a single

behavior associated with C~0, however, there are many

behaviors with C~R. The increase in frequency of C~R when

priskw0:75 could be attributed to any of them. Therefore, we

divided the game into two halves and analyzed the contributions.

It turns out that at least 2=3 of the total contributions are made in

the second half of the game for prisk§0:75, Fig. 2a.

Figure 1. Sample trajectories for the evolutionary dynamics in
collective-risk dilemmas. (a) For small risk probability, prisk~0:1, the
initially random contributions quickly drop to zero. Consequently, the
target is never met and the average payoff is 90% of the initial
endowment, as expected. (b) For high risk probability, prisk~0:9,
strategies investing the target sum are favored. After a few generations,
in the majority of games the target is met, leading to an average payoff
of almost half of the initial endowment (parameters M~6, R~10,
N~100, G~1000, b~1, m~0:03, sE~0:15).
doi:10.1371/journal.pcbi.1002652.g001

Figure 2. Summary of the evolutionary dynamics in collective-
risk dilemmas. (a) The probability to meet the target investment,
average payoff, total investment and investment in the first and second
half of the game for different risk probabilities prisk (all payoffs and
investments are measured in proportions of the total endowment).
Players do not invest for priskƒ0:7, for prisk§0:85, players invest up to
half of their endowment, and at prisk&0:8, more than half of the games
meet the target. Investment mainly occur in the second half of the
game. (b)The total investments in the game, C~0 behavior occurs at
high frequencies for priskƒ0:75, while the C~R behavior dominates
for priskw0:75. Behaviors where CvR occur for all prisk at low
frequencies, while over-contributors, CwR, are also rare but only seen
for very large prisk (averages over 105 generations from 103

independent realizations parameters M~6, R~10, N~100,
G~1000, b~1, m~0:03, sE~0:15).
doi:10.1371/journal.pcbi.1002652.g002

Timing of Cooperation
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Next, let us infer which behaviors are responsible for meeting

the target when the risk is high. Interestingly, a single behavior

dominates for all priskw0:9 which can be described as a ‘fair

rational’ behavior. The name indicates that these players invest

their fair share R, but also employ a reasoning related to backward

induction for the strategic timing of their contributions. In this

case, half of the endowment is contributed in the second half of the

game and nothing is contributed in the first half of the game (e.g.

in a game with R~4 the dominating behavior can be represented

as 0022). Such behavior is consistent with the contribution

increase observed in the second half of the game, Fig. 2a. We find

this for different round numbers ranging from R~2 to R~20,

and a wide range of the other parameters (see Fig. S1). For

instance, if we vary the maximum contribution permitted in each

round, the same ‘fair rational’ behavior emerges, with contribu-

tions starting as late as possible (see Fig. S2). This indicates that the

‘fair rational’ behavior is preferred in such collective risk game

when risk is high.

We assessed the robustness of such behavior by initializing a

homogenous population and analyzing the duration for which the

behavior is maintained at a frequency greater than half of the

initial population size. In Fig. 3, we analyze five different

behaviors: Non-contributors with C~0, e.g. a 4 round game

would have 0000 as the corresponding behavior, altruists with

C~2R, i.e. 2222, and three behaviors with C~R: (i) the ‘fair

rational’, i.e. 0022, (ii) fair naive, i.e. 1111, and (iii) the reverse of

the ‘fair rational’, i.e. . Simulations show that as prisk increases the

stability of the ‘fair rational’ behavior improves. C~0 was most

stable for all priskv0:85. For prisk~0:85 the stability of the C~0
behavior was similar to the ‘fair rational’. When priskw0:85 the

‘fair rational’ behavior is more stable than all other behaviors

including the defecting C~0 behavior. The stability of the ‘fair

rational’ behavior indicates that later contributions are favored for

high risk, in line with our simulations of the mutation-selection

balance.

Model Exploration
Our approach allows us to explore the impact of several aspects

that have not yet been analyzed in a behavioral experiment. For a

comprehensive analysis, we considered the effects of group size,

interest on the common account, uncertainty in target, and

continuously decreasing risk curves. First, we explored the impact

of group size in such collective-risk game.

When only few players have to coordinate their actions, a

smaller strategy space has to be explored. In a game with M~2,

players do not invest for priskƒ0:45, for prisk§0:7, players invest

up to half of their endowment and at prisk&0:6, more than half of

the games meet the target. Investment still mainly occur in the

second half of the game; C~0 behavior occurs at high frequencies

for priskƒ0:6, while the C~R behavior dominates for priskw0:6.

Behaviors where CvR occur for all prisk at low frequencies, while

over-contributors, CwR, are also rare but again only seen for very

large prisk, see Fig. 4a–b. Furthermore, simulations show that

when players are in smaller groups, contributions start at a lower

risk value, compared to larger groups. For instance, for M~2,

contributions started for prisk~0:5 (Fig. 4a), for M~6 contribu-

tions start at at prisk~0:7 (Fig. 2a), and for M~8, contributions

started for prisk~0:75 (Fig. S1a–d). Consequently, the payoffs

increase to values above (1{prisk)2R only for higher risk

probability in larger groups.

Second, we added an interest on the common account, such

that early investments are more valuable. This only has an impact

if the interest is high enough to replace a late contribution by a

smaller, earlier contribution. For instance, simulations show that

contributions begin to increase when prisk increases above 0:4,

when there is an interest of d~0:1 on the common account. When

priskw0:65, the target is met with probability larger than 50%, in

this case cf. Fig. 4c. We also observed that the C~0 behavior

occurs at high frequencies for priskƒ0:55, while the CvR

behavior dominates for priskw0:55, see Fig. 4d. It is now possible

to reach the target with such behavior. However, behaviors where

C~R occur for all prisk at low frequencies. It turns out that (unlike

in the simulations without interest) contributions are made in the

first half of the game, Fig. 4c, this was consistent for different

group sizes, cf. Fig. S1e–h. Interest also substantially increases the

noise in the system; when interest was added to the common

account individuals had an incentive to contribute early, however

as a result invaders infiltrated and disrupted the stable equilibrium.

Finally, we considered the effects of uncertainty in the target

and smooth risk curves. If the target is not exactly known, it is

substantially more difficult to evolve cooperation. Adding noise to

the target causes the contributions to start at higher risks, but also

causes a drastic decrease in the probability that the target reached.

For example, without such noise and prisk~1 the target was

reached with a 95% probability. But for a target subject to

Gaussian noise with standard deviation of 3% (T+2), the target

was reached with only 80% probability, this was consistent for

different group sizes, cf. Fig. S1i–l. Failure rate increased with

increasing uncertainty in the target, for instance a target subject to

Gaussian noise with standard deviation of 10% (T+6) dropped

success to a 50% probability, Fig. 4e. Such uncertainty caused a

change in behaviors, this is observed by a frequency increase in

overcontributors (CwR) and noncontributors (C~0) and a

decrease in the fair sharers (C~R), Fig. 4f. Despite the increase

Figure 3. Stability of behaviors in a collective-risk dilemma.
Simulations were conducted with the following five behaviors from a 10
round game: 0000000000, 0000022222, 2222200000, 1111111111, and
2222222222. As expected, 0000000000 was most stable for all
priskv0:85, indicating that it is difficult to evolve cooperation in this
game. For prisk&0:85 both 0000000000 and 0000022222 were
equivalently stable. As prisk increases the stability of the 0000022222,
‘fair rational’ behavior, improves (Averages from 2|103 realizations,
parameters M~6, R~10, N~100, G~1000, b~1, m~0:03, sE~0:15).
doi:10.1371/journal.pcbi.1002652.g003

Timing of Cooperation
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in failure probability, contributions reached half of the endowment

when priskw0:95, Fig. 4e.

We also considered a risk curve that is smooth instead of the

step function, such that higher contributions continuously decrease

the risk. Also in this case, the general picture does not change - late

contributions are favored for sufficiently high risk.

Discussion

The collective-risk dilemma is characterized by thresholds

which capture risky collective-actions. Due to its potential

relevance for dangerous climate change and other global crisis

or risky social dilemmas, the general characteristics underlying

such game structure are of crucial interest.

Our model captures strategic elements in collective risk

dilemmas by allowing individuals to interact and influence each

other. We extracted a robust natural behavior for different risk

levels. Our simulations of the collective-risk game unveiled a high

abundance of a ‘fair rational’ strategy, such that the fair share is

relinquished as late as possible. We vary the maximum contribu-

tion allowed, interest and uncertainty and analyze how all these

factors influence the timing of contributions. We show that

maximum payment dictates when contributions commence.

Players procrastinate their contributions as much as possible. This

implies that the maximum contribution possible (or allowed) per

round determines the timing of contributions. Additionally, we

show that interest to the common account can also affect the

timing of contributions–individuals had an incentive to contribute

early. This suggests that for time sensitive collective actions,

incentives can be used to induce earlier contributions. We also

show that uncertainty can cause a lack of coordination; simulations

resulted in a decrease in success when the target was uncertain.

Failure can also arise from an increase in group size or a decrease

in risk probability. For larger group size the probability for

successful cooperation decreases, as an individual’s probability of

being pivotal declines. However, simulations show that increasing

risk probability quenched some of these uncertainties, and in turn,

contributions increased. This suggests that chances of success

increase when all the uncertainties are resolved. Moreover, it is

essential to be informed about the maximum possible contribution,

otherwise one may be too optimistic about the possibility to

compensate in later stages. Finally, to understand the differences

between the sequential game where individuals play in sequence

[22,28–35] and the collective-risk game where individuals play

simultaneously in a sequence of rounds [9,11,12], we expanded

the scope of our computational model by allowing for sequence

Figure 4. Variations of the collective-risk dilemma. Top: the probability to meet the target investment, average payoff, total investment and
investment in the first and second half of the game. With smaller group size (a) and interest (c), contributions started at prisk&0:5. With interest,
investments mainly occur in the first half of the game. If the target varies, they only start for prisk§0:85 (e) and the success frequency decreases.
Bottom: the total investments in the game (all payoffs and investments are measured in proportions of the total endowment). In general the C~0
behavior occurs at high frequencies for low prisk. (b) For small groups, the C~R behavior dominates for priskw0:6. (d) With interest, the CvR
behavior dominates for priskw0:65. (f) If the target is uncertain, the CvR behavior dominates for priskw0:85 and CwR occurs for very large prisk

(averages over 104 generations from 103 independent samples, parameters were R~10, N~100, G~1000, b~1, m~0:03, sE~0:15, otherwise
stated in the figure).
doi:10.1371/journal.pcbi.1002652.g004

Timing of Cooperation
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allotment for individual players, see Fig. S3. Our simulations

reveal that a sequential game with 10 players has a lower efficiency

in comparison to a 10 round collective-risk game for high risk

probabilities.

The collective-risk game requires coordination and, thus, a

player needs to rely on deductive reasoning to ensure others are in

agreement. A player should not invest if the chances are low that

the other group members will invest sufficiently. Thus it is

important to anticipate how others will behave. As the group

number increases influencing – or predicting – the behavior of co-

players becomes exceedingly difficult. However, deductive rea-

soning shows that the number of possible behaviors differ from

round to round. If players wait and the pool remains empty, the

number of strategies that allow to meet the target quickly drops.

When nothing has been invested in the first half of the game, there

is a single fair share behavior remaining, the ‘fair rational’. By

simply waiting, players are forced to play the ‘fair rational’ strategy

or risk losing everything; such natural enforcement is most

effective when risk is high. One rationale for the ‘fair rational’

behavior is that it can induce other players to contribute half of

their endowment. Early contributions may seem more intuitive in

the face of high risk. But they allow the invasion of other strategies

and endanger the success of the game. Numerically, all fair share

behaviors have the same payoff, but they diversify when

considering invasions by deviating types. However, deviation from

the ‘fair rational’ behavior is unforgiving and decreases the fitness

of the deviating individuals, either collectively when the target is

not met or individually when deviators have contributed too

much. The ‘fair rational’ behavior leaves no room for conscious or

erroneous deviation, and all co-players must contribute or risk

consequences of failure for all.

Players aiming to ‘play it safe’ by overcontributing or

contributing early do not necessarily have a positive effect in

collective-risk dilemmas, which can by their very nature lead to a

detrimental outcome for all players. Thus, it is beneficial to have a

strict behavior enforcing others to act alike, especially when stakes

are high.

Methods

Individual Strategies
Each individual has a strategy composed of a threshold, tr and

the contributions above and below the threshold for each round.

The investment is thus determined by a player’s strategy as well as

the collective contributions so far. For instance, a player could

invest 2 when the collective contributions are above (or equal to)

his threshold tr and 0 otherwise. We denote such a strategy in

round r by 2tr
0. A player that aims to compensate the missing

contributions of others could instead have a strategy, such as 0tr
2 -

he would invest if the threshold is not met, but he would stop

investing once the common pool is sufficiently filled.

As an example, consider a game with two players and two

rounds, M~2 and R~2. The strategy of player one is

ff20:00g,f20:21gg. Player two has strategy ff00:11g,f20:71gg.
Since the common pool is empty in round 1, C1~0, we have

t1
:TƒC1 for player one, who thus invests 2. For player two, we

have t1
:TwC1, which leads to an investment of 1. Now, in round

2 we start with a common pool C2~3. Consequently, for player

one t2
:TƒC2 – an investment of 2. Also for player two, we have

t2
:TƒC2 – an investment of 2. As a result, the total investment

after two rounds is 7 and the target T~4 is met. Thus, player one

obtains a payoff of 2R{4~0 and player two 2R{3~1. Since

payoff determines fitness, this means that the strategy of player two

tends to spread.

At the beginning of our simulations, all individuals have

different random strategies, i.e. all contributions are 0, 1, or 2
with the same probability and all thresholds are uniformly

distributed between 0 and 1.

Evolutionary Game
In one generation, G&N such game are played, such that an

individual on average plays G:M=N games. The individual’s

payoff, pi, is calculated as the average payoff of all games played.

At the end of a generation, the payoff is translated into a fitness

value fi~exp½bpi�, where b measures the intensity of selection

[36,37]. Higher payoffs increase an individual’s reproductive

potential towards the next generation.

The next generation is selected using the Wright-Fisher process

where the individual’s fitness is used to weigh the probability of

choosing an individual for the new population [38–40]. Offspring

inherits the strategy of the parent at the end of a generation (G

games). We also incorporate errors in this process. Errors occur

with a probability m for the thresholds t and the investments of

each round independently. If they occur, errors in the threshold

values add Gaussian noise with standard deviation s to them. If an

error in a contribution occurs, a random contribution is chosen,

e.g. in the example above, f20:00g in round 1 could be replaced by

f20:01g: Once a new population is selected the process is repeated

for multiple generations and the average of the dynamics is

analyzed.

Stability Simulations
To explore the stability of the different behaviors, a homoge-

nous population was initiated using the same strategy for all

individuals. In the simulation the population evolved under

selection and mutation parameters. For each strategy we

calculated the duration when the frequency dropped below half

of initial population size, since this is a natural requirement for

another strategy to take over (all our strategies can be invaded in a

finite population by neutral drift. So eventually, any strategy will

be replaced due to mutation, selection and drift). Averages were

computed over 106 generations from 2|103 realizations.

Simulation Details
Our simulations are written in C++ and were run on a 240 core

Linux cluster. The computer code is available upon request.

Supporting Information

Figure S1 Variations of the collective-risk dilemma. The

panel in grey (g) is our default parameter choice, based on Ref. [3].

The probability to meet the target investment, the average payoff,

the total investment and the investment in the first and second half

of the game are shown for different risk probabilities prisk (all

payoffs and investments are measured in proportions of the total

endowment). In this figure, we explore the interplay of group size

with interest and uncertainty in the target. Simulations show that

with larger group size contributions start at a higher risk value,

compared to smaller groups. Adding interest d~0:1 caused the

contributions to switch to the first half of the game, in contrast to

all other variations we have analyzed. Adding target uncertainty

caused the success frequency to decrease (averages over 104

generations from 103 independent realizations; parameters M~6,

R~10, N~100, G~1000, b~1, m~0:03, sE~0:15, sT~0,

unless otherwise stated in description above).

(TIFF)
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Figure S2 Variations of the maximum contribution
allowed in a collective-risk game. Maximum contribution

allowed was varied from 1 up to 10. In all cases, contributions start

as late as possible. Given a 10 round game and a maximum

contribution of 1, players contributed 1 in each round to meet the

target, however in a maximum contribution of 5 game, players

began contributing the ninth round (averages from independent

realizations; parameters M~6, R~10, N~100, G~1000, b~1,

m~0:03, sE~0:15, sT~0).

(TIFF)

Figure S3 Evolutionary dynamics comparison between
a collective-risk game and a typical sequential game.
Panels (a) and (b) show the probability to meet the target

investment, average payoff, total investment and investment in the

first and second half of the game for different risk probabilities prisk

(all payoffs and investments are measured in proportions of the

total endowment) for collective risk and sequential games,

respectively. (c) The total investments in the collective risk game,

C~0 behavior occurs at high frequencies for priskƒ0:75, while

the C~R behavior dominates for priskw0:75. Behaviors where

CvR occur for all prisk at low frequencies, while over-

contributors, CwR, are also rare but only seen for very large

prisk (d) The total investments in the sequential game, C~0
behavior again occurs at high frequencies for priskƒ0:5, now the

CvR behavior dominates for priskw0:5. Behaviors where CwR
start to increase by priskw0:9 and C~R are rare. (averages over

105 generations independent realizations parameters for collective

risk we set M~6 and R~10, for sequential game we set M~10
and R~1 while other parameters remained the same N~100,

G~1000, b~1, m~0:03, sE~0:15, sT~0).

(TIFF)

Text S1 Supporting information for evolutionary dy-
namics of strategic behavior in a collective-risk dilem-
ma. We conduct a comprehensive analysis in which we consider

the effects of group size, interest on the common account,

uncertainty in target, and continuously decreasing risk curves.

Furthermore we analyze the maximum contribution allowed in a

collective-risk game and conduct a comparison between a

collective-risk game and a typical sequential game.

(TEX)
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