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Abstract

Uropathogenic Escherichia coli (UPEC) represent the predominant cause of urinary tract infections (UTIs). A key UPEC
molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible
chromosomal DNA element—the fim switch. Temperature has been shown to act as a major regulator of fim switching
behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-
pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable
empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical
mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes.
However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto
presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks
involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have
developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction
kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization
and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this
mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting
down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather
than increase) of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics
mediated by recombinase FimE. Our computational analysis further implies that this down-regulation mechanism could be
particularly significant inside the host environment, thus potentially contributing further understanding toward the
development of novel therapeutic approaches to UPEC-caused UTIs.
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Introduction

Type 1 fimbriae (pili) represent the foremost virulence factor in

lower urinary tract infections (UTIs) by uropathogenic Escherichia

coli (UPEC)—the main causative agent that accounts for 80–90

percent of all community-acquired UTIs in the United States

[1–4]. These adhesive surface organelles have been identified as

both the UPEC virulence factor most frequently found in clinical

isolates as well as the one that experiences the highest absolute and

among the greatest relative increases of component gene

expression in vivo during UTIs [5,6]. Type 1 fimbriae also have

been shown to fulfill molecular Koch’s postulates [2,7] and have

been further reported as the only major uropathogenic virulence

factor that is broadly significant for enteric E. coli strains as well

[8,9]. The hair-like structures involved vary from a few fractions of

a micrometer to more than 3 mm in length and consist of 7nm-

thick right-handed helical rods—largely made up of repeating

FimA subunits—with 3nm-wide tips containing the FimH
adhesin, which can bind to D-mannose-containing residues found

on the surface of epithelial cells and mediate their invasion by

UPEC [10–13]. Type 1 fimbriae are further thought to aid the

UPEC infection process by enhancing the ability of bacteria to

form biofilms and to develop intracellular bacterial communities

(IBCs) with biofilm-like properties [13–18]. The latter allow E. coli

to establish quiescent pathogen reservoirs shielded from native

host defenses and antibiotic treatments as well as serve to seed

subsequent UTIs in a type 1 fimbriae-dependent manner

[2,13,19–21]. This may both contribute to the widespread

emergence of multi-drug-resistant UPEC strains (up to 20–50

percent of isolates) as well as help account for the notably high

rates of UTI incidence (lifetime risk of over 50 percent for women

and nearly 14 percent for men) and recurrence (40 percent in

women and 26 percent in men per annum) – along with leading to

a number of other significant public health implications (e.g., over
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10 million estimated annual physician office visits in the United

States alone) [1,22]. However, while they provide a means for

infection, type 1-fimbriated UPEC populations also have lower

fitness due to phase-specific mechanisms that directly decrease

growth rates through additional costs of fimbriae synthesis and

contact-dependent inhibition as well as reduce motility, which

allows competitors to more efficiently occupy advantageous

colonization sites and take up resources [6,23–25]. Furthermore,

type 1 fimbriae-mediated attachment can lead to preferential

exfoliation of infected cells as part of the host immune response,

which can result in rapid clearance of the infection [13,20,26–28].

Among other things, this apparent dichotomy between the

essential role played by the piliated phase in the establishment of

the infection and the noted fitness disadvantages conferred upon

individual bacteria by type 1 fimbriae implies that their expression

needs to be highly optimized and tightly controlled.

As illustrated in Figure 1, the expression of type 1 fimbriae in E.

coli is randomly phase variable, whereby individual cells stochasti-

cally switch between fimbriate (ON) and afimbriate (OFF) states with

rates regulated by various internal as well as environmental

conditions [29–33]. With the ongoing advancements in high-

resolution single-cell and single-molecule scale experimental

methods, such bimodal and bistable mechanisms for generating

phenotypic heterogeneity in clonal cell populations have been

increasingly often identified and investigated across a broad range

of prokaryotic and eukaryotic systems—where they have been

shown to influence a diverse spectrum of processes—including

organism development, behavior, disease, survival, and memory

[34–44]. In the case of E. coli type 1 fimbriae, this phase variation

is controlled by the fim circuit switch that functions based on the

inversion of a 314bp chromosomal region, fimS, bounded by two

9bp inverted repeats left and right (IRL and IRR) [29,34,45,46].

The fimS element contains the promoter for fimA and other genes

encoding structural subunits of type 1 fimbriae. As a result, an

individual E. coli cell expresses type 1 fimbriae when the fim switch

is in the ON position and rapidly becomes afimbriate when the

Figure 1. Phase variation of type 1 fimbriae expression in E. coli. Type 1 fimbriae phase variation is controlled by the invertible DNA element,
fimS, which contains the promoter for the genes encoding structural fimbriae subunits (including fimA and fimH) and is flanked by two inverted
repeat sequences: IRL and IRR. (In this diagram, IRL is the inverted version of IRR.) When the switch is in the ON position, transcription of structural fim
genes can be initiated because the promoter is in the appropriate orientation. However, when the switch is inverted into the OFF position, the
promoter points in the opposite direction and so no longer supports the expression of fimbriae components—leading to their rapid degradation. The
ON-to-OFF inversion of the switch is mediated by recombinases FimE and FimB, while the OFF-to-ON events are mediated by FimB.
doi:10.1371/journal.pcbi.1000723.g001

Author Summary

Urinary tract infections (UTIs) represent a major growing
threat to global public health. With over 15 million cases a
year in the United States alone, UTIs are characterized by
very high recurrence/reinfection rates, particularly among
women and minority groups [1]. The predominant cause of
UTIs is uropathogenic Escherichia coli (UPEC) bacteria,
whose wide-spread and increasing antibiotic-resistance
has made the development of alternative anti-UPEC
treatments progressively more important and urgent.
UPEC’s foremost virulence factor is hair-like surface
structures called type 1 fimbriae. Thus, one such potentially
promising therapeutic approach may be to manipulate
bacteria’s own cellular circuitry toward inducing UPEC to
turn off their fimbriae expression—rendering individual
microbes benign. This task requires detailed understand-
ing of molecular mechanisms involved, which may be
significantly aided by in silico modeling. However, for UPEC
fimbriation control circuit and many other systems, low-
level all-inclusive quantitative models inevitably become
too computationally demanding to remain practical, while
high-level qualitative representations frequently prove
inadequate owing to the substantial organizational and
behavioral complexity of biological processes involved.
We have developed an automated multiscale model
abstraction methodology that helps address these prob-
lems by systematically generating intermediate-level
representations that rigorously balance computational
efficiency and modeling accuracy. Here, we use such an
approach to examine how different temperature settings
quantitatively affect UPEC transitions between fimbriate
and afimbriate phases, to gain new understanding of the
underlying modular circuit switch control logic, and to
suggest further insights into ways this knowledge could
potentially be used in therapeutic applications.

Temperature Control in Uropathogenic E. coli
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switch flips into the OFF position [34,47]. This inversion of fimS

requires either FimB or FimE site-specific recombinases binding

at IRL and IRR [29,47,48]. However, whereas FimB mediates

recombination with little orientational bias, FimE mediates

recombination predominantly in the ON-to-OFF direction

[30,49]. Empirical evidence has further revealed that the inversion

of the fim switch is strongly controlled by temperature in a complex

manner [30,31]. In particular, observations at 280C, 370C, and

420C have indicated that wild-type ON-to-OFF switching

frequency—dominated by FimE—decreases in an exponential-

like fashion as temperature increases, while FimB-mediated

switching frequency is higher at 370C than either at 280C or

420C in both defined-rich and minimal media. Experimental

results also show that the wild-type ON-to-OFF switching rate is

much faster than FimB-mediated switching rate alone, allowing E.

coli to rapidly undergo afimbriation under appropriate conditions

[30,50].

This work investigates the logic and behavior of the gene

regulatory circuit, which controls the ON/OFF switching of type 1

fimbriae expression, by starting with the reaction-level description

of its underlying biochemical and biophysical molecular interac-

tion mechanisms. We are particularly interested in the role of

environmental cues in this process and, specifically, of temperature

as it is known to control many gene regulatory circuits in

bacteria—often those responsible for virulence functions [51].

Temperature variations are also frequently characteristic of host-

pathogen interaction dynamics—such as during cytokine response

(e.g., through IL-6 as well as IL-8 and IL-1) and the ensuing

inflammation that is indicative of the onset and progression of

UPEC UTIs—as well as often generally representative of urinary

tract pathology [52,53]. In this context, reaction-level modeling

provides a framework for highly accurate description of the

underlying biomolecular circuit behavior through application of

the corresponding fundamental chemical and physical principles.

However, the innate complexity of biological networks involved as

well as the key role played by nonlinear, discrete, and stochastic

kinetics in regulating the dynamics of cellular pathways driven by

molecular-scale mechanisms result in profound computational

challenges to their accurate quantitative analysis. The problem

becomes particularly acute when dealing with biological systems,

such as type 1 fimbriation circuit switch dynamics in UPEC,

whose behavior is driven by internal or external discrete-stochastic

processes to exhibit qualitative deviations from what might

otherwise be expected on the bases of ‘‘classical’’ continuous-

deterministic biochemical modeling via mass-action kinetics and

reaction rate differential equations [39,54]. The resulting ‘‘devi-

ant’’ dynamics lead such biological systems to behave in a

distinctive but often quite unintuitive manner, which necessitates

the use of differential-difference modeling based on the chemical

master equation framework (see [54–59] and Methods for details).

However, while the latter approach is able to accurately account

for both the stochastic occurrence as well as the discrete nature of

individual molecular interactions that underlie the design,

function, and control of most biological circuits—it also tends to

produce dramatic increases in the associated analytical and

computational demands [60–62].

Although these computational limitations may often render any

direct implementations of the all-inclusive low-level quantitative

models impractical, the use of entirely high-level qualitative

representations frequently becomes inadequate as well, owing to

the substantial multiscale dynamical and functional complexity

that biological systems can manifest. In such cases, in silico analysis

can greatly benefit from applications of appropriate intermediate-

level system model abstractions—whereby multiple individual bio-

logical interactions are aggregated into significantly few(er), but

quantitatively analogous functional processes. An optimized model

abstraction scheme then looks to accurately capture the target

characteristics of biological system behavior, while trading off

some tightly controlled degree of precision for significant

computational gains. Additionally, the resulting abstracted model

of the system may also be useful in helping to uncover any general

high-level logical patterns embedded within the biological

networks involved, which can otherwise be obscured by the low-

level molecular interaction mechanics.

Our method initiates the abstraction procedure with a detailed

reaction-level representation of biological processes in question.

This enables it to utilize basic biochemical and biophysical

principles to rigorously implement many of the existing as well as

potentially allow for the development and incorporation of novel

abstraction techniques, Table 1, in order to insure the desired

degree of modeling accuracy versus computational efficiency for

the abstracted representation at the system scale of interest

[63,64].

However, such an approach to model complexity reduction

could also lead to a further problem: while most abstractions used

in the analysis of biomolecular networks have traditionally been

implemented manually and on the mechanism-by-mechanism

basis, doing so accurately in a general biological systems setting

becomes tedious and time-consuming. The resulting model

translation and transformation errors also tend to increase when

progressively more intricate organism-scale physiological process-

es—from cell differentiation and tissue development to can-

cer, infection, host-pathogen interaction dynamics, etc.—are

considered.

The strategy used here is able to substantially overcome these

issues by automating the abstraction process via a set of algorithms

developed for and implemented in the reb2sac computational

tool [63,64]. Its application has allowed us to generate abstracted

Table 1. Abstraction methods used by reb2sac in the
analysis of the fim circuit switch model.

Abstraction methoda Entryb

Quasi-steady-state approximation abs[2][3]

Rapid equilibrium approximation abs[2][2]

Production-passage-time approximation abs[2][4]

Dimerization reaction reduction abs[2][5]

Operator site reduction abs[2][6]

Modifier constant propagation abs[1][1]

Similar reaction combination N/A

Kinetic law simplification abs[3][1]

Irrelevant node elimination abs[2][1]

Stoichiometry amplification N/A

Reaction splitizations N/A

Finite state system transformation N/A

N-ary transformation N/A

A detailed discussion of the listed abstraction methods can be found in
references [63,64,138,139].
aMost recent version of reb2sac is included along with other tools as part of
iBioSim GUI frontend, which is available for download at http://www.
async.ece.utah.edu/iBioSim.

bDescription of the default abstraction methods configuration for the analysis
of the total and FimB-mediated ON-to-OFF switching in terms of the notation
given in Figure 9.

doi:10.1371/journal.pcbi.1000723.t001

Temperature Control in Uropathogenic E. coli
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representations of detailed reaction-level biological mechanisms—

including genetic regulatory networks—which yield results in close

correspondence with those obtained by using the underlying low-

level models, while also significantly accelerating the required

computations and often putting them on par with those of high-

level descriptions. For instance, we were previously able to validate

the overall robustness and utility of such an automated abstraction

approach to biological systems analysis by using it to investigate

the lysis/lysogeny developmental decision pathway in E. coli phage

l [63,64]. The ensuing abstracted model analysis not only yields

results that substantially (and in significantly less time) reproduce

those elicited through the examination of the detailed system

description reported earlier [65], but is further able to quantita-

tively investigate and similarly match experimental observations of

system properties exhibited under environmental conditions that

have been previously shown to cause the detailed model analysis to

become so computationally demanding as to make it essentially

infeasible [63,65].

Here, we use such computational analysis aided by automated

model abstraction to examine the behavior of the basic genetic

regulatory network responsible for the ON/OFF switching of type

1 fimbriae expression in uropathogenic E. coli, Figure 2. We

specifically focus on how different temperature settings quantita-

tively modulate the random switching of the UPEC fimbriation

circuit into the transcriptionally silent fim mode through the

corresponding ON-to-OFF inversion of fimS. Notably, while the

behavior of most molecular processes depends on temperature, in

this system global regulatory proteins H{NS and Lrp play a

particularly important role in controlling switch inversion rates not

only by directly effecting its internal molecular dynamics, but also

by acting as sensors of certain environmental conditions that the

fim circuit is subjected to in the physiological range—including

those of a host. For instance, H{NS acts in a temperature-

dependent manner when it binds to DNA regions containing

fimB / fimE promoters and represses their expression [31,66].

Additionally, Lrp binds to three fimS sites, which affects switching

rates [50,67,68]. Since H{NS downregulates the expression of lrp

[69,70], Lrp also behaves in an effectively temperature-dependent

manner. Finally, it has been shown that IHF binds to IHF I/

IHF II regulatory sites and is required for any observable phase

variation, in part by playing a structural role in fim switching via its

ability to introduce sharp bends into the target DNA [47,71]. The

resulting molecular interactions that involve H{NS, Lrp, IHF,

FimE=B as well as the fimS DNA element and associated

regulatory sites are what largely serves to kinetically effect the

ON-to-OFF fim switch circuit dynamics. As the latter physiolog-

ically initiates the transition of an individual bacterium from the

virulent fimbriate to the largely benign afimbriate phase and given

the wide-spread emergence of antibiotic-resistant UPEC, a better

understanding of such processes could benefit the development of

novel clinical UPEC UTI therapies by, among other things,

providing deeper insights into mechanisms potentially able to

medically abrogate UPEC virulence by exploiting its internal

molecular circuitry responsible for regulating the state of fimS in

order to inhibit type 1 fimbriae expression.

Towards this end, the paper begins by considering a detailed

reaction-level discrete and stochastic description of the biological

molecular network controlling the fim switch. As discussed earlier,

we then abstract this detailed representation by utilizing reb2sac,

which enables us to successfully circumvent the otherwise

significant computational issues involved. The accuracy of our

abstracted model analysis with respect to the target system

property—i.e., the temperature dependence of the fim switch turn-off

rate—is further validated by comparing its results with those

computed via the unabstracted detailed model as well as with

those derived from empirical observations (where available). This,

in turn, serves to explicitly demonstrate how automated model

abstractions can be used to help substantially improve the speed

and efficiency of biological molecular systems analysis, while also

maintaining precision and improving interpretability of results.

For instance, the abstracted representation has allowed us to better

understand the general circuit-level organization of the regulatory

logic behind the UPEC fimbriation switch and to identify the two

key subnetworks—FimE=FimB recombinase regulation and fim

switch configuration—involved in its engineering design. Our

conclusions also confirm that temperature has a major and non-

trivial role in determining ON/OFF switching of fimbriae

expression as well as suggest new insights into the role of FimB
in this process and offer novel clues toward its potential

translational applications in the host environment. In particular,

our results indicate that—when the control circuit behavior is

analyzed quantitatively across different temperatures—the prima-

Figure 2. Type 1 fimbriae genetic regulatory network—the fim switch circuit. Structural fimbriae subunits are encoded by fimA and other
downstream genes, which are transcribed when the fim switch is in the ON position (as shown here – also see Figure 1). Recombinases FimB and
FimE bind to IRL/IRR and invert the switch with different rates (FimE is strongly biased in the ON-to-OFF direction, while FimB is close to fair). A
small protein, H{NS, acts in a temperature-dependent manner and represses the expression of the two recombinases. Lrp stimulates and inhibits
switching based on its occupancy of three fimS sites, while its expression is also repressed by H{NS. IHF is required for any observable phase
variation as it plays a structural role during switching through its ability to produce sharp bends in the DNA.
doi:10.1371/journal.pcbi.1000723.g002
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ry role of FimB recombinase may not be to increase the total ON-

to-OFF switching rate, but rather to reduce it by down-regulating

the rate of switching mediated by the competing recombinase

FimE. That is, down-regulation of FimB not only reduces the

OFF-to-ON switching, but also serves to increase the ON-to-OFF

rate in a temperature-sensitive manner, which indicates that this

mechanism may provide a powerful regulatory tool for suppressing

the fimbriate UPEC phase. Finally, as our analysis implies that the

described effect is strongest and the switching rate is most sensitive

to the corresponding mode of control in the physiological

temperature range of the host environment, it may serve to

potentially help identify new biomedical targets in the UPEC

molecular virulence circuitry.

Results

Detailed Model
Based on the regulatory network diagrammed in Figure 2, we

have developed a molecular kinetic reaction-level description of E.

coli fimbriation switch system, which has resulted in a detailed model

of the fim circuit that comprises 52 reactions and 31 species

(Figures 3 and 4). This model is then used to, among other things,

quantitatively analyze the effects of temperature on both the total

and FimB-mediated ON-to-OFF fim switching probabilities over

one cell generation. In particular, starting with the switch in the

ON position at various temperature settings—i.e., 280C, 370C,

and 420C—where the corresponding empirical observations were

available (see Methods and Text S1), the detailed model was

simulated 100,000 times by using our implementation of

Gillespie’s Stochastic Simulation Algorithm (SSA). The ensuing

switching behavior of the fim circuit was found to be both

qualitatively and quantitatively consistent with that obtained via

empirical observations [30] (see Table 2). However, computational

demands presented by these detailed model simulations were

significant, requiring over 30 hours on a 3GHz Pentium 4 with

1GB of memory (Table 3).

Abstracted Model
After applying reb2sac automatic abstraction engine with the

switch state as the target quantity of interest, the detailed model is

transformed into an abstracted model with 10 reactions and 3 species

(FimE, FimB, and a conglomerate non-linear stochastic switch –

see Figures 5 and 6 as well as Methods for further detail). In order

to compare the abstracted and detailed models, we have

performed numerical simulations to compute the wild-type and

FimB-mediated ON-to-OFF switching probabilities for one cell

generation in minimal medium using the same simulator. The

results of the abstracted analysis are found to be in close agreement

with those obtained using the detailed model and substantially

match the empirical observations (see Table 2). However,

computational gains from the model abstraction are significant.

The abstracted model simulation of 100,000 runs takes less than

2 hours on a 3GHz Pentium 4 with 1GB of memory, which is a

speed-up of about 16 times compared with the runtime of detailed

model simulations (Table 3).

Modular Organization of the fim Switch Circuit
In addition to allowing for accurate kinetic simulation of circuit-

level dynamics, the reaction-level description of biological

networks is often useful in helping to reveal their broader

structural and functional features, including the innate modular

architecture of E. coli fimbriation switch design considered here.

Specifically, graph-level analysis carried out as part of the detailed

model abstraction process has naturally led us to separate out and

identify its two major constitutive subnetworks. These turn out to

correspond to the two principal functional units of the fim switch

circuit: the module effecting production-degradation of FimB and

FimE; and the module responsible for the configuration dynamics

of the fimS element itself (e.g., Figures 5 and 6). Such a view of the

internal fim switch circuit organization both makes its logic easier

and more intuitive to understand as well as simplifies and provides

further basis that serves to facilitate subsequent steps involved in

the model abstraction process.

Quantitative Analysis of fim Circuit Switch Temperature
Control via the Abstracted Model

By systematically refining our understanding of the underlying

organization logic and improving required computational times,

our approach further enhances the ability of in silico analysis to

accurately explore various environmental as well as internal

conditions and parameter regions of biological systems. This may

be particularly useful when certain settings can be deemed

physiologically important, yet are not easily amenable to or simply

do not presently have sufficient number of experimental

measurements available; and which lead to dynamics that are

too complex or involve species too numerous to be productively

investigated directly at the detailed molecular interaction network

level. For example, in the case of the fimS inversion control circuit,

probabilities of ON-to-OFF switching at various temperature

points (including those outside of the experimental range) can be

effectively and efficiently estimated by using the described model

abstraction methods. Here, Figure 7 shows both wild-type and

Figure 3. Detailed model subnetwork of FimB and FimE regulation. Here, PB is the promoter for fimB and PE is the promoter for fimE . Each
P�{RNAP represents a transcriptionally active configuration, while P�{H{NS corresponds to the transcriptionally silent complex.
doi:10.1371/journal.pcbi.1000723.g003

Temperature Control in Uropathogenic E. coli
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FimB-only mediated ON-to-OFF switching probabilities comput-

ed via the abstracted fim switch model at – respectively – 7 and 15

additional temperature points, where experimental data are not

available (also see Table 2).

Notably, these results not only reaffirm earlier coarser-grained

empirical observations of wild-type and FimB-only mediated ON-

to-OFF fim circuit switching frequency dependence on tempera-

ture [23,30], but also offer the finer-grained resolution capable—

as discussed below in more detail—of providing further insights

into this relationship. In particular, while our analysis supports the

prior suggestion that the wild-type fim ON-to-OFF rate is overall a

decreasing function of temperature that varies by nearly two

orders of magnitude in the physiological range, it also appears to

indicate that this dependence has a supra-exponential component

as well, Figure 7A. Furthermore, when the abstracted model is

used to increase the resolution of FimB-mediated switching

frequency dependence on temperature, it shows that UPEC may

have evolved toward a tightly optimized type 1 fimbriae virulence

factor expression control that is designed to sense and differentially

respond based on whether the host temperature is within the

normal physiological range of 36:5+10C or if it is elevated/

lowered instead. Whereas the circuit FimB-mediated ON-to-OFF

rate appears to be maintained at a relatively elevated but stable

level across the entire normal temperature range—it looks to be

significantly suppressed immediately outside of this characteristic

band, Figure 7B, which may have notable implications for the

persistence of the pathogenic UPEC phase and ensuing UTIs (see

Discussion).

Role of FimB in the Temperature Control of ON-to-OFF
fim Circuit Switching

Since the FimB-mediated switching probability can be orders of

magnitude smaller than the wild type ON-to-OFF switching

probability (Table 2), the effect of FimB on the temperature

Figure 4. Detailed fim switch configuration model. Here, Pfim abstracts the free form of the regulatory protein binding sites in fimS. Complex
species S2 through S18 represent the various states of the fimS DNA element given in Table 6. An abstracted species, switch, captures the switching
events.
doi:10.1371/journal.pcbi.1000723.g004

Temperature Control in Uropathogenic E. coli
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control of the fimbriation circuit shutdown rate may also appear

minimal. It is, furthermore, not immediately clear why FimB-

mediated switching needs to be exquisitely bidirectional rather

than simply OFF-to-ON, given that FimE essentially only

promotes ON-to-OFF switching and completely dominates the

FimB rate in this direction. While various theories have been

proposed to explain this feature of the fimbriation regulatory

network design (see Discussion), we wanted to generate a

quantitative hypothesis regarding the role of FimB in the

temperature control of the fim ON-to-OFF circuit switching by

using computational analysis methods to perturb the underlying

molecular interaction-level network properties and to then explore

the behavior of any resulting fimbriation mutants. To do this, we

have modified the original fim switch inversion system in silico and

generated several detailed mutant models—two of which proved

to be of particular interest. One represents a mutant, where fimB

has been placed under the control of a strong promoter that leads

to FimB overproduction by a factor of two relative to wild-type.

The other describes a mutant, such as a knockout or an amino

acid substitution, where FimB protein has been rendered

nonfunctional in the present context by losing its ON-to-OFF

switch-mediating activity. Both mutant models were abstracted

using reb2sac and simulated.

Comparing the elucidated mutant and wild-type behaviors at

the same 10 temperature points considered earlier (e.g., Figure 7A)

now allows us to quantitatively characterize the dependence of this

fim switch circuit temperature control on the level of FimB activity

in the cell. As illustrated in Figure 8A, the total ON-to-OFF

switching probability generally decreases inversely with FimB
levels across all temperatures. That is, in the physiological range,

the total ON-to-OFF switching probabilities in the fimB2 mutant

are higher than those in the wild-type, which are—in turn—higher

than those in the mutant where FimB is overexpressed. Notably,

this not only suggests that the FimE-mediated shutdown of

fimbriae expression is efficiently down-regulated by FimB, but

that—as shown in Figure 8B—this effect is strongest in the 370C to

420C temperature range, where the total ON-to-OFF switching

probability of the fimB2 mutant can be over two times higher than

that of the wild-type and nearly three times that of the

overexpressing mutant. Physiologically, this implies that the

presence of FimB at normal or elevated levels greatly enhances

the persistence of type 1-fimbriated UPEC phase. Thus, although

the FimB-mediated fim switching probability is itself at least an

order of magnitude lower than wild-type, FimB may have a key

role in regulating and enhancing the control of temperature-

dependent functions in the E. coli fim switch circuit by—among

other things—also reducing the effect of FimE-mediated ON-to-

OFF fim switching. This serves to regulate the type 1 fimbriae-

based molecular virulence mechanism and, potentially, may help

increase the life-time of the pathogenic fimbriate UPEC phase.

The latter result is of particular interest because the effect appears

to be most pronounced in the temperature range that corresponds

to the intra-host bladder environment, opening up the possibility

that it may be directly relevant to UPEC-caused UTIs.

Discussion

In recent years, rapid advances of experimental biology made it

practical to study both molecular- and network-scale organization

of many biological and physiological processes in much greater

detail than was previously feasible. This, in turn, has made

computational analysis not only possible, but also essential to any

efforts aimed at understanding the increasingly intricate structures

and functions of multiscale biological systems that are being

uncovered through empirical means. However, this growing

wealth of knowledge about in situ biological processes has also

led to the demand for progressively more sophisticated in silico

system models. As a result, although accurate molecular-scale

biochemical descriptions could be formulated for a large number

of experimentally observed systems, their complexity is rapidly

exceeding our present as well as near-future computational

capabilities—the issue that has become more pronounced with

the emerging understanding of the ubiquitous role played by

nonlinear and discrete-stochastic (‘‘noisy’’) molecular dynamics in

gene regulatory, signal transduction, and other biological systems

[39]. That is, while their role may often be essential in defining the

various design and functional characteristics of biomolecular

circuits [72–78]—including temperature controls [79–82]—the

resulting introduction of multiplicative noise and the possibility of

ensuing deviant effects [54,83–89] can make computational

analysis of such processes particularly demanding [62].

Going forward, these considerations appear to suggest that

‘‘model abstractions’’—whereby, for instance, multiple biological

network interactions comprising individual biomolecular mecha-

Table 2. Comparison of ON-to-OFF switching probability
estimates in minimal medium.

Probability per cell per generation (10{510{5):

280C280C 370C370C 420C420C

Empirical resultsa

Wild-type 7,000 1,800 600

FimB-only 69+26 110+24 34+28

Detailed modelb

Wild-type 7,298+161 2,012+87 673+51

FimB-only 67+16 93+19 59+15

Abstracted modelb

Wild-type 7,260+80 2,003+43 615+24

FimB-only 77+9 99+10 46+7

aBased on experimental observations reported in [30].
bError bars correspond to 95% confidence interval calculated using the binomial
distribution with 100,000 samples for the detailed model and 400,000 samples
for the abstracted model.

doi:10.1371/journal.pcbi.1000723.t002

Table 3. Simulation time comparison between detailed and
abstracted models.

Simulation timea (hours)

Wild-type fimB knock-outd fimB overexpressede

Model Partialb Allc Partial All Partial All

Detailed 28.5 N/A 17.1 N/A 28.8 N/A

Abstracted 1.5 2.85 0.67 1.17 2.38 4.57

aComputational time for 100,000 stochastic simulation runs as well as model
abstraction when applicable for each temperature point on a single PC.

bTemperature points at 280C, 370C, and 420C.
cTemperature points at 180C, 210C, 250C, 280C, 320C, 370C, 400C, 420C, 450C,
and 500C.

dSystem with no ON-to-OFF FimB activity.
eFimB overproduction by a factor of 2 compared to wild-type.
doi:10.1371/journal.pcbi.1000723.t003
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nisms are rigorously and systematically aggregated into a few easily

tractable, but functionally analogous components—will continue to

become an increasingly useful tool in the general context of

computational and systems biology. Importantly, model abstrac-

tions can serve not only to substantially reduce the computational

requirements associated with the analysis of specific multiscale

Figure 5. Graph-based model representation of FimB and FimE regulation subnetwork. A reaction connected to a species with a double
arrow designates a reversible reaction. Species connected to a reaction with letters, r, p, or m corresponds to a reactant, a product, or a modifier for
that reaction – respectively – as defined in the SBML standard [156]. A mathematical expression inside a reaction node provides the kinetic reaction
rate function for that reaction. (A) Detailed model; and (B) Abstracted model.
doi:10.1371/journal.pcbi.1000723.g005
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biological processes, but may also lead to identification of functional

units that correspond to biologically meaningful modules or motifs

(exemplified here by the two functional subnetworks of the fim

switch circuit). The latter helps contribute additional insights into

the underlying system organization and physiology as well as make

their often intricate logic easier to understand.

Figure 6. Reaction scheme for fim switch ON-to-OFF inversion through state 6. In this state, 1 molecule of IHF, 1 molecule of FimE, and 3
molecules of Lrp occupy available binding sites in the switch DNA region—leading to the corresponding switching event. (A) Detailed model; and (B)
Abstracted model. (See Text S1 for further detail.)
doi:10.1371/journal.pcbi.1000723.g006

Temperature Control in Uropathogenic E. coli

PLoS Computational Biology | www.ploscompbiol.org 9 March 2010 | Volume 6 | Issue 3 | e1000723



Temperature Control in Uropathogenic E. coli

PLoS Computational Biology | www.ploscompbiol.org 10 March 2010 | Volume 6 | Issue 3 | e1000723



Yet, given this growing scope and complexity of systems

biological models, manual implementation of comprehensive

abstractions with accuracy and efficiency becomes a challenge—

creating the need for process automation. This work has

demonstrated the utility of such an automated model abstraction

approach by applying it to the investigation of the role of

temperature in controlling the ON/OFF switch state of the fim

genetic regulatory circuit that determines the expression of type 1

fimbriae (Figure 1), which is an essential virulence factor in

uropathogenic E. coli—the leading cause of urinary tract infections

and a major growing public health problem [1]. Insights into this

fimbriation process—and, particularly, into the mechanisms that

control its shutdown—may be especially useful as the widespread

proliferation of antibiotic-resistant and biofilm-forming UPEC

strains continues to increase the demands for novel treatment

methods. In particular, a thorough understanding of their cellular

network function under a range of conditions may allow us to

manipulate UPEC’s internal molecular virulence circuitry through

external means, thus potentially opening up new approaches to

modulating their pathogenicity. One such key external regulator is

temperature, which not only often acts as an indicator of UTI

progression and impacts its course, but may also be amenable to

meaningful control in clinical settings. Furthermore, as experimen-

tal investigation of these processes in situ may offer a variety of

practical challenges, in silico approaches could be very useful in

helping to identify how internal molecular virulence machinery is

influenced by external temperature variations. However, even in the

case of the relatively small biological circuit controlling type 1

UPEC fimbriation switch considered here (Figure 2), its functions

are qualitatively affected by the inherently discrete and stochastic as

well as the largely nonlinear nature of the underlying biomolecular

mechanisms. This necessitates the type of biological systems analysis

that is capable of accurately accounting for contributions of

molecular-scale reaction-level processes, which typically makes

direct in silico studies of such systems highly taxing and investigations

of detailed fimbriation circuit switch properties challenging. Here,

we were able to substantially circumvent such issues through the use

of systematic model abstractions, which allowed us to convert a

highly computationally demanding problem of fim circuit switch

response to temperature variations into a relatively accessible one by

relying upon the automated model abstraction methodology we

have developed and implemented in the reb2sac model

abstraction tool [63]. We then used this abstracted model to gain

deeper insights into the dynamics of this biomedically important

system, including the role of FimB in controlling the expression

shutdown rates of type 1 fimbriae virulence factor.

To do this, we have first constructed a molecular-scale reaction-

based ‘‘detailed’’ model of the regulatory network that controls the

orientation of fimS genomic element (Figure 2), which is

responsible for ON/OFF switching of type 1 fimbriae expression.

This model has allowed us to analyze—with high degree of

fidelity, albeit at significant computational costs—the dynamic

behavior of UPEC’s discrete-stochastic genomic fimbriation

circuit, including the ensuing effects of temperature on the wild-

type and FimB-mediated ON-to-OFF switching probabilities in

minimal medium, which are shown to be quantitatively consistent

with those observed empirically (Table 2). We then applied our

reb2sac tool to the detailed model of the fim switch circuit. The

resulting ‘‘abstracted’’ model substantially reduces the complexity

of the problem, enabling us to significantly increase the

throughput of our in silico analysis (Table 3), while still maintaining

accuracy when compared with the detailed model predictions and

available experimental observations (Table 2). This approach has

further allowed us to compute the ON-to-OFF switching

probabilities at additional temperature points and to investigate

the behaviors of characteristic mutants in silico (Figures 7 and 8).

As a result, we have been able to gain a number of insights into

the internal dynamics of this clinically relevant system, including

into the strong temperature dependence of putative UPEC

afimbriation switching rates (e.g., Figure 7), which characterize

the intrinsic dynamics that may cause individual bacteria to

autonomously transition from pathogenic to benign phase. In

particular, while earlier theoretical studies [90,91] have discussed

how the type 1-fimbriation level is regulated by the two

recombinases, it has not been entirely clear what role (if any)

FimB has in turning off the fim switch, since the ON-to-OFF rate

it mediates is at least an order of magnitude lower than that

enabled by FimE. This may also seem at odds with the

evolutionary selection of the remarkably fair ON/OFF FimB
switching probabilities observed. Our analysis (which—it should

be emphasized—though based on primary empirical data, is done

substantially in silico and so needs further experimental validation)

has been able to suggest a possible explanation for this ostensible

contradiction by identifying a potentially key regulatory role of

FimB in directing UPEC afimbriation. Specifically, while the

switching rate it can mediate directly remains low, FimB may

competitively modulate the dominant FimE-dependent switching

process in excess of three-fold—thus serving to significantly lower

wild-type E. coli ON-to-OFF switching rates in the host

environment. This process can help to further prolong or abridge

the persistence of the fimbriate phase in individual bacteria, which

may be crucial for UPEC survival when colonizing bladder and

invading urothelium, while trying to escape immune system

responses and effects of antibiotic treatments, Figure 8. Further-

more, this FimB-based regulation mechanism may be more robust

against small perturbations in FimE level than a simpler fim switch

inversion control, which could be of importance in a highly

variable and often rapidly fluctuating environment of the urinary

tract.

While the extent to which these innate mechanisms are able to

curtail or enhance virulence of UPEC in situ could be affected by

the various aspects of complex host-pathogen interactions noted

previously, it may be worth considering that to date much of the

discussion has been framed in the context of such immune

response processes as cytokine production, resulting inflammation,

and potential subsequent exfoliation of infected bladder epithelial

cells that generally lead to the increase in local tissue temperature

[27,52,92,93]. However, our results support a further understand-

ing of UPEC adaptation to this aspect of host immune response.

Although FimB-mediated fimbriae expression shutdown rate

appears elevated but largely insensitive to temperature in the

normal range of a host, as temperature increases further—both

Figure 7. Regulation of the ON-to-OFF fim circuit switching probability via temperature control. The detailed model was used to
evaluate ON-to-OFF switching probabilities over one cell generation at the three temperature points (280C, 370C, and 420C), where experimental
measurements had been made previously [30]. Calculations were repeated using the abstracted model at these and seven additional temperature
points (180C, 210C, 250C, 320C, 400C, 450C, and 500C) – all in minimal medium. Here, (A) Wild-type (FimE and FimB) ON-to-OFF switching probability
per cell per generation is plotted versus temperature; and (B) Same, but for FimB-only mediated switching, where further points (340C, 350C, 35:50C,
360C, 36:50C, 37:50C, 380C, and 390C) were added to increase resolution around the physiological temperature peak. (Error bars in (A) and (B) indicate
95% confidence interval.)
doi:10.1371/journal.pcbi.1000723.g007
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FimE and FimB ON-to-OFF switching rates are lowered, while

E. coli’s ability to control this process through variations in ½FimB�
becomes optimized. That is, as UTI triggers the onset of an

inflammatory response, the resulting increase in temperature tends

not only to lock this UPEC control circuit in the pathogenic

fimbriate phase, but also to transiently maximize switch sensitivity

towards regulation by ½FimB� at several degrees above normal—a

range consistent with the corresponding host environment. The

potential existence of such sensitized ‘‘pathogenic phase lock’’

(PPL) mechanism and its ensuing effects on UPEC virulence could

have direct bearing on some of the clinical challenges in treating

UTIs discussed earlier, since many of these characteristics are

thought to be associated with type 1 fimbriae-dependent biofilm

and IBC formation [15,16]. The latter structures have been shown

to provide persistent pathogen reservoirs in bladder tissue and/or

on abiotic surfaces (e.g., those of medical implants, such as

catheters) even in cases when antibiotic treatments can effectively

sterilize urine [92]. Still, currently recommended treatment

strategies include ongoing prophylactic daily or weekly antibiotic

therapy in cases of recurrent UTIs (defined as more than 2

episodes in 12 months), even though studies have shown no long-

term reduction of UTI recurrence in such patients after

prophylaxis cessation as compared with those in placebo groups

[94]. Given further risks of various potential side effects—which

can range from moderate to severe—and development of drug

resistance as well as a number of other undesirable consequences,

including growing epidemiological and public health implications

[1,21,94], presently available basic antibiotics-based UTI treat-

ment strategies cannot be considered satisfactory. In fact, it has

been strongly suggested that from a clinical perspective the use of

traditional antibiotic therapies cannot be successful against

biofilm/IBC-forming bacteria and that other treatment modes,

particularly those that target biofilm/IBC/fimbriation-specific

processes, need to be developed [95,96]. Thus, inference of type

1 fimbriae expression regulation circuit logic and elucidation of

external intervention strategies able to influence or interfere with

its internal dynamics, including via mechanisms that utilize

controlled temperature variation to induce PPL relief and

subsequent fim switch shutdown as discussed here, could offer

promising potential for contributing further understanding

towards the development of novel remedial approaches.

Historically, many such original medicinal and other therapeu-

tic methods have had their genesis in traditional or domestic

practices [97]—a pattern that has been recently seen to accelerate

because of, among other things, growing synergies between

Western and Asian medical systems that have already resulted in

such notable pharmacological and synthetic biological successes as

ephedrine and artemisinin—with more on the way [98,99]. For

instance, while a relatively prolonged exposure to cold has been

generally associated with the increased incidence of UTIs

[100,101], a number of complementary therapies have been

based around the practice of keeping genitourinary tract area cool

or even briefly exposing it to low temperatures as beneficial for the

prevention and treatment of various pathological processes,

including microbial infections [102,103]. Yet, while the ongoing

research into the effects of cold exposure on differential activation/

repression of various adaptive and innate immune system

components has now begun to suggest underlying cellular and

molecular biological basis for these phenomena observed in

clinical applications, their underlying modes of action on the

whole remain poorly understood [104,105]. In this context, the

results discussed here provide an example of the quantitative

insight that multiscale reaction-based computational modeling

brings to such complex processes. Specifically, based on the

implications of our study for utilizing alternative temperature-

driven approaches in targeting the dependence of UPEC virulence

mechanisms on type 1 fimbriae expression—rather than relying

solely on antibiotic or other biochemical means—two mechanisms

may merit further attention. On the one hand, as host response to

UTI includes tissue inflammation and a corresponding local or

systemic increase in temperature, our analysis indicates that the

adaptive feedback strategy evolved by UPEC tends to bring about

PPL conditions, whereby ON-to-OFF type 1 fimbriation circuit

switch may become maximally sensitized to ½FimB�. Combined

with its central role in mediating the OFF-to-ON switching [47],

this implies that lowering FimB activity may lead to a reciprocal

decrease in the fraction of virulent fimbriate UPEC phase and

subsequent reduction in the associated pathogen load—making

the corresponding persistent UTIs more amenable to host immune

mechanisms and, potentially, increasing the efficacy of existing

medical treatments. However, given the challenges of developing

and delivering the required inhibitors as well as further obstacles

presented by IBC formation inside epithelial cells, it may not be

immediately clear how direct variation of UPEC FimB activity

could be meaningfully achieved in vivo. On the other hand, our

conclusions also support the notion that decreasing the temperature

of UPEC environment may increase shutdown rates of type 1

fimbriation circuit switch (including by indirectly lowering

½FimB�), thus potentially leading to the up-regulation of afimbria-

tion rates in individual bacteria. This would tend to suppress

UPEC pathogenicity by reducing their capability for attaching to

and invading urothelial cells as well as by interfering with biofilm/

IBC formation and maintenance, which may be expected to

decrease their capacity for subsequent re-infection. As in this case

only local temperature variations—including those directed by

cool/warm intravesical media or such catheter and other device

instillation—are principally required in order to elicit the indicated

physiological response, the conditions necessary to influence

UPEC fimbriation switching in this manner may be practically

attainable in biomedical and clinical applications.

It is important to note, however, that this merely suggests the

possibility and does not engender any further assessment of

potential efficacy such therapies may have in clinical UTI settings.

The latter requires a more extensive follow on investigation—

particularly in view of additional host-pathogen interaction

dynamics, the multicellular nature of the system and commensu-

rably greater complexity of intra-/inter-cellular networks it

comprises, the epidemiology of autoinfection processes involved

in promoting UTIs from and diversity of the endogenous bacterial

flora, etc. as well as any associated difficulties in developing

detailed models of the intra-host pathogen environment. Such

challenges are often due to our understanding of biomolecular

Figure 8. Role of FimB in the temperature control mechanism of the total ON-to-OFF fim switching probability. The total ON-to-OFF
switching probability of two in silico generated mutants: one—overproducing FimB (at twice the wild-type level), and the other—a FimB knockout
(no ON-to-OFF FimB activity). These are compared with the wild-type system behavior using their respective abstracted models at the same 10
temperature points (see Figure 7A). Here, (A) The total ON-to-OFF switching probability per cell per generation in minimal medium is plotted versus
temperature. For numerical comparison, each case also includes three points computed directly via the detailed model. (Error bars indicate 95%
confidence interval); and (B) The ratio of the total ON-to-OFF switching probability in each of the mutants to the total ON-to-OFF switching
probability of the wild-type is plotted versus temperature.
doi:10.1371/journal.pcbi.1000723.g008
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functions involved being insufficiently detailed and/or tissue-

specific processes adding further layers of complexity to the overall

infection dynamics. For instance, while this work has been able to

use modeling and computational analysis in order to explore

certain aspects of type 1 fimbriae switch control, the latter are

primarily relevant to lower urinary tract infections. In contrast,

upper UTIs are predominantly promulgated by P fimbriae—a

distinct UPEC adhesive factor, which is regulated by significantly

different biomolecular circuitry (see [106,107] for detailed

modeling of the corresponding pap switch) that leads to its own

mode of thermoregulation [108]. Still, recent experimental

results—from those cited earlier with respect to UPEC and host

immune system, to the discovery of TRP channel family of cold

and hot sensors in human genitourinary tract [109]—have

provided strong evidence that temperature and its variations can

have major systemic influence on healthy functions as well as

various pathological developments in the urinary tract and

surrounding tissues. In fact, basic intravesical cooling or warming

with media of desired temperature or via chemical agonists, such

as menthol/icilin or capsaicin/resiniferatoxin – respectively, has

had a long history of being used to induce nerve desensitization,

bladder cooling reflex, and other physiological mechanisms in

therapeutic applications ranging from treating patients with

detrusor overactivity, bladder pain, and urothelium irritation to

diagnosing various urinary tract and neurologic disorders

[109–111]. This not only directly indicates that patient urinary

tract temperature could be practically and therapeutically

manipulated in clinical applications, but—as TRP sensors appear

specific to animals and fungi [112]—also suggests that thermal

regulation of human physiological response processes may be

actively effected in a manner that by-and-large does not directly

impinge upon prokaryotic pathogens. Conversely, with better

empirical understanding and computational modeling of the

underlying biological circuits, the same mechanism may allow us

to substantively offset the effect on the host of moderate temperature

changes by applying compensatory chemical stimuli to appropriate

TRP channels and modulating their ensuing activity up to

desensitization. This, in turn, opens up the possibility that externally

controlled temperature variations may be guided by quantitative

systems analysis to specifically target and manipulate the internal

dynamics of bacterial or other pathogenic processes in sutu, causing

them to either become innately less virulent—for example, as has

been discussed here in the context of UPEC fimbriation circuit

switching—or making them more susceptible to the immune

response as well as antibiotic and other treatments, thus potentially

contributing to the ongoing enhancement of existing and the

development of novel therapeutic applications.

Taken together, these results broadly serve to further demon-

strate the potential utility of computational and systems biological

approaches as we are beginning to understand and control many

physiological processes in disease and development at the inter-/

intra-cellular network and circuit levels [113–118], thus enabling

greater insights and providing more effective solutions to

associated clinical and public health problems. They also highlight

the benefits of model abstractions and the need for process

automation as tools of in silico biological systems analysis, including

their ability to significantly increase the efficiency with which

practical multiscale biomolecular and biomedical problems may

be addressed in situ. In fact—while this may be directly noted by

considering just how much longer it takes to simulate a detailed

network model, or how tedious a manual implementation of all

constitutive abstractions can be, or significant simplifications in

functional logic the corresponding process modularization may be

able to achieve—what ultimately makes the automated model

abstraction approach compelling is the eventual consideration of

how relatively simple the E. coli type 1 fimbriation switch circuit

and its temperature controls appear to be as compared to the

complexity of many other biological and biomedical processes we

may be expected to face in the context of systems and

computational biology now or in the near future.

Methods

Previous works by Wolf & Arkin, Blomfeld et al., and others

have helped elucidate and ascertain the importance of discrete

and stochastic mechanisms in the fim system dynamics

[23,30,45,47,71,90,91]. For example, it has been shown that fimS

inversions are digital (ON/OFF) events that are randomly

promoted by FimB or FimE binding to discrete IRL/IRR sites

and regulated by the corresponding Lrp or IHF occupancies of

cis-regulatory genomic elements, which are present in low integer

counts. Under these conditions, biomolecular systems can manifest

emergent and unintuitive behaviors that may greatly deviate from

the predictions of macroscopic continuous and deterministic

classical chemical kinetics (CCK – also referred to as reaction

rate equations or mass-action kinetics) [54]. Therefore, accurate

analysis of the fim switch circuit requires the use of a mesoscopic

discrete and stochastic process description based on the chemical

master equation (CME) [54,56,58,59,119,120].

This approach considers the behavior of biomolecular systems

at the individual reaction level by exactly tracking the time-

evolution of the discrete number probability distribution for all

molecular species present in the system and by correspondingly

treating each reaction as a separate random event. An intuitive

basis for the (forward) CME can be described as follows: given N

species at time t with the number of molecules x:(x1, . . . ,xN )
each, which are interacting through M irreversible chemical

reactions fr1, . . . ,rMg with stoichiometric vectors fv1, . . . ,vMg
inside a well-stirred tank of constant volume and in thermal

equilibrium at constant temperature—the probability that this

system is found in the molecular number state x at time tzdt can

be simply expressed as the sum of probabilities that: (i) the system

is in the same state at time t and does not undergo any transitions;

and (ii) the probability that it is in a different state at time t and

transitions into x during ½t,tzdt). Then, under the Markovian

assumption:

P(x,tzdtDx0,t0)~P(x,tDx0,t0) 1{
XM
j~1

aj(x)dt

" #

z
XM
j~1

P(x{vj,tDx0,t0)aj(x{vj)dt
� �

:

ð1Þ

with x~x0 at t~t0 and aj(x)dt—the probability that during

½t,tzdt) the system in state x undergoes reaction j—where aj(x) is

called the propensity function and it is further assumed that dt is

chosen small-enough that almost surely only one reaction occurs

during this time increment.

Taking the limit dt?0 and rearranging Equation 1 gives the

expression describing the temporal evolution of P(x,tDx0,t0):

LP(x,tjx0,t0)

Lt

~
XM
j~1

P(x{vj,tjx0,t0)aj(x{vj){P(x,tjx0,t0)aj(x)
� �

,

ð2Þ
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which is the CME form most often used in biological applications

[55–57,119].

Numerical Simulations
Unfortunately, solving the CME exactly for most biologically,

physiologically, or clinically meaningful systems is typically not

feasible either analytically or numerically due to the intrinsic

complexity of its differential-difference form. To address this

problem, a number of alternative methods—focusing on approx-

imate analytical solutions, general computational techniques, and a

range of specific applications—have been developed [62,121–126].

In practice, many of these methods either derive from or have their

genesis in the Gillespie’s Algorithm (SSA), which enables one to gain

insight into possible temporal behaviors of the system by specifying

how its sample paths can be exactly drawn from the CME-described

probability distribution [62,127,128].

Our numerical simulations approach is based on the SSA and,

specifically, is implemented as a streamlined version of Gillespie’s

Direct Method [127]. This is a kinetic Monte Carlo simulation

procedure, which—given the system in state x at time t—
determines per iteration: (i) the waiting time to the next reaction, t,

based on an exponential random variable with mean

1
.P

m am xð Þ; and (ii) the index of the next reaction, j, based on

an integer random variable with probability aj xð Þ
.P

m am xð Þ.
(While the Next Reaction Method [129] is often considered to be

the most efficient implementation of the SSA, recent study has

discussed how the optimized version of the Direct Method

generally performs better for many practical biochemical sys-

tems—largely owing to the high computational cost of maintaining

extra data structures [130].) Our implementation is similar to

other optimized versions of the Direct Method in the sense that it

only evaluates propensity functions as necessary to minimize

updates. The main difference is that our implementation does not

create a dependency graph, but rather utilizes the bipartite graph

structure of the reaction-based model to determine which

propensity functions must be evaluated (see FimB and FimE

Regulation Subnetwork section below for additional detail).

Using this implementation of the SSA in reb2sac, each

simulation starts with the switch in the ON position and is run for

up to one cell generation of 20 minutes as in [90]. If the switch

moves to the OFF position within this time limit, the simulation is

then counted as an ON-to-OFF switching event. The ON-to-OFF

switching probability is calculated as the number of ON-to-OFF

switching events divided by the total number of simulations with

the same initial conditions. Alternatively, this could be viewed as

computing the total ON-to-OFF switching probability by

summing up switching events involved in all possible transition

states, while the FimB-mediated events only include transitions

carried out due to the binding of FimB—i.e., those going through

switch states S4, S7, and S8—see Figure 4.

Detailed Fimbriation Switch Circuit Model
Our detailed switch inversion model represents a molecular

reaction-scale description of the fim circuit (Figure 2), which

generally satisfies the Markovian requirement of the SSA. (The

discussion of how the individual reactions have been parameterized

as well as generally identified from literature can be found below

and in Text S1.) Such representations typically constitute the lowest-

level (highest-resolution) description of biological systems used in

most practical applications, which is one of the reasons why this

model is correspondingly referred to as ‘‘detailed’’.

The reaction network graph examination carried out as part of

the motif recognition, data flow, system organization, and

abstraction analysis has led us to identify two major modules

responsible for dynamically controlling the fimS inversion process

as well as integrating external signals provided by global regulator

proteins and environmental factors, such as temperature, thus

entailing a number of significant analytical and computational

simplifications. These subnetworks may be broadly labeled as: (i)

the production-degradation processes of FimB and FimE; and (ii)

the processes regulating the configuration of the fim switch itself.

FimB and FimE regulation subnetwork. As discussed

earlier, FimB and FimE site-specific recombinases are essential

to fimbriation circuit switching as enablers of the fimS inversion

process. What is less immediately obvious, however, is the key role

they play in receiving environmental signals, including

temperature, and feeding this information into the fim

configuration subnetwork for integration into the switch

inversion decision. The temperature regulation facet of this

process is effected by the substantial thermal sensitivity of the

H{NS-mediated fimE and fimB promoter repression. Notably,

such temperature control is relatively stronger across much of the

physiological regime relevant to the fim switch circuit operation

than the effect of H{NS’s own concentration variations due to

external factors (also see Text S1).

The reaction-based description of FimB and FimE regulation

subnetwork used here is given in Figure 3. However, for

many applications—including our modeling and analysis tool

reb2sac—a (bipartite) graph representation of biochemical

networks may be more desirable [63]. In this description, species

and reactions correspond to nodes connected by the respective

interactions. Figure 5A provides such a graphical representation of

the detailed FimB and FimE regulation model used in our

analysis. Aside from its simplicity, which also aids visualization of

underlying biomolecular processes, representing biochemical

networks in such a graph form further offers several additional

advantages for our analyses. Two major ones include: (i) the

efficient traversal of the reaction network, which is crucial for

pattern matching and subsequent model abstraction; and (ii) an

optimized implementation of the stochastic simulation algorithm

without the need for constructing additional data structures—

such as dependency graphs—which minimizes the number of

updates.

Table 4 provides the list of temperature-dependent rate

constants and initial species concentrations involved in the FimB
and FimE regulation process, Figure 3, across the relevant range

of degrees. Table 5 lists the remaining rate constants and initial

species concentrations.

The fim switch configuration subnetwork. The second

major subnetwork centers around binding and unbinding

reactions of fim switch regulatory proteins, leading to ON-to-

OFF phase inversions and thus involving the fimS invertible DNA

element itself. This subnetwork is derived from the 18

configurations that the switch DNA region can be in based on

the occupation of various binding sites by regulatory proteins. The

reaction-level description of this module is given in Figure 4. We

have been able to further quantify these processes by first reverse-

engineering the underlying reactions from the equilibrium

statistical thermodynamics model. That is, we have used the

assumption that the regulatory molecule binding and unbinding

reactions are much more rapid compared with the associated

switching or gene expression rates [131]. (See Text S1 for detail.)

Furthermore, this paper has taken the various types of

recombination complexes (recombinasomes/invertasomes), S#,

to be independent in that there is no direct interconversion

between any pair of S#’s without an initial complex disassociation

(see Figure 4). This is based on the understanding that the
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formation of a recombinasome results in DNA deformation and

steric re-arrangement that prevent further binding or unbinding of

other constituent molecules—such as Lrp—while a recombination

event has not been resolved (e.g., see [71]), thus preventing direct

transitions among S#’s. (Similarly, this paper has taken

subsequent complex breakdown to be complete and not partial,

because the rate of switch inversion event occurrence is much

slower than the kinetics of molecular binding and unbinding.)

Besides the regulatory factor binding/unbinding to/from fimS

DNA and the H{NS-mediated repression of fimE / fimB

described earlier, another main mode of temperature control in

the E. coli fimbriation switch circuit is through its effect on the

abundance of the Lrp protein, Table 7. The concentration of Lrp
is shown to be an increasing function of temperature whereby the

lrp expression is up-regulated as the former increases owing to the

reduction in H{NS-based repression [69,90,132].

Model Abstractions—a Tool to Aid Quantitative Analysis
of Complex Biological Systems

While SSA offers a powerful method for numerically analyzing

the behavior of discrete-stochastic biomolecular interaction

networks, relying on just one or several simulation runs in order

to gain a general understanding of a biological system subject to

stochastic decision-making, such as UPEC fimbriation ON/OFF

switching, could often be misleading because—similarly to the use

of CCK—randomly-simulated individual sample trajectories of

the underlying stochastic process are frequently insufficient to

characterize its overall probabilistic dynamics [54]. In such

settings, it typically requires thousands or more simulations in

order to estimate the behavior of a system with reasonable

statistical confidence. Yet, because SSA needs every single reaction

event to be simulated one-at-a-time, it commonly leads to very

high numbers of reaction events per given time step, particularly

when the system has large characteristic time-scale separations.

This makes computational requirements of exact numerical

discrete-stochastic analysis exceedingly demanding for most

practical biological and biomedical applications. In addition, the

underlying complexity of biological chemical reaction and physical

interaction networks as well as their innately differential response

to varied environmental conditions generally impede qualitative

interpretation of biological system organization and behavior.

That is, though detailed reaction-level representations of biomolec-

ular networks allow for very comprehensive descriptions of

biological mechanisms, such low-level models can lead to

substantial computational costs as well as may, potentially, obscure

the overall system structure and dynamics. The problem could be

further exacerbated by the particular choices of initial and

environmental conditions that biological systems are embedded

in. For example, while this paper discussed the behavior of the fim

circuit in E. coli growing on minimal liquid medium, the in situ

observed switching characteristics may be altered on rich liquid or

solid medium [30]. Note that these adjustments in environmental

conditions should not be expected to affect the underlying

molecular reaction network structure of individual bacteria (since

such variations do not determine the presence or absence of

constituent elementary biomolecular interactions—only their

rates), but rather lead to changes in observations due to effects

ranging from heterogeneity in population dynamics among cell

colonies on solid medium to input-driven modulations of various

process rates comprising the circuit when switching to rich

medium. Accurate analysis of the system in the former case

requires application of dedicated population modeling schemes

that themselves can lead to non-trivial empirical effects

[35,36,133], thus creating further modeling complexity outside

of the present scope. Similarly, in the latter case, changes in

Table 4. Temperature-dependent rate constants and parameters in the FimB and FimE regulation module.

00C k2 (nM21s21) k4 (nM21s21) ½½FimB��0 (nM) ½½FimE��0 (nM) ½½H{NS��0 (mM)

18 0.001149425 0.000006964 74 199 30

21 0.001149425 0.000047619 74 188 30

25 0.001149293 0.00025 74 146 30

28 0.001133787 0.000666667 74 100 30

32 0.001132503 0.001923077 94 69 20

37 0.001 0.005524862 100 31 20

40 0.000775194 0.01 113 16 20

42 0.000588235 0.014705882 127 13 20

45 0.00034662 0.025641026 153 8 18

50 0.000133209 0.084033613 183 3 15

The values listed here are derived based on the results provided in [31,65,90,132]. See Text S1 for further detail.
doi:10.1371/journal.pcbi.1000723.t004

Table 5. Temperature-independent rate constants and
parameters in the FimB and FimE regulation module.

Rate constant Value Rate constant Value

k1 0.333333333 k3 0.333333333

k{1 10 k{3 10

k{2 10 k{4 10

k5 0.666666667 k6 0.666666667

kd1 0.001625 kd2 0.001625

Variable Initial value (nM) Variable Initial value (nM)

½PB� 1 ½PB{RNAP� 0

½PE� 1 ½PE{RNAP� 0

½PB{H{NS� 0 ½RNAP� 30

½PE{H{NS� 0

The values listed here are derived from the results provided in [31,65,90,132].
See Text S1 for further detail.
doi:10.1371/journal.pcbi.1000723.t005
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empirical settings—such as growing bacteria in a rich medium—

tend to produce selective increases of some cellular process rates

(e.g., those involved in metabolism/degradation or cell-division)

that nevertheless leave many others unchanged. This introduces

further time-scale separations into the problem, thus potentially

making exact numerical analysis of discrete-stochastic circuit

dynamics accessible in a minimal medium, but infeasible in a rich

one [63,64].

One approach toward addressing such challenges is the ongoing

development of advanced analytical and numerical approximation

methods—whether with respect to time (e.g., tau-leaping

[60,134]), state space (e.g., finite state projection [135,136]), or

other system variable—that are capable of significantly accelerat-

ing the analysis of master equation-type models to within a

specified level of precision. This potentially makes feasible accurate

computational analysis of molecular dynamics behind physiolog-

ically-meaningful biological networks that are otherwise too

demanding for exact kinetic simulations (as, for example, is the

case with bacterial systems grown in rich media or other such

initial/external conditions). Thus, derivation and use of quantita-

tively analogous, but qualitatively and computationally simpler

higher-level abstracted representations—which could be efficiently

accomplished through systematic and, given the complexity of

most biological processes, automatic application of various

model approximations and simplifications—becomes essential

[60,62,63,134,135,137–142].

In practice, this could be done by utilizing a variety of

techniques. For example, rapid-equilibrium and/or quasi-steady-state

approximations [143–145] are often used to eliminate the various

intermediates without significantly compromising our quantitative

understanding of the overall system logic and functionality. Other

methods may include: irrelevant node elimination, which removes

species and reactions irrelevant with respect to the species of

interest by statically analyzing the structure of the model; modifier

constant propagation, which replaces a species-state variable in kinetic

laws with the corresponding initial value and removes that species

if that variable is statically known to be fixed; stoichiometry

amplification, which amplifies stoichiometries and reduces the

values of propensity functions—making the system and time

advancement per reaction larger; and a number of additional

approaches—many of which have been implemented in our

reb2sac tool (see Table 1) [63,64,138]. The key principle behind

Table 6. Configuration of fimS DNA element for the ON-to-OFF switching.

State IHF{X
a

IRX
b

Lrp{X
c

DG (kcal) kp
d (s21) ie jf kg mh

1 - - - 0 0 0 0 0 0

2 IHF - - {13 0 1 0 0 0

3 IHF FimE - {23 6.53e-8 1 0 1 0

4 IHF FimB - {23 6.5e-7 1 1 0 0

5 IHF FimE Lrp {47 3.0e-4 1 0 1 2

6 IHF FimE Lrp {59:3 8.0e-5 1 0 1 3

7 IHF FimB Lrp {47 3.7e-6 1 1 0 2

8 IHF FimB Lrp {59:3 7.5e-7 1 1 0 3

9 - FimE - {10 0 0 0 1 0

10 - FimB - {10 0 0 1 0 0

11 - FimE Lrp {34 0 0 0 1 2

12 - FimE Lrp {46:3 0 0 0 1 3

13 - FimB Lrp {34 0 0 1 0 2

14 - FimB Lrp {46:3 0 0 1 0 3

15 - - Lrp {24 0 0 0 0 2

16 - - Lrp {36:3 0 0 0 0 3

17 IHF - Lrp {37 0 1 0 0 2

18 IHF - Lrp {49:3 0 1 0 0 3

aIRX represents both IRL and IRR sites, to which the two recombinases can bind to invert the fim switch.
bIHF{X corresponds to the two IHF binding sites, IHF I and IHF II.
cLrp{X represents the three Lrp sites: Lrp-I, Lrp-II, and Lrp-III.
dkp represents the switching reaction rate constant.
ei represents the number of molecules of IHF bound to the switch DNA region.
fj represents the number of molecules of FimB bound to the switch DNA region.
gk represents the number of molecules of FimE bound to the switch DNA region.
hm represents the number of molecules of Lrp bound to the switch DNA region.
Configuration parameters are based on those for the ON state given in [90].
doi:10.1371/journal.pcbi.1000723.t006

Table 7. Concentration of Lrp at various temperatures.

�C ½½Lrp�� (nM) �C ½½Lrp�� (nM)

18 2 37 5

21 2 40 11

25 2 42 20

28 2 45 45

32 3 50 130

See further discussion in Text S1.
doi:10.1371/journal.pcbi.1000723.t007
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most of these techniques could be summarized as identifying and

abstracting away various redundant or largely irrelevant variables,

whose dynamics do not independently influence the behavior of

the system under a particular set of conditions—or, equivalently,

finding a reduced set of parameters containing sufficient

information to indentify system states and transitions between

them. Since in the probabilistic context all information about a

system is contained within its PDF, this could be viewed as finding

a minimal subset of variables or their combinations that span the

range of most likely/relevant states and elucidating abstracted laws

governing their dynamics from those of the detailed description.

(Various methods are available for quantifying the amount of

probability distribution thus captured. For instance, information

entropy and mutual information could be utilized for identifying

the effective complexity of processes involved as well as further

used to solve the inverse problem of elucidating system structure

based on observations of state occupancies, such as inferring

biomolecular network organization from individual species

numbers [113,146–149].) Alternatively, having identified the

region of state space where most of the system’s probability is

localized, one may seek to restrict the problem to this lower-

dimensional subspace, so as to obtain the corresponding

reductions in problem complexity or otherwise coarse-grain its

resolution when away from most relevant states and timescales.

These approaches can be particularly fruitful when applied to

biological molecular systems, whose probability distributions can

be described by the CME. The latter offers a well-defined

analytical structure for rigorously developing such approxima-

tions—which has led to several novel methods being proposed and

applied in recent years [136,137,150–154]. (For example, it has

been shown that master equations for switching systems can often

be projected to much smaller dimensions with little loss in their

accuracy [155].) Notably, since these methods are generally

based on deep theoretical understanding of the underlying

molecular chemical kinetics and reaction network graph analysis,

the resulting abstracted models—such as those generated by

reb2sac—on balance could be commensurably expected to

accurately capture the overall biological system behaviors as well

as to provide rigorous quantification of any potential divergences

between the abstracted and detailed descriptions.

Automated Model Abstraction
Although many approximation and abstraction approaches

have been in wide use individually, their traditionally manual

implementation grows to be increasingly more tedious and

demanding as multiple methods are collectively applied to

progressively larger biological systems. This problem is becoming

even more acute as advances in systems biology continue to drive

rapid increases in the typical size of analyzed networks, eventually

rendering them intractable to interaction-level investigation and

potentially leading to significant errors in large model transfor-

mations required to generate accurate intermediate-level abstrac-

tions. Our approach alleviates these problems by using a set of

novel and existing algorithms—implemented in the reb2sac

abstraction and analysis tool—to automatically survey and test

biological networks for patterns and characteristics amenable to

various complexity reduction techniques at the given level of

accuracy for some specified ‘‘target’’ system property of interest

[63,64]. Among other things, this allows reb2sac to systemat-

ically scan through intermediate abstraction levels, to then

automatically identify and implement appropriate approximation

methods according to user preferences, and—by setting precision

thresholds—to ultimately generate abstracted system models

optimized for computational efficiency versus accuracy as desired.

A high-level flow chart of our automated abstraction methodology

is given in Figure 9. Note that the outlined analysis framework is

overall quite generic and so could be used not only to generate

model abstractions of gene regulatory networks, but also of other

biochemical/biophysical reaction systems—including signal trans-

duction pathways, metabolic networks, and other epigenetic

processes.

Specifically, as shown in Figure 9, our abstraction engine takes

as input a detailed reaction-based model and a set of abstraction

properties. The latter help determine which of and how individual

abstraction methods should be applied to the input model. These

properties can also specify parameters for the conditions used by

individual methods, enabling users to control the level of

abstraction. The abstraction engine then passes this information

through three internal stages: (i) pre-processing; (ii) main

abstraction loop; and (iii) post-processing. Pre-processing is used

to modify the structure of the input model so that the appropriate

abstraction methods in the main loop can be applied more

effectively. For example, if a model initially contains irrelevant

reactions with respect to a particular species or dynamical

property that the user is interested in analyzing—these reactions

are removed at the pre-processing step to help speed up the

abstraction process. The main loop contains abstraction methods

that are applied repeatedly until the structure of the model no

longer changes. In the case of gene regulatory networks,

abstraction methods such as operator site reduction are typically

placed in the main loop. Post-processing is used to transform the

model into a form suitable for subsequent application of follow-up

analysis methods—e.g., stochastic simulation, Markov chain

analysis, etc.

Abstracted Fimbriation Switch Circuit Model
As discussed earlier, transforming a detailed biological system

model into an abstracted one can substantially increase the

efficiency of its computational analysis as well as potentially

improve our understanding of its overall structure and function. In

this work, we have used the reb2sac automated abstraction tool

to simplify the detailed model by systematically going through the

fim switch network and applying various qualifying simplifications

and/or approximations as appropriate. The resulting abstracted

model is indeed significantly simpler computationally and more

understandable logically than the detailed one. For example, the

production-degradation reaction scheme of FimB and FimE
(Figure 5A) is reduced by first quantitatively identifying the

transcriptional regulator binding/unbinding events at the fimB and

fimE promoter sites as ‘‘rapid’’ and the corresponding number of

the operator sites (one) as ‘‘low’’—and by then applying the rapid-

equilibrium and quasi-steady-state approximations to these

processes. The tool then continues to examine the dynamics of

other species and finds that the concentrations of H{NS and

RNA polymerase (RNAP) do not change over time in our model.

Thus, by applying modifier constant propagation, ½H{NS� and

½RNAP� are replaced with constants whose values are set to the

corresponding initial concentrations and species H{NS and

RNAP are removed from the model. This process continues until

no further reductions are possible.

Taken together with the constraints imparted by the rates

involved and the set target of fim switching probability, these

abstractions reduce the detailed subnetwork of FimB and FimE
shown in Figure 5A to the one shown in Figure 5B. Similar

computational and logical complexity reduction is also achieved

for the fim element configuration subnetwork. For instance, the

reaction process corresponding to the fim switch inversion through

state 6 (see Figure 4) is given in Figure 6A. The corresponding
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Figure 9. High-level workflow of reb2sac automated model abstraction engine. The engine automatically generates an abstracted model
by taking as inputs a detailed interaction-based model and, optionally, various targets and tolerances that can help set and adjust the level of
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abstracted reaction scheme is shown in Figure 6B. Overall, after

applying all of the available and appropriate abstraction

techniques listed in Table 1, the detailed model with 52 reactions

and 31 species (e.g., two recombinases, global regulatory proteins,

and various intermediate complexes given in Figures 3 and 4) is

transformed by reb2sac into an abstracted model with 10

reactions and 3 species (FimB, FimE, and switch given in

Figures 5B and 6—the latter showing only reactions involved in

ON-to-OFF switching events through circuit state 6).

Supporting Information

Text S1 Additional modeling information.

Found at: doi:10.1371/journal.pcbi.1000723.s001 (0.21 MB PDF)
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