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Abstract

In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the
occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error
occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is
not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion
experienced on that same trial. The formation of this association means that future movements planned to resemble the
motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual
rather than planned motions are assigned ‘credit’ for motor errors because, in a computational sense, the maximal adaptive
response would be associated with the condition credited with the error. We studied this process by examining the patterns
of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in
humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual
rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed
up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the
binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic
framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and
they suggest ways to optimize their use.
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Introduction

When learning to swim, the proper stroke motion is usually

taught on the pool deck. Although a student might seem to have

mastered this motion on dry land, upon entering the water she will

have difficulty in accurately reproducing it underwater. However,

after many laps, the student eventually learns to produce the

pattern of motor output that leads to the proper stroke motion

while swimming. This learning occurs via the formation of internal

models of the physical dynamics experienced which allow the

programming of movement to contend with the dynamics of the

environment [1–4]. These internal models have been shown to

predict the dynamics of the environment as a function of motion

rather than as a function of time [5–8] – a strategy that makes

sense in light of the viscoelastic and inertial physics of our own

limbs and the objects we interact with. Consequently, the neural

plasticity which underlies this learning must establish associations

between motion state (i.e., position and velocity vectors) and motor

output which can counteract environmental forces. Although the

existence of these associations has been well established, the

mechanism by which they form is not yet understood.

How does this state-dependent learning arise during the course

of motor adaptation? One possibility is that on individual trials, an

internal model of the environment is updated based on a

combination of the errors experienced and the motion plans that

led to those errors. Another possibility is that internal models are

updated based on errors experienced in combination with the

actual motion states associated with those errors. It is remarkable

that previous work on motor learning in neural systems has widely

assumed the former [4,9–16], despite the fact that direct evidence

for this hypothesis is scant. The idea that learning is associated

with the motion that was planned (plan-referenced learning) is

especially pervasive in the learning rules of the algorithms that

have been proposed to model the process of adaptation in the

neuromotor learning literature [4,9,11–12,15], however it is

difficult to find work that addresses the validity of this assumption,

explores its implications or provides a clear rationale for its use.

The machine learning community has developed, in parallel, a

series of algorithms for updating internal models in robotic systems.

Interestingly, these algorithms almost uniformly involve learning rules

in which internal models are updated based on a combination of the

errors experienced and the actual motion associated with those errors

(motion-referenced learning) rather than the motions that were

planned [17–21]. The choice of these learning rules is grounded in

the idea that adaptive changes should be provably stable in the sense

that, under a set of reasonable assumptions, updated internal models

should never result in worse performance [17–21]. Here we ask the

question: Do the associations between motor output and motion state

formed during human motor learning arise from adaptation based on

planned or actual motions? The answer to this question is important

not only for theories of motor control, and issues of stability during

learning, but also because knowledge of how associations are formed

during motor learning can be leveraged to improve the efficiency of

training procedures.
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Motor adaptation can be described as the process of tuning

motor output to reduce the errors between plan and action. Thus

the associations between motion state and motor output formed

during this process result from the way that responsibility for these

errors is assigned. This is known as a credit assignment problem.

This problem can be posited as the task of assigning blame after an

error is experienced to the set of actions that would be most likely

to give rise to similar errors in the future. This set of actions could

then be modified in order to improve performance in subsequent

trials. Viewed in this way, the distinction between plan-referenced

learning (PRL) and motion-referenced learning (MRL) corre-

sponds to whether the blame for motor errors should be assigned

to the planned versus actual motion. Consequently, the amount of

adaptation on a given trial will be determined by the magnitude of

the error, however the location of the adaptation (which future

motions will benefit from the adaptation) will be determined by the

credit assignment mechanism. Here we studied the generalization

of motor adaptation to untrained conditions in order to elucidate

the credit assignment mechanism used by the CNS, and then used

our understanding of this mechanism to design a training

paradigm that takes advantage of it to improve the efficiency of

motor adaptation.

Results

What are the implications of different credit assignment
mechanisms in the CNS?

The adaptations that would occur at different stages of training

for reaching arm movements in a velocity-dependent force-field

(FF) for the PRL and MRL credit assignment hypotheses are

shown in Figure 1. The green shaded region around the planned

motion – which is essentially straight toward the target for short

(10 cm) movements [22] – represents the space of future motions

which would benefit from the adaptation to the greatest degree

under PRL (Figure 1A). Alternatively, each red shaded region

represents the space of future motions which would benefit

maximally under MRL. A more direct visualization of the

adaptive changes predicted by each credit assignment hypothesis

can be made by representing motion and the resulting adaptation

in velocity-space rather than position-space, since the adaptation

to the velocity-dependent dynamics studied in the current series

of experiments is believed to be mediated by an internal

model largely composed of velocity-dependent motor primitives

[8,10,12–13,23]. These primitives are the learning elements which

contribute to the compensatory motor output (i.e., compensatory

force) in a velocity-dependent manner. Figure 1B shows how

individual motor primitives would adapt based on PRL versus

MRL credit assignment early on in training. Here each circle

represents a single motor primitive (centered at its preferred

velocity) with a color intensity denoting the amount of adaptation

that would arise from the illustrated trial. The left and right panels

of Figure 1B show the adaptations predicted by PRL (green) and

MRL (red), respectively. As in Figure 1A, adaptation is centered

on the planned motion for PRL and centered on the actual motion

for MRL.

As training proceeds over the course of several trials, the

activation levels of the adapted primitives would continue to

increase. This continued increase in activation (not illustrated)

leads to increased compensatory force, resulting in greater

compensation of the external dynamics and thus straighter

trajectories. Note that the adapted primitives would be noticeably

different for the two credit assignment hypotheses early in training,

but would overlap late in training as force compensation increases

and the planned and actual motions converge as illustrated in

Figure 1A.

Generalization after exposure to interfering force-fields
reveals motion-referenced learning

Given the different implications that the PRL and MRL credit

assignment mechanisms have for motor adaptation, we can assess

which one is favored by the CNS by asking a simple question:

After training, which motions gain the most benefit from the

induced adaptation? The motions that were planned or the

motions that were experienced? Since the mechanism for credit

assignment determines which motions will benefit from adaptation

on a particular trial, we studied how motor adaptation to a single

target direction generalizes to neighboring motion directions. If a

particular motion is trained, the pattern of generalization can be

viewed as a record of the history of credit-assignment for the errors

experienced during a training period. Specifically, the amount of

generalization in the directions neighboring the trained movement

constitutes the set of actions that the motor system believes should

be adapted based on the history of errors experienced. Therefore,

PRL and MRL should give rise to different patterns of

generalization.

In order to cleanly distinguish between these hypotheses, we

designed an experiment in which the planned motion and the

actual motion were maintained to be distinct from one another

during the entire dataset so that the patterns of generalization

predicted by PRL vs. MRL would be very different from one

another. This is a challenge because, training a motor adaptation

generally results in improved performance such that the actual

motion converges onto the planned motion, and such a scenario

could hamper the ability to clearly distinguish between the PRL

and MRL hypotheses. Thus, we designed an experiment in which

actual motion would not converge onto planned motion during the

course of training, resulting in enduring differences between the

predictions of these two hypotheses. To accomplish this, subjects

were exposed to a training period consisting of short, successive

blocks of movements towards a single target location with a force-

field (FF) that alternated between clockwise (CW) and counter-

clockwise (CCW) directions from block to block (see Figure 2A).

Author Summary

Einstein once said: ‘‘Insanity is doing the same thing over
and over again and expecting different results’’. However,
task repetition is generally the default procedure for
training a motor skill. This can work because motor
learning ensures that repetition of the same motor task
will lead to actions that are different, as errors are reduced
and motor skill improves. However, here we show that task
repetition, although not ‘‘insane’’, is inefficient. The
machine learning algorithms used to control motion in
robotics adapt the movement that was actually made
rather than the planned movement in order to assure
stable learning. In contrast, it had been widely assumed
that neural motor systems adapt based on the planned
rather than the actual movement. If this were the case, task
repetition would be an efficient training procedure. Here
we studied the mechanisms for motor adaptation in
humans and found that, like in robotic learning, the
adaptation that we experience is associated with the
actual movement. This finding led to the design of an
improved training procedure that avoids task repetition.
Instead, this procedure continually adjusts the movement
goal in order to drive participants to experience the
correct movement, even if initially by accident, leading to
an over 50% improvement in the motor adaptation rate.

Binding of Learning to Action in Motor Adaptation
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The magnitudes of the CW and CCW FFs were, respectively, 9

and 29 N/(m/s). In these FFs, the peak force perturbations were

2.7 and 22.7 N, respectively, for an average movement with a

peak speed of 0.3 m/s. The FF blocks were short enough (762

trials) that neither the CW nor the CCW FF could be learned very

well before unlearning with the opposite FF occurred. After

subjects were exposed to a number of these interfering FF cycles,

we measured the generalization of adaptation to untrained

movement directions with error-clamp (EC) trials (see Materials

and Methods for details).

The predictions of PRL and MRL are strikingly different for

this experiment. For the PRL hypothesis, since the adaptation is

associated with motor primitives centered at the same target

direction for both FFs (Figure 2B top panel, blue and orange

traces), the balanced exposure to these opposite FFs would lead to

cancellation of the CW and CCW FF learning resulting in near

zero adaptation at the trained target direction and the adjacent

directions (Figure 2B, dashed green trace). Note that although

target locations are identical between CW and CCW FF trials, the

actual movement directions differ. The CW FF perturbs motion

towards smaller movement angles whereas the CCW FF does the

opposite. Therefore, MRL predicts that smaller movement angles

would be preferentially associated with adaptation appropriate for

the CW FF (blue trace in the bottom panel of Figure 2B), whereas

higher movement angles would be preferentially associated with

adaptation appropriate for the CCW FF (orange trace in the

bottom panel of Figure 2B). This would lead to the bimodal

pattern of generalization illustrated in Figure 2B (red dashed

trace).

We trained one group of subjects in this FF interference

paradigm at a target location of 270u. We found that target

directions smaller than the training direction consistently display

generalization appropriate for the CW FF (negative) whereas

target directions greater than the training direction display

generalization appropriate for the CCW FF (positive). This is

consistent with the bimodal generalization pattern predicted by

MRL (compare the blue and red traces in Figure 2C: r = 0.92,

F(1,7) = 36.87, p,0.001) and quite different from the essentially

flat pattern predicted by PRL (green trace). Correspondingly, we

found the adaptation levels at the target directions corresponding

to the peaks of the predicted generalization pattern (230u and

+30u, see Figure 2C) to be significantly different from one another

(t11 = 7.26, p,961026) and from zero (t11 = 5.95, p,561025 for

230u, and t11 = 3.89, p,0.002 for +30u). These results provide

direct evidence for MRL by matching the complex pattern of

generalization predicted by it.

In our experiment we balanced the direction of the FF that was

presented before testing generalization, nevertheless, we noticed a

small bias in the generalization function at the training direction

consistent with a bias in adaptation level that we observed during

the training period (see Figure S1 and Text S1). This bias is

compatible with other results showing somewhat faster learning for

a CW FF [8]. In order to eliminate the possibility that this bias or the

target location we chose for training (270u) might have somehow

contributed to the generalization pattern we observed in the data,

we trained a second group of subjects in a version of this experiment

that was designed to eliminate the bias and provide training at

another target location (60u). We eliminated the bias by unbalancing

Figure 1. Two hypotheses for credit assignment during motor adaptation. (a) Illustration of planned (green dashed line) and actual (solid
red line) trajectories for early (left) and late (right) movements during adaptation to a velocity-dependent curl FF (grey arrows). Plan-referenced
learning (PRL) would lead to adaptation associated with the planned motion (green dashed line). In contrast, motion-referenced learning (MRL)
would lead to adaptation associated with the actual motion (solid red line). The green- and red-shaded regions represent the space of motions that
would experience the greatest amount of adaptation under PRL and MRL, respectively. (b) Illustration of the adaptation of velocity-dependent motor
primitives under PRL and MRL for early training. Here each 2-dimensional, Gaussian-shaped motor primitive is represented by a gray circular contour
at its half-s point (s= 0.12 m/s from [12]). The preferred velocities (centers) of these motor primitives are tiled across velocity space as shown. Note
that the planned and actual arm motions (green dashed line and red solid line) are replotted in velocity space here. The interior of the circle
representing each motor primitive is colored with an intensity proportional to the activation induced by the adaptation resulting from the illustrated
trial. Under PRL (left panel) this activation is greatest for motor primitives which neighbor the motion plan in velocity space (green shading), whereas
under MRL this activation is greatest for motor primitives that neighbor the actual motion (red shading).
doi:10.1371/journal.pcbi.1002052.g001

Binding of Learning to Action in Motor Adaptation
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the number of CW versus CCW FF trials in each cycle in this

second group of subjects (see Text S1). We found that the close

match between the pattern of generalization that these subjects

displayed (Figure 2C, grey trace) and the pattern predicted by MRL

persisted under these conditions (r = 0.93, F(1,7) = 42.61, p,0.001).

Correspondingly, the adaptation levels at 230u and +30u were

significantly different from each other (t9 = 5.37, p,361024), and

significantly different from zero (t9 = 3.72, p,0.003 for 230u, and

t9 = 4.38, p,961024 for +30u). Together, these results provide

compelling evidence for MRL as the mechanism for credit

assignment in motor adaptation.

We note that Equations 3 and 4 used for our simulations

incorporate local motor primitives that are functions of the initial

movement direction (h) rather than of the full time series of the

velocity vectors encountered during each trial. This might seem an

inappropriate choice since, as we discussed above, velocity-

dependent motor primitives are thought to underlie the learning

of velocity-dependent dynamics [8,10,12–13,23]. However this

approximation is a good one when movements are approximately

straight, which is essentially the case for the first 400 ms of the

movements considered in our study. This approximation, of

course, breaks down at the end of the movement when the initial

Figure 2. Generalization after exposure to interfering force-fields reveals motion-referenced adaptation. (a) Experiment schematic.
After a baseline period where subjects performed movements in nine different directions, subjects received training for a single target location (the
central one) with alternating blocks of 762 force-field trials in CW (blue) and CCW (orange) FFs as illustrated. After training, generalization of the
force-field compensation was tested along the nine original directions practiced during the baseline period (see Materials and Methods for details).
(b) Credit assignment predictions. If the motor primitives that are adapted during training are centered at the desired movement direction – as
specified by PRL – the exposure to opposite force-fields would lead to opposite generalization patterns for the CW and CCW FFs (orange vs. blue in
the top panel) that would essentially cancel one another leading to a near-zero net generalization pattern (green dashed line). In contrast, if the
motor primitives that are adapted during training are centered at the actual movement directions – as specified by MRL – the exposure to the CW
and CCW force-fields would lead to individual generalization patterns for these FFs that are misaligned (orange vs. blue in the bottom panel). The
sum of these misaligned generalization patterns would result in a bimodal generalization pattern (red dashed line). (c) Experimental results. In two
different experiments (one where subjects were trained at 270u – blue line – and another where subjects where trained at 60u – grey line) the
patterns of generalization obtained appear consistent with motion-referenced learning (red dashed line, r = 0.92 (270u data) and r = 0.93 (60u data))
but inconsistent with plan-referenced learning (green dashed line). The error bars represent standard errors.
doi:10.1371/journal.pcbi.1002052.g002

Binding of Learning to Action in Motor Adaptation
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movement direction no longer describes the velocities experienced.

However, the amplitudes of the velocity vectors during the end-

movement correction are quite low and so the unmodeled spread

of learning to the actual motion experienced in this correction

phase should have relatively little effect since at low velocities,

viscous dynamics have small consequences. This effect can be

visualized in the left panel of Figure 1B which shows that the end-

movement correction which has a velocity vector that points to the

second quadrant would only excite velocity-dependent primitives

near the origin under MRL.

Note that the separation of the peaks in the bimodal

generalization pattern predicted by MRL (red dashed line in

Figure 2C) results from the size of the errors experienced during

training. Consequently, larger force-field perturbations which

induce larger errors would result in greater separation between the

peaks. However, the separation between the peaks (about 60u) is

predicted to be greater than the separation between the average

errors experienced in the two force-fields (about 25u). There are

two reasons for this. The first is that more adaptation occurs on

trials with larger errors than those with smaller errors, skewing the

center of adaptation for each force-field outwardly from the mean

experienced error. The second reason is illustrated in the lower

panel of Figure 2B: When the patterns of generalization for the

positive and negative force-fields are summed, resulting in a

bimodal generalization pattern for MRL, the peaks of this bimodal

generalization pattern (red) are separated by an even greater

distance than the peaks of the positive (orange) and negative (blue)

components because the amount of cancellation between these

components is greater at movement directions corresponding to

smaller rather than larger errors resulting in further outward skew.

Previous work has attempted to measure the generalization

functions (GFs) associated with learning a single FF. MRL predicts

that these GFs will be shifted toward the motion directions

experienced during training. Many of these studies have estimated

GFs from complex datasets using a system identification

framework [10,12–13]. However the implementation of this

framework assumed PRL in these studies, thus preventing a

straightforward interpretation of their results. In one study [24] a

simpler generalization experiment was conducted, in which

subjects were trained with a single FF to a single target location,

after which the resulting GF was measured. Because the actual

motions approached the planned motions late in training, the

shifts predicted by MRL would be subtle. Furthermore, the ability

to detect shifts in the generalization function was hampered by a

coarse sampling of the generalization function (45u). Nevertheless,

careful inspection of these GFs consistently reveals subtle shifts

towards the motions experienced during training as predicted by

MRL. However, it is difficult to be certain whether if the shifts

observed in this study result from MRL rather than innate biases

in generalization functions because only a single FF direction was

studied. Innate biases might stem from biomechanical asymme-

tries or direction-related biases in adaptation. We therefore

performed a pair of single-target, single-FF experiments in order

to compare the shifts in generalization associated with opposite

FFs. The results of these experiments confirm the existence of

subtle but significant shifts in generalization [25]. The magnitudes

and the directions of these shifts are consistent with the MRL

hypothesis [25].

Design of training paradigms inspired by the mechanism
for credit assignment

Insights into the mechanisms for learning in the CNS can

provide a platform for creating training procedures that leverage

these insights to improve the rate of learning – an important goal

for both motor skill training and neurologic rehabilitation. With

our new understanding of how the CNS solves the credit

assignment problem, we looked into the possibility of designing a

novel training paradigm to take advantage of this knowledge. A

key consequence of plan-referenced learning is that this mecha-

nism for credit assignment would result in a match between what is

learned and what is commanded on the next trial if the same

motion plan is repeated from one trial to the next during training –

like when aiming a dart at the bull’s eye repeatedly. In contrast,

motion-referenced learning would result in a mismatch. Motion-

referenced learning, therefore, predicts that the process of training

an accurate movement to a given target location in a novel

dynamic environment would be inefficient if that target were

repeatedly presented at the same location during training (single-

target training, STT) as illustrated in Figure 3. This inefficiency

arises because the motion experienced during training does not

coincide with the motion that is to be learned, resulting in limited

overlap between the motion-referenced learning that occurs and

the learning that is desired.

The aforementioned inefficiency can be ameliorated by a

paradigm which continually changes the locations of the targets

presented during the training period as shown in Figure 3, second

column. In this training paradigm, target directions would be

shifted from one trial to the next so that the actual motion

experienced repeatedly lines up with the motion to be learned. For

the CW FF depicted in Figure 3, this corresponds to left-shifted

training (LST). Initial target locations are placed with large

leftward shifts with respect to the desired learning direction – in

anticipation of the large rightward initial errors with respect to the

target location. These leftward target shifts are then gradually

reduced as learning proceeds and errors become smaller, in order

to maintain alignment between the actual motion experienced and

the movement to be learned.

The MRL hypothesis predicts that the LST training paradigm

should produce faster learning than the standard STT paradigm

used in previous motor adaptation studies in which a single target

direction was trained [24,26]. We tested this idea by comparing

the learning curves associated with these training paradigms for

adaptation to a clockwise viscous curl force-field. A different group

of subjects was studied on each paradigm to avoid the effects of

savings [27–29]. As a control for a possible increase in attention

associated with changing target locations in the LST paradigm, we

tested a third group of subjects with a right-shifted training (RST)

paradigm. Here targets were shifted to the right, mirroring the

target positions in the LST paradigm. The MRL hypothesis would

predict slower learning for RST than STT or LST because right-

shifted targets in a rightward pushing force-field would result in

reaching movements even farther away from the desired learning

direction than those expected in STT (see Figure 3, third column).

In contrast the PRL hypothesis would predict fastest learning for

the STT paradigm and identical learning rates for the LST and

RST paradigms because the STT paradigm creates perfect

alignment between the desired learning and the planned motion

whereas the LST and RST paradigms create misalignments

between the desired learning direction and planned motion that

are opposite in direction but equal in magnitude. We used a FF

magnitude of 22.5 N/(m/s) for these experiments – 2.5 times the

magnitude used in Experiment 1 – in order to magnify the various

misalignments discussed above. In all three paradigms, we

measured learning at the desired learning direction (90u) by

pseudo-randomly interspersing 90u error-clamp trials among the

training trials with an average frequency of 20%.

We first collected data from a subset of subjects in the STT

paradigm in order to estimate the evolution of directional errors

Binding of Learning to Action in Motor Adaptation
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across trials. We used this pattern of directional errors to

determine the target shifts that would produce good alignment

between experienced motion and desired learning direction for the

LST paradigm (see Materials and Methods). As shown in

Figure 4A, we obtained a good match between motion direction

and the desired learning direction (90u) throughout the training

period for the LST paradigm, so that misalignment between these

directions was dramatically reduced compared to the STT

paradigm. Correspondingly, the misalignment between motion

direction and the desired learning direction was about twice as

great for RST than for STT.

The plots shown in Figure 4B illustrate how the adaptation

patterns predicted by MRL and PRL would evolve as training

proceeds for the training paradigms discussed above. Note that

adaptation spreads across a limited range of movement directions

consistent with local generalization [24–26], but the alignment

between adaptation and the desired learning direction (90u) varies

from one paradigm to another (STT vs. LST vs. RST), and from

one credit assignment hypothesis to another (PRL vs. MRL). The

darkened dots which highlight a slice through these plots at 90u
illustrate the amount of adaptation associated with the desired

learning direction.

Figure 3. Illustration of different training paradigms under the two credit assignment hypotheses. Single-target training (STT): a single
target location is presented during the training period. The PRL hypothesis predicts alignment of credit assignment across trials for STT, whereas MRL
predicts misalignment. Left-shifted training (LST): targets are initially presented leftward of the desired learning direction and are brought closer to it
as training progresses so that the actual motion matches the desired learning direction throughout the training period. The MRL hypothesis predicts
alignment of credit assignment across trials for LST, whereas PRL predicts misalignment. Correspondingly, PRL predicts that STT will yield the greatest
learning whereas MRL predicts that LST will yield the greatest learning. Right-shifted training (RST): the training targets are presented in a sequence
that mirrors LST. Both the PRL and MRL hypotheses predict misalignment for RST. However, PRL predicts an identical amount of misalignment for LST
and RST, whereas MRL predicts much greater misalignment for RST than LST. Note that CW FF training is illustrated in all panels.
doi:10.1371/journal.pcbi.1002052.g003

Binding of Learning to Action in Motor Adaptation
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Figure 4. A novel training paradigm improves learning rates. (a) Characterization of the STT, LST and RST training paradigms. Target
directions (dashed) and actual movement directions (solid) during the training period are plotted against trial number. Note that the LST paradigm
achieves actual movement directions that are much more closely aligned with 90u than the other two paradigms. (b) Simulations of motor
adaptation based on the PRL and MRL hypotheses for the three training paradigms. The darkened dots at 90u indicate the desired learning direction
and the coloring indicates the amount of adaptation predicted. Note that PRL predicts optimal alignment with STT while MRL predicts optimal
alignment with LST. (c) and (d) Predicted learning at 90u for the PRL and MRL hypotheses. Note that these traces represent slices at 90u through the
3-D plots in panel (b), corresponding to the darkened dots. (e) Experimental results for all three training paradigms. Note that over the first 10 trials,
the LST paradigm produces the highest adaptation levels, and RST the lowest, as predicted by MRL. The error bars represent standard errors.
doi:10.1371/journal.pcbi.1002052.g004

Binding of Learning to Action in Motor Adaptation
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These simulations show that the PRL hypothesis predicts that in

the STT paradigm, credit assignment will be perfectly aligned with

the desired learning direction (90u) throughout training. PRL also

predicts an equal but opposite pattern of misalignments between

credit assignment and desired learning for the LST and RST

paradigms (Figure 4B). These misalignments are initially large but

become attenuated during the course of the training because

planned and actual motions converge. This results in simulated

learning rates that are highest for the STT paradigm and lower,

but identical, for the LST and RST paradigms under PRL

(Figure 4B–C). In contrast, the simulations for the MRL

hypothesis show perfect alignment between the credit assignment

and the desired learning direction for the LST paradigm. For

STT, the MRL-based simulations show a gross misalignment

between the credit assignment and the training direction. For

RST, the misalignment is even greater (Figure 4B). This results in

learning rates that are predicted to be greatest for the LST

paradigm, followed by the STT and RST paradigms, respectively

(Figure 4B, D). As with the PRL simulations, the misalignments

become attenuated as training proceeds.

Left-shifted training improves learning rates
Our experimental data show a clear difference between the

learning curves obtained for the three training paradigms in the

early stages of training (first three EC trials; one-way ANOVA,

F(2,87) = 14.57 , p,461026). The LST group displays the highest

adaptation levels and the RST group displays the lowest

adaptation levels as shown in Figure 4E. In particular, the LST

group displayed an 86% increase in adaptation levels on the first

EC trial and a 52% increase over the first three EC trials, whereas

the RST group displayed a 59% decrease in adaptation levels

compared to STT over the first three EC trials in the training

period. Post-hoc comparisons between groups over the first three

EC trials indicate that the LST group showed significantly greater

learning than the RST group (t58 = 25.05, p,361026). This result

is in keeping with the MRL prediction, but defies the PRL

prediction of equal learning rates for these groups. Our data also

shows that the LST group displays significantly greater learning

than the STT group (t58 = 22.17, p,0.02), in keeping with the

MRL prediction, but opposing the PRL prediction of a greater

learning rate for STT. We also find that the STT group displays

significantly greater learning than the RST group (t58 = 23.90,

p,261024), corroborating the group order predicted by the MRL

hypothesis. These findings provide additional support for motion-

referenced learning and demonstrate that a training paradigm that

is designed to leverage knowledge about the mechanism for credit

assignment can improve learning rates compared to standard

training procedures.

Inspection of the learning curve for the RST group reveals that

the adaptation for the first EC trial after exposure to the FF

actually dips a bit below zero. MRL predicts reduced learning for

this group but would not predict opposite learning, consistent with

the finding that the adaption level at this point, although

nominally less than zero, is not significantly so (t27 = 22.01,

p.0.05). Additionally, we note that the third-to-last error-clamp

trial in the baseline (which is illustrated along with the full learning

curve in Figure S2) displays an adaptation coefficient which dips

below the average baseline and falls within the error bars of the

first point in the RST learning curve, suggesting that the latter is

not entirely outside the range of the data. Despite the differences in

learning rate predicted by MRL-based credit assignment, angular

errors should decrease as the training period proceeds. This results

in reduced misalignment between prescribed and actual motion

directions for the STT and RST groups, leading to a predicted

convergence of the adaptation levels for all three groups (see

Figure S2 and Text S1). Our data bears out this prediction: despite

significant differences between groups early in the training period,

we find no significant difference between groups late in the

training period (last three EC trials; one-way ANOVA, F(2,87)

= 0.23, p.0.05). In addition, although we have shown that the

MRL-based training paradigm (LST) increases the rate of

adaptation, our results do not provide any information on the

long-term retention for this adaptation. Further studies would be

required to assess if the retention of the motor memories acquired

using an MRL-based training paradigm is greater than that of

memories acquired using single-target training paradigms.

Discussion

Elucidating how associations are modified during the process of

learning is a key step towards understanding the mechanisms

underlying behavioral plasticity. Our findings demonstrate that the

effect of the adaptation arising from an error sensed on a previous

movement is greatest when the plan for the current motion

matches the motion experienced on the previous trial. This

indicates that, in the motor adaptation task we studied, the learned

association binds the adaptive change in motor output to the

actual motion experienced. We first showed that this motion-

referenced learning hypothesis is able to explain the complex

pattern of generalization that emerges when subjects are exposed

to multiple blocks of interfering force-fields. We then followed up

this result by showing that a manipulation of the pattern of target

locations that aligned the actual motion experienced during

training resulted in significantly improved learning rates, whereas

a manipulation which increased misalignment resulted in

significantly reduced learning rates. Together, these findings

provide compelling evidence that credit assignment during motor

adaptation is referenced to actual motions experienced rather than

planned motions, and that this knowledge can be leveraged to

improve the efficiency of motor skill training. The most general

view of credit assignment would be that error-dependent motor

adaptation might be composed of both motion-referenced and

plan-referenced components. Although previous work overwhelm-

ingly assumed pure plan-referenced learning [4,9–16], our results

indicate that motor adaptation is primarily composed of motion-

referenced learning - in fact, our results are consistent with motor

adaptation being fully motion-referenced. However, we cannot

rule out a small contribution from plan-referenced learning.

Consequently, further work will be needed to more precisely

determine the relative contributions of each mechanism and to

determine whether situations exist in which the levels of plan-

referenced learning are substantial.

Previous assumptions about credit assignment:
plan-referenced learning

Despite the lack of direct evidence in support of it, plan-

referenced learning has been widely assumed in the motor

adaptation literature, particularly in modeling work in which a

credit assignment scheme must be chosen, even if implicitly so, in

order for a learning rule to be defined [4,9–16]. Interestingly,

Wolpert and Kawato (1998) assumed a hybrid credit assignment

scheme: PRL for inverse-model learning and MRL for forward-

model learning [4]. In principle, PRL is attractive because

adaptation referenced to the previously planned motion would

have the greatest effect on the same movement if it were repeated.

In fact, Donchin et al. (2003), which models motor adaptation with

a PRL learning rule, contains what the authors maintain is a proof

that PRL-based learning is optimal in their supplementary
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materials [10]. However inspection of this proof reveals that its

derivation is based on the assumption that motor adaptation acts

to maximize the benefit that would be accrued if the same

movement were repeated. In other words, this proof investigated

what the optimal credit assignment procedure should be for STT

and found that PRL maximizes the benefit of motor adaptation for

STT. Since PRL is optimal for STT, MRL must be suboptimal for

STT (as our simulations predict; see Figure 4B–D). This suggests

that some training procedure other than STT would be optimal

for MRL, and our data show that, for a clockwise FF, left-shifted

training (LST) is indeed more effective than STT. Effectively,

Donchin et al. (2003) assumed that a credit assignment procedure

optimized for performance on STT would be used by the nervous

system. Here we show that this is not the case. Instead, the error-

dependent learning that occurs on a particular trial is referenced to

the actual motion experienced on that trial rather than the

planned motion, and as a result, STT produces slower learning

than another training procedure (LST). Thus the human motor

system does not adapt with the mechanism that would have the

greatest effect on the same movement if it were repeated. Why

would this be?

Plan-referenced learning can lead to instability
The problem with PRL is that the dynamics experienced are

generally functions of actual rather than planned motion. For

example, the dynamics experienced from moving a small dense

mass would be proportional to the actual rather than the planned

acceleration of that mass. Note that the dynamics that subjects

experienced in our experiments were also dependent on the actual

motion state, i.e., the force was based on the velocity of the actual

rather than the planned motion. The key consequence of this state

dependence is that since the force pattern experienced during a

particular motion does not reflect the planned motion (because it

reflects the actual motion), the force pattern that would have been

experienced if the planned motion were achieved is unknown.

This means that, in principle, the error between the current motor

output and the environmental dynamics acting on the planned

motion adaptation is also unknown. Because this error is

unknown, no learning rule for adaptation referenced to the

planned motion can be guaranteed to reduce it. If, however, errors

are small enough so that the dynamics experienced in actual and

desired trajectories would be very similar to each other, plan-

referenced learning schemes could converge because these

schemes essentially assume equality between these dynamics. On

the other hand, if errors are sufficiently large, using such a credit

assignment scheme might result in unstable learning which does

not converge on the desired motor output. Clearly, a credit

assignment scheme that could lead to instability would be a

liability for the CNS.

The consequences of motion-referenced learning
The state dependence of physical dynamics insures that the

force pattern experienced corresponds to the actual motion. Thus

the error between the motor system’s current estimate of the

dynamics associated with the actual motion and the environmental

dynamics associated with this motion can be determined. Because

the motor output error corresponding to the actual motion can be

determined, the motor output associated with it can be modified to

reduce this error reliably, allowing for stable convergence of the

motor output on the true environmental dynamics. This

corresponds to motion-referenced learning. Interestingly, this

reasoning is reflected in learning rules with mathematically

provable stability that are widely used for the estimation of

environmental dynamics in robotics and machine learning

[17–21,30]. These learning rules must be motion-referenced in

order for stability to be assured.

One unfortunate consequence of motion-referenced learning is

the suboptimal rate of motor adaptation observed if an individual

were to repeatedly invoke the same motor plan when attempting

to learn a novel task [30]. We demonstrate this suboptimality in

the single-target training (STT) paradigm in Experiment 2

(Figure 4). Since adaptation proceeds according to the actual

motion (rather than the planned motion), the STT paradigm leads

to adaptation that is not aligned with the desired learning direction

so that adaptation proceeds at a slower rate than if the actual

motion is aligned across trials as in the LST paradigm. Our finding

of motion-referenced credit assignment during motor adaptation

is, therefore, compatible with the idea that the CNS favors a stable

learning algorithm (MRL) over one that maximizes the effect of

learning if the same motion plan is repeated at the expense of

stability (PRL).

The relationship between the magnitude of error and the
amount of adaptation

Recent studies have provided evidence for reduced learning

rates for large errors [31–33]. One of these studies proposed the

rationale that this occurs because the motor system sees large

errors as less relevant than small errors [31]. However, note that in

these studies the adaptation was measured not along the motion

direction experienced during the training trials, but along the

direction of the previously planned movement – equivalent to

STT. Therefore the decreased learning rates associated with large

errors observed in these studies may be, at least in part, due to

misalignment in motion-referenced credit assignment, because

larger errors lead to increased misalignment between desired and

actual motion during adaptation. This results in a corresponding

misalignment between credit assignment and the desired learning,

as illustrated in Figures 3 and 4. Further work will be required to

determine the extent to which the apparent reduction in learning

rates that has been observed with large errors reflects this

misalignment versus a true reduction in the ratio between the

amount of adaptation and the size of the error.

The relationship between use-dependent learning and
motion-referenced learning

A recent study by Diedrichsen et al. [34], provides evidence for

the occurrence of use-dependent learning alongside error-based

learning in reaching arm movements. This use-dependent learning

describes a mechanism by which the trajectory of motion in task-

irrelevant dimensions is gradually adapted to resemble the motion

experienced on preceding trials. Therefore, use-dependent learn-

ing resembles motion-referenced learning in the respect that they

both depend on the actual motion experienced. However, as noted

by Diedrichsen et al. [34], use-dependent learning is oppositely

directed from motion-referenced error-dependent learning when a

perturbing force is experienced. This is because use-dependent

learning would act to increase the extent to which future motions

resemble the perturbed movement whereas (motion-referenced)

error-dependent learning acts to oppose the effect of this force in

order to reduce the extent to which future motions resemble the

perturbed movement. A second key difference is that use-

dependent learning is readily observed along task-irrelevant

dimensions, but is either greatly reduced or entirely absent along

task-relevant dimensions [34], whereas the motion-referenced

learning that we demonstrate in the current study acts primarily

along task-relevant dimensions in which error can be readily

defined.
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Taken together, the identification of motion-referenced learning

and use-dependent learning expand what we know about the role

of sensory information in motor adaptation, in particular sensory

information about motion. In addition to the role that this sensory

input plays in computing motor errors, the motion-referenced

learning and use-dependent learning mechanisms respectively

explain how sensed motion is specifically associated with error-

dependent changes in motor output to reduce the difference

between plan and action, and how sensed motion can be used to

adapt which motions are planned to begin with.

Sensed versus predicted motion and Bayesian estimation
Information about actual motion states is required for motion-

referenced learning. This information can be acquired from

delayed sensory feedback or estimated in real time through the use

of a forward model, relying on an efference copy of the motor

command and past sensory information [4,35–39]. However, since

sensory feedback signals and efference copy are noisy, actual

motion must be estimated from imperfect information. Several

studies have shown that the motor system integrates prior

expectations about motion with noisy sensory feedback in order

to estimate actual motion in accordance with Bayes Law [40–42].

The influence of prior expectations should increase with the level

of sensory feedback noise, and so Bayesian estimation should have

greater effects on motion estimation and thus on motion-

referenced adaptation when noise levels are high.

Motion-referenced learning in the adaptation to
visuomotor transformations

What is the role of motion-referenced learning in the adaptation

to a visuomotor transformation, where there is a dissociation

between the actual motion of the hand and the actual motion of

the cursor? A definitive answer to this question will require further

experimental work since the present study looks at the adaptation

to new physical dynamics rather than visuomotor transformations.

A priori, it would seem that for visuomotor transformations,

learning should be associated with the actual motion of the

controlled object (cursor) rather than with the actual motion of the

body part that is exerting this control. If motor learning were

associated with the actual body motion, it would be difficult to see

how large visuomotor rotations could be learned at all, because

even late in adaptation, an arbitrarily large mismatch would exist

between the planned motion (e.g., the motion of the cursor to its

target position) and the actual hand motion. However, previous

studies have shown that visuomotor rotations that are wider than

the half-width of the generalization function for visuomotor

rotation learning (about 30u) are readily learned [43–44]. A second

point is that since (a) the motor planning during visuomotor

transformation learning corresponds to the planned motion of the

cursor (rather than the hand), and (b) the relevant motor errors

involve the relationship between actual and planned or actual and

predicted cursor movements (rather than hand movements)

[43,45], it would seem logical that the learning resulting from

errors in this task would be associated with the cursor as well.

Implications of motion-referenced learning for savings
Linear state-space models with multiple time courses of

adaptation [28,46] have been invoked as an explanation of savings

– the phenomenon that describes the increase in learning rate

when an adaption is relearned compared to the initial learning.

However, even when complete behavioral washout of the learning

is achieved, there appears to be some capacity for savings [29].

This effect cannot be captured by the aforementioned linear

models, leading to the suggestion that significant nonlinearities

arise even in simple motor adaptation experiments [29]. However,

motion-referenced learning provides another possible explanation:

Savings after washout may be due to a mismatch between the

actual movement directions experienced in the initial learning and

the washout trials rather than nonlinearities in the learning

process. Such a mismatch would result in incomplete washout in

the actual movement directions experienced during initial learning

– similar to the residual direction-dependent adaptation that we

demonstrate in Experiment 1. Further work will be necessary to

determine the extent to which this is the case, but if savings after

washout resulted in part from a directional mismatch during

washout, then the prediction would be that the amount of savings

would be reduced if the washout trials spanned the movement

directions experienced early in training, rather than being

confined to a single target direction as in [29].

The relationship between cerebellar physiology and
motion-referenced learning

Studies with healthy subjects [47–48] and subjects with

congenital and acquired cerebellar deficits [49–51] have provided

evidence that the cerebellum participates in motor adaptation. It

has been proposed that the simple spike firing of Purkinje cells in

cerebellar cortex contributes to motor output and that error signals

carried by climbing fibers modify the strength of the parallel fiber

synapses onto Purkinje cells [11,48,52–53]. This plasticity alters

the effect that the information carried in parallel fibers has on the

output of Purkinje cells, and thus on motor output [52–53]. Since

parallel fibers carry sensory feedback (amongst other) signals

[38,54–55], this plasticity alters the association between sensory

feedback about the actual motion and future motor output and

may represent a neural mechanism for motion-referenced

learning.

Using knowledge of credit assignment during motor
adaptation to improve neurologic rehabilitation

A common technique in neurorehabilitation is the use of partial

assistance, where a therapist or device supplements movement in

order to allow patients to better approximate a desired motion

[56–58]. Since partial assistance reduces the difference between

the actual and desired motions, our findings would suggest that it

improves the alignment between the adaptation that is learned and

the desired motion that is being trained. This would improve the

efficiency of the training procedure. However, partial assistance

would also reduce the magnitude of the motor errors that drive

learning. These opposing effects may decrease the overall benefit

of this procedure.

Interestingly, a method known as error augmentation that can

be thought of as essentially the opposite of partial assistance has

recently been proposed as a means to improve the rate of motor

learning during rehabilitation. In error augmentation, motor

errors are increased beyond normal levels by transiently exposing

patients to perturbations that are stronger than those that are to be

learned [59–61]. The rationale behind this technique is that since

error signals drive motor learning, increasing the size of this signal

may improve the rate of learning. Our results indicate that, like

partial assistance, error augmentation will result in two opposing

effects. Whereas, partial assistance increases the alignment

between the motion-referenced learning which will occur and

the desired learning but reduces the magnitude of the error signal

driving adaptation, error augmentation decreases the alignment

between the motion-referenced learning which will occur and the

desired learning but increases the magnitude of the error signal
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driving adaptation. Thus, unlike partial assistance, error augmen-

tation may provide a robust error signal for learning, but could in

fact lead to decreased learning rates by magnifying the

misalignment between the desired motion to be learned and the

learned motion in the experienced trials.

The problem of opposing effects resulting from both of these

training procedures could potentially be solved by the implemen-

tation of a training procedure analogous to the LST training we

studied which aligned actual and desired movements, but with

stronger-than-normal perturbations. Note that the design and

implementation of a training procedure that aligns actual and

desired motions is somewhat challenging. Even for the simple

planar point-to-point movements we studied in Experiment 2, we

first ran another group of subjects to determine the magnitude of

the target shifts employed in each trial of our LST paradigm. For

training more complex natural motions the challenge will be even

greater. With higher-dimensional complex movements, simple

manipulations like the altered target position we used in our LST

paradigm might not be nearly as effective as a more complex

manipulation like the imitation of the entire time course of an

altered motion in providing good alignment between actual and

desired movement. However, if a training procedure can be

created that improves the alignment of the actual motions

experienced with the desired motion, even when motor errors

are large, such a paradigm may be capable of simultaneously

benefitting from increased error-dependent learning and improved

transfer of adaptation to the desired motion – the best of both

worlds from error augmentation and partial assistance.

The improvement afforded by the LST paradigm or derivatives

of it might even be more substantial if used in patients undergoing

neurorehabilitation. For example, chronic stroke patients are able

to adapt to dynamic environments, but display slower learning

rates and higher residual errors than healthy controls [62–63].

Interestingly, our modeling efforts suggest that MRL-based

training would have an even greater effect on subjects with these

types of impairments, with the advantage of LST over STT

predicted to be greater in magnitude and longer lasting as shown

in Figure S2, because the higher motor errors these subjects

normally experience lead to greater-than-normal misalignment

under STT (see Text S1). Further studies would be required to

determine whether an MRL-based training paradigm could lead

to clinically significant improvements in neurologically impaired

subjects.

Materials and Methods

Ethics statement
All experimental participants were naı̈ve to the experimental

purpose, provided informed consent and were compensated for

their participation. All the experimental protocols were reviewed

and approved by the Harvard University Committee on the Use of

Human Subjects in Research (CUHS).

General task description
Subjects performed 10 cm reaching movements in the hori-

zontal plane with their dominant hands while grasping the handle

of a 2-link robotic manipulandum. Subjects were seated with their

forearm leveled with the robotic manipulandum and supported by

a sling. The subjects were presented with 1 cm-diameter circular

targets displayed on a vertically oriented LCD monitor. The

position of the subject’s hand was represented on the LCD

monitor by a 3 mm cursor. Position, velocity and force at the

handle were measured with sensors installed in the manipulandum

at a sampling rate of 200 Hz. The subjects were instructed to

produce fast, continuous movements, and were provided visual

feedback throughout the movement. Feedback about the move-

ment time achieved was presented at the end of each movement.

Ideal completion times (500650 ms) were signaled by an

animation of the target while a chirp sound was played. For

movement completion times that were below or above the ideal

range the targets were colored blue and red, respectively. The

mean peak speed for the movements in all experiments was

0.30260.017 m/s. In certain movements, the subjects’ trajectories

were perturbed by velocity-dependent dynamics. This was

implemented by a viscous curl force-field at the handle produced

by the motors of the manipulandum, Equation 1.

~FF (~vv)~
0 B

{B 0

� �
vx

vy

� �
ð1Þ

In this equation the constant B represents the viscosity associated with

this force-field and has units of N/(m/s). Note that the direction of the

force is always orthogonal to the direction of the velocity vector. We

assessed the level of adaptation using methods described elsewhere

[28]. Briefly, we measured the force pattern that subjects produced

when their lateral errors were held to near zero values in an error-

clamp [28,64–65]. We then regressed the measured force pattern

onto the ideal force required to fully compensate for the force-field.

The slope of this regression was used as the adaptation coefficient that

characterized the level of learning. For a force profile that is driven by

adaptation to a velocity-dependent force-field, our adaptation

coefficient represents the size of the bell-shaped velocity-dependent

component of the measured force profile. This velocity-dependent

component of the measured force profile specifically corresponds to

the force component targeted to counteract the velocity-dependent

force-field perturbation.

Experiment 1: Generalization after force-field interference
training

Twenty-eight individuals with no known neurologic impairment

(mean age = 19.961.8 years; 15 male) were recruited for this

experiment. The first twelve subjects practiced the reaching task in

9 different directions (h = 180u, 210u, 240u, 245u, 270u, 285u, 300u,
330u, 360u) for 254 movements (baseline), and were then trained to

compensate velocity-dependent force-fields in a particular move-

ment direction (270u) for 672 movements (training) with the

direction of the FFs alternating every 762 movements between

CW (B = 9 N/(m/s)) and CCW (B = 29 N/(m/s)). Thus the ratio

of CW to CCW FF trials was 7:7. After blocks of 168 training (FF)

trials, the pattern of generalization was measured in each direction

during a testing block of 40 consecutive EC trials spread across

these directions. The direction (CW or CCW) of the last FF

presented before generalization testing was balanced across the

four training blocks.

A second group of subjects performed the same experiment but

with different baseline/testing directions (h = 230u, 0u, 30u, 45u,
60u, 75u, 90u, 120u, 150u) and training direction (60u). In this

experiment the ratio of CW to CCW FF trials was 6:8 for the first

six subjects and 5:9 for the subsequent ten subjects. The data from

the subjects trained at 270u and that from the last ten subjects

trained at 60u (CW to CCW FF trial ratio of 5:9) are shown in

Figure 2C. The CW to CCW FF ratio was adjusted to eliminate

the bias towards learning the CW FF we observed in the first 12

subjects – details are provided in Text S1. The data for the

subjects with the 6:8 CW to CCW FF trial ratio are compared to

the other datasets in Figure S1.
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Experiment 2: Comparison of training paradigms
Ninety individuals with no known neurologic impairment

(mean age = 22.065.9 years; 44 male) were recruited for this

experiment. One group of subjects (N = 30) were assigned to the

single-target training (STT) paradigm. Here the subjects per-

formed 75 movements in a single direction (90u) to practice the

reaching task (baseline) and then were exposed to a CW velocity-

dependent force-field (CW; B = 22.5 N/(m/s)) for 125 reaching

movements to the same direction (training). The learning level

during baseline and training was assessed with randomly

interspersed EC movements (p(EC) = 0.2). The mean trial history

of angular errors 300 ms into the movement during force-field

trials was obtained for this group of subjects and used to design the

left-shifted (LST) and right-shifted (RST) training paradigms.

In the LST paradigm, the directions of the reaching targets

were adjusted by adding a smoothed fit of the mean trial history of

angular errors from the first seventeen subjects of the STT

experiment to the desired learning direction on the corresponding

trial (90u). We did this so that when subjects reached to these

shifted targets their actual motion would be expected to line up

with the desired learning direction if the directional error on that

trial was similar to that observed in the STT group as illustrated in

Figure 3. On the other hand, in the RST training paradigm we

subtracted this trial history of angular errors from the STT

experiment to the desired learning direction (90u). Therefore these

target locations mirrored the LST target locations across 90u. We

did this so that when subjects reached to these shifted targets their

actual direction of motion would be deviated twice as much from

the desired learning direction (90u) as in the STT experiment. In

the LST and RST paradigms subjects (30 on each group) also

performed 75 baseline movements and then performed 125

training movements using the same CW velocity-dependent FF

that was learned by the STT paradigm group. The learning level

during baseline and training was assessed by measuring the lateral

force profiles produced during randomly interspersed EC trials

(p(EC) = 0.2) directed toward the desired learning direction (90u).
We simulated the adaptation process for the STT, LST, and

RST training paradigms for the PRL and MRL credit assignment

schemes using the model equations and parameters described

below and in Text S1. However, in this case, since the experiments

and simulations were not aimed at assessing generalization, error

in the simulations was defined as the difference between the

desired adaptation in the target direction and the actual

adaptation in that direction.

Modeling and simulation of credit assignment
mechanisms

We simulated the adaptation process predicted by PRL and

MRL for both experiments. We used linear state-space models

[28] with local motor primitives to model the adaptation and its

generalization (see Text S1 for details). These are discrete (trial-

dependent) error driven models, where the error is calculated as

the angular difference between the planned movement direction

and the actual movement direction, Equation 2.

e(n)~hplanned (n){hactual(n) ð2Þ

In the learning rules presented in Equations 3 and 4, the

adaptation, x, for given movement direction, h (h can take on

values encompassing the entire movement space), in a given trial,

n + 1, is the sum of the previous adaptation level for the same

movement direction weighted by a retention coefficient, A, and the

learning occurring in the current trial which is given by the

product of the error in the current trial and a local motor

primitive, B. For the PRL model (Equation 3), this local motor

primitive, B, is centered at the planned movement direction, planned,

implying that after a given trial, the maximum adaptation in the

entire movement space occurs at the planned movement direction.

x(nz1,h)~A:x(n,h)zB(h{hplanned (n)):e(n) ð3Þ

Alternatively for the MRL model (Equation 4), the local motor

primitive is centered at the actual movement direction, actual, which

implies that after a given trial, the maximum adaptation occurs

along the actual movement direction.

x(nz1,h)~A:x(n,h)zB(h{hactual(n)):e(n) ð4Þ

Data inclusion criteria
In our data analysis a few grossly irregular trials were excluded.

This included movements that were extremely fast (peak velocity

.0.55 m/s) or extremely slow (peak velocity ,0.2 m/s), as well as

trials with extremely fast (,75 ms) or extremely slow (.2.5 sec)

reaction times. This insured that subjects did not initiate

movements too quickly, without correctly identifying the location

of the target, or too late, indicating that they might have not been

attending to the task. For Experiment 1, application of these two

criteria resulted in the inclusion of 98.2% of the trials in the 270u
group, 96.8% of the trials in the first 60u group (6:8 CW to CCW

FF trial ratio), and 94.9% of the trials in the second 60us group (5:9

CW to CCW FF trial ratio). For Experiment 2, 94.7% of the trials

in the STT group, 95.2% of the trials in the STT group, and

93.4% of the trials in the RST group were included.

Statistical analyses
In order to compare the predicted and experimentally observed

generalization patterns in Experiment 1, we computed the

correlation coefficient between them as well as the p value and

F-statistic associated with the slope of the corresponding linear

regression. We assessed the significance of the difference in the

adaptation between the peaks of the generalization patterns using

one-sided paired t-tests. In Experiment 2, differences between

learning rates for the three training paradigms (STT, LST, and

RST) were assessed with one-way ANOVAs both early (first 3 EC

trials) and late (last 3 EC trials) in training. When significant

differences arose, post-hoc comparisons were performed using

one-sided t-tests.

Supporting Information

Figure S1 Results of FF interference generalization experiments.

(a) Generalization pattern for force-field interference experiment

training at 270u (290u). Notice that the adaptation is biased

towards the CW FF (negative adaptation). This is apparent at the

training direction (black circle). (b) Evolution of adaptation during

replication experiment, training at 60u and using a CW to CCW

FF trial ratio of 6:8. Notice that the mean adaptation remains

consistently biased towards the CW FF (black trace and black

diamond for overall mean adaptation). (c) Evolution of adaptation

during replication experiment, training at 60u and using a CW to

CCW FF trial ratio of 5:9. Notice that here the mean adaptation is

not biased toward the CW or CCW FF (black trace and black

Binding of Learning to Action in Motor Adaptation
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diamond for overall mean adaptation). (d) Generalization pattern

for the interference experiments with training at 60u. Notice that

although the adaptation is biased towards the CW FF (negative

adaptation) for a 6:8 CW:CCW FF trial ratio (light grey trace), this

bias is removed when the ratio is modified to 5:9 (dark grey trace).

All generalization patterns are consistent with the prediction of the

MRL hypothesis (r.0.7 in all cases). The error bars represent

standard errors.

(EPS)

Figure S2 Comparison of Different Training Paradigms. (a)

Simulated learning curves for STT, LST and RST paradigms

according to the MRL hypothesis during extended training –

similar to 4D. (b) Experimental results showing the extended

learning curves for the STT, LST and RST training paradigms. (c)

Simulated learning curves for chronic stroke patients with reduced

learning rates and higher residual errors (based on parameters

from [62–63]) trained with the STT, LST and RST paradigms

according to the MRL model. The error bars represent standard

errors.

(EPS)

Text S1 Supporting Information. Contains an example of credit

assignment for error-based learning, further details on the

modeling and simulation of credit assignment for the different

experiments, an explanation of the adjustment of force-field trial

ratios in the force-field interference experiments, a discussion of

the extended learning curves for the experiments comparing

different training paradigms, simulations of learning for stroke

patients according to these paradigms, and a review of previously

published models with motion-referenced learning implementa-

tions.

(DOC)
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