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Physics, University of Tübingen, Tübingen, Germany, 3 Max Planck Institute for Biological Cybernetics, Computational Vision and Neuroscience Group, Tübingen,
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Abstract

Several studies have reported optimal population decoding of sensory responses in two-alternative visual discrimination
tasks. Such decoding involves integrating noisy neural responses into a more reliable representation of the likelihood that
the stimuli under consideration evoked the observed responses. Importantly, an ideal observer must be able to evaluate
likelihood with high precision and only consider the likelihood of the two relevant stimuli involved in the discrimination
task. We report a new perceptual bias suggesting that observers read out the likelihood representation with remarkably low
precision when discriminating grating spatial frequencies. Using spectrally filtered noise, we induced an asymmetry in the
likelihood function of spatial frequency. This manipulation mainly affects the likelihood of spatial frequencies that are
irrelevant to the task at hand. Nevertheless, we find a significant shift in perceived grating frequency, indicating that
observers evaluate likelihoods of a broad range of irrelevant frequencies and discard prior knowledge of stimulus
alternatives when performing two-alternative discrimination.
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Introduction

Perceptual decisions in a wide range of visual tasks ultimately

rely on information encoded in neural responses in primary visual

cortex (V1). However, this information may not be readily

available to higher levels of the visual system because it is

distributed across entire populations of neurons. Moreover, each

neuron’s reliability is limited by intrinsic response variability and

its relevance strongly depends on the perceptual task in which the

organism is engaged. To form accurate perceptual judgements,

the brain thus needs to pool sensory responses efficiently,

decoding the population response into a reliable decision

variable.

A wide range of psychophysical and physiological studies have

investigated population decoding efficiency in simple visual tasks

such as two-alternative detection and discrimination [1]. Results

are not unambiguous: some studies suggest that the visual system

uses a flexible precision pooling scheme in which the contribution

of sensory responses to perceptual decisions depends on their

reliability and relevance to the task at hand [2–7]. However, other

studies [8–11] do not report such optimal decoding but rather

suggest a crude, unselective pooling scheme in which the decision

pool includes sensitive as well as many insensitive neurons. It is not

clear why results differ across studies, which illustrates that neural

decision making is, as yet, not fully understood.

A crucial issue concerns the neural implementation of optimal

population decoding. Formally, optimal decoding requires to

evaluate neural responses probabilistically by computing the (log)

likelihood function. This function captures the likelihood that

specific stimuli gave rise to the observed population response.

Theoretical work has shown that, under certain conditions, the

necessary part of the log likelihood function can be obtained

through simple linear combination of neural responses [12,13].

However, computing the likelihood function only solves part of the

decoding problem. Subsequently, the likelihood function has to be

read out and linked to a decision variable [1]. In two-alternative

discrimination tasks, only two stimulus alternatives need to be

considered. An optimal decoder aiming to maximize accuracy

therefore calculates a ratio of likelihoods by reading out the

likelihood function precisely at two specific locations that

correspond to the two possible stimulus alternatives. Likewise, in

a detection task in which the quantity of the stimulus to be

detected is known, such a decoder only considers the likelihood of

the relevant stimulus quantity being present or absent. Formally,

retrieving the likelihoods of two discrete stimulus values corre-

sponds to integrating the likelihood function with appropriately

placed and infinitely narrow read-out functions. While the use of a

likelihood ratio decision variable has been demonstrated in various

perceptual tasks [12,14–16], it remains unclear to what extent the

likelihood ratio can be computed with arbitrary high precision. A
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failure to sample the likelihood representation with high precision

may account for the suboptimal unselective pooling reported

previously.

Here, we estimate the width of the likelihood read-out functions

involved in two-alternative pattern detection and discrimination

by modeling a new perceptual bias. We measured grating

detectability and discriminability in the presence of filtered visual

noise and found that filtered noise backgrounds dramatically alter

the perception of grating spatial frequency. Embedding a grating

in low-pass filtered noise causes the perceived spatial frequency of

the grating to decrease, while high-pass filtered noise increases

perceived grating spatial frequency. A population code model is

proposed, consisting of a physiologically inspired V1 encoding

front-end followed by a decoding stage. By simultaneously

modeling grating detectability and discriminability, we were able

to estimate both the amount of sensory information encoded in the

V1 population response as well as the extent to which this

information is used to maximize performance. While filtered visual

noise induces an asymmetry in the likelihood function, an ideal

observer only evaluates the likelihood of exactly the two possible

stimuli and is thus not affected by this asymmetry. Therefore, the

observed bias indicates severely suboptimal decoding which we

assign to an imprecise read-out of the likelihood function. Only

when read-out functions as broad as 4 octaves are assumed, the

model accounts for all behavioural measurements. These findings

suggest that observers failed to sample the likelihood function at

the appropriate locations with arbitrary high precision and

consequently, that precision pooling was not adopted in our tasks.

Results

Spatial frequency perception is biased in filtered visual
noise

We measured the effect of filtered noise on perceived spatial

frequency in a two-alternative two-interval discrimination task.

One grating was embedded in low-pass or high-pass filtered 1-D

noise (cut-off at 5.5 cycles per degree) while another grating was

presented in unfiltered, broadband noise (Figure 1a). By varying

the spatial frequency of one grating (the comparison grating) while

keeping the other grating (the standard grating) constant, we

obtained the relative matching frequency. This measure indicates

the perceived spatial frequency of a grating in filtered noise relative

to a grating in broadband noise. Conditions in which the standard

grating was embedded in filtered noise while the comparison

grating was presented in broadband noise and vice versa were

randomly intermixed (see methods).

In the former conditions (hereafter referred to as the main

conditions), low-pass noise significantly decreased perceived

standard grating spatial frequency (parametric Monte-Carlo test,

pv0:001 for all observers, see methods) from 5.5 cycles per degree

(c/deg) to an average of 3.8 c/deg (s.e.m. = 0.63). Conversely,

high-pass filtered noise increased perceived spatial frequency

(parametric Monte-Carlo test, pv0:001 for all observers) to an

average of 7.2 c/deg (s.e.m. = 0.64). The average bias across

observers equalled 20.5 octaves (s.e.m. = 0.07) in the low-pass

filtered noise condition and 0.4 octaves (s.e.m. = 0.08) in the high-

pass noise condition. The data of a typical subject are shown in

Figure 1b. As all subjects displayed a similar perceptual bias, data

were pooled across observers to increase statistical power (see

supporting text S2). The pooled data, displayed in Figure 2, will be

used in the remainder of this study. A demonstration of the bias is

provided in Figure 1a.

In the conditions in which the comparison grating instead of the

standard grating was embedded in filtered noise, a similar bias was

found (Figure 2, bottom panel). Embedding the comparison

grating in low-pass filtered noise decreased its perceived spatial

frequency (parametric Monte-Carlo test, pv0:01 for all observ-

ers), requiring an average comparison frequency of 6.6 c/deg

(s.e.m. = 0.61) to match the 5.5 c/deg standard grating embedded

in broadband noise. Perceived grating frequency increased in

high-pass filtered noise (parametric Monte-Carlo test, pv0:01 for

all observers), resulting in a matching frequency of 4.2 c/deg

(s.e.m. = 0.62). The average bias due to low-pass and high-pass

filtered noise in the latter conditions equalled respectively 20.4

(s.e.m. = 0.05) and 0.4 (s.e.m. = 0.05) octaves. Overall performance

was significantly higher in the control conditions compared to the

main conditions (86% vs. 78% correct, binomial test, pv0:0001).

Correspondingly, a smaller bias and steeper psychometric

functions were observed in the control conditions for all observers,

but these differences were not statistically significant.

In addition, we measured the visibility of the 5.5 c/deg standard

grating under various noise conditions in a two-alternative two-

interval contrast detection task (see methods). In the absence of

visual noise, the contrast required to achieve 75% correct

detection performance equalled 0.8% on average across subjects

(s.e.m. = 0.04%). Embedding the grating in the broadband noise

backgrounds used in our discrimination task increases the

detection threshold contrast to an average of 10.3%

(s.e.m. = 0.005%). We also determined grating visibility in the

presence of filtered notched noise, i.e., broadband noise from

which a 4-octave-wide notch centred around 5.5 c/deg has been

removed. The average detection threshold in the latter condition

equalled 1.3% (s.e.m. = 0.26%). The pooled detection data are

provided in Figure 3.

A population code model for spatial frequency
perception

Detection and discrimination of gratings presumably depend

on the responses of V1 neurons, which are relatively sharply

tuned to spatial frequency [17–19]. We implemented a

descriptive model consistent with the normalization model of

simple cells [20] as an encoding front-end to simulate the

responses of V1 neurons to gratings embedded in filtered visual

Author Summary

An attractive view on human information processing
proposes that inference problems are dealt with in a
statistically optimal fashion. This hypothesis can explain
aspects of perception, movement planning, cognition and
decision making. In the present study, I use a new
psychophysical paradigm that reveals surprisingly subop-
timal perceptual decision making. Observers discriminate
between two sinusoidal gratings of a different spatial
frequency. Making use of visual noise, I induce an
asymmetry in neural population responses to the gratings
and find this asymmetry to effectively bias perceptual
decision making. A simple ideal observer model, unin-
formed about the presence of visual noise but only
considering the two grating spatial frequencies relevant to
the task at hand, manages to avoid such a bias. I conclude
that observers are limited in their ability to make use of
prior knowledge of relevant visual features when perform-
ing this task. These results are in line with a growing
number of findings suggesting that near-optimal decod-
ers, although straightforward to implement and achieving
near-maximal performance, consistently overestimate em-
pirical performance in simple perceptual tasks.

Suboptimal Decoding of Sensory Responses
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noise (see methods). Our model provides a description of the

contrast response of typical V1 neurons, incorporating Gabor-like

linear excitatory receptive fields tuned to spatial frequency [21],

nonlinear response transduction [22] and the inhibitory effects of

broadly-tuned contrast gain control [23]. The model captures the

effects of broadband visual noise on the contrast response

function [20,24–29]. The main effect is a substantial shift towards

higher contrasts and lower response rates, corresponding to

inhibition of informative neural responses. Broadband noise

additionally induces a mild elevation of the spontaneous

discharge in neurons tuned to the noise, thereby increasing the

amount of uninformative neural responses. These effects are

predicted by our model, in which strong inhibition is due to the

activation of the broadly-tuned contrast gain control mechanism.

Conversely, the mild elevation of spontaneous discharge results

from activation of relatively sharply-tuned excitatory receptive

fields. Extending the logic of the normalization model to filtered

noise, our model predicts either excitation or inhibition

depending on whether the noise stimulates the neurons’

excitatory receptive field or gain control mechanism. For

instance, the population responses simulated by the model are

asymmetric in low-pass and high-pass filtered noise (Figure 4a) as

these noise backgrounds selectively increase the activation of

neurons tuned to frequencies respectively below and above 5.5 c/

deg. In the presence of notched noise backgrounds, the model

predicts excitation of neurons tuned to spatial frequencies below

1.4 c/deg or above 22 c/deg. Neurons tuned to the inside of the

notch, on the other hand, are inhibited as the noise mainly

activates the broadly-tuned gain control mechanism. Most

aspects of the encoding front-end, i.e., spatial frequency tuning

bandwidth of the cells’ excitatory receptive field and the

inhibitory gain control pool, the cells’ contrast threshold as well

as the absolute amount of noise excitation and inhibition, are

controlled by free parameters.

Figure 1. Spatial frequency perception is biased in filtered noise. (a) The perceived spatial frequency of a grating embedded in low-pass
noise (red) and high-pass noise (blue) is respectively lower and higher than the perceived spatial frequency of the same grating embedded in white
noise (green). (b) Left panel: results of a typical observer (BM). The spatial frequency of a comparison grating embedded in white noise was varied to
match a standard grating of 5.5 c/deg in low-pass filtered, high-pass filtered and white noise. In low-pass and high-pass filtered noise, a respectively
lower and higher comparison frequency is required to match the standard grating, indicating that perceived standard grating frequency is biased in
the direction of the noise. Full lines represent the best-fitting Weibull psychometric functions. Right panel: an ideal observer model adopting optimal
narrow read-out functions to sample the likelihood function predicts unbiased discrimination performance.
doi:10.1371/journal.pcbi.1002453.g001

Suboptimal Decoding of Sensory Responses
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In a decoding stage, simulated population responses were

recoded into a log likelihood function of spatial frequency (see

methods and supporting text S1). Decisions in both the detection

and discrimination task are assumed to depend on a likelihood

ratio decision variable, which is obtained by reading out the

likelihood function at specific grating spatial frequencies using

Gaussian-shaped read-out functions. These functions are assumed

to be centred at the correct grating spatial frequencies and their

width was included as a free parameter in the model. An optimal

decoder implements infinitely narrow read-out functions and

hence only considers the likelihood of relevant grating frequencies

that actually can occur within a given block of trials. A decoder

implementing broad read-out functions evaluates likelihood

averaged over a broad range of grating frequencies that have

zero prior probability. It should be noted that equal read-out

function widths were used to model detection and discrimination

unless stated otherwise.

Neural and computational constraints may prevent the visual

system from computing the likelihood function optimally. We

therefore consider a simplified biologically plausible likelihood

computation [12]. When computing log likelihood, the decoder

assumes Poisson noise and is ignorant about the effect of the

filtered noise on the population response (see supporting text

S1.2.4). A major advantage of these simplifications is that the

part of the log likelihood function relevant to the decision

variable in our tasks reduces to a linear function of the

population response (see supporting text S1.2.2). We hereafter

refer to this part as the reduced log likelihood function. This

Figure 2. Spatial frequency discrimination data and model fits. Symbols indicate the pooled data of individual observers obtained in the
main (top panel) and control (bottom panel) conditions of the discrimination experiment. Red, green and blue colors refer respectively to the low-
pass filtered, white and high-pass filtered noise conditions. Full lines represent the fit of our population code model in which likelihood read-out
function width is a free parameter. Broken lines denote the fit when narrow read-out functions are assumed in the same model. Our model accounts
for the perceptual bias by assuming that the log likelihood function is read out with limited precision (full lines). When high-precision read-out is
implemented, the model manages to capture the bias to a reasonable extent (broken lines) by severely reducing the amount of encoded spatial
frequency information. It should be noted that the model fails to account for grating detectability in the latter case (see also Figure 3).
doi:10.1371/journal.pcbi.1002453.g002

Suboptimal Decoding of Sensory Responses
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function can be obtained through precision pooling, only

requiring knowledge of neuron spatial frequency tuning

functions. More specifically, the reduced log likelihood of a

specific spatial frequency equals the sum of the responses of all

neurons tuned to that specific frequency. Neurons tuned to other

frequencies provide no evidence for the presence or absence of

the spatial frequency under consideration and are to be ignored.

This is demonstrated in Figure 4: a strong response of neurons

tuned to 5.5 c/deg (Figure 4a, right panel, gray symbols)

provides strong evidence for the presentation of a 5.5 c/deg

grating. The likelihood of 5.5 c/deg is large (Figure 4b, left

panel, gray line) and can be obtained by summing the responses

of neurons tuned to 5.5 c/deg. More specifically, the optimal

weighting profile provided in Figure 4b (right panel, green) has

to be applied to the population response in order to weight

neurons according to their sensitivity to 5.5 c/deg. If spatial

frequency tuning functions are assumed to be Gaussian-shaped

and of equal bandwidth, the optimal weighting profile is also

Gaussian-shaped, centred at the relevant spatial frequency and

has a bandwidth that is proportional to the spatial frequency

tuning bandwidth (see supporting text S1.2.2). It should be noted

that the optimal weighting profile provided in Figure 4b (right

panel, green) captures the neurons’ sensitivity to exactly 5.5 c/

deg. This weighting profile thus implies infinitely narrow

likelihood read-out functions. Broader read-out functions

(Figure 4b, left panel, blue) can be implemented by broadening

the weighting profile as shown in Figure 4b (right panel, blue),

resulting in lower-precision pooling (see supporting text S1.3).

As mentioned earlier, the decoder is ignorant about the

presence of filtered noise. Low-pass and high-pass filtered noise

backgrounds increase the response of neurons tuned to low and

high spatial frequencies and hence increase the likelihood of low

and high spatial frequencies. The reduced log likelihood function

is thus asymmetrical in filtered noise. This is illustrated in Figure 4:

neurons tuned to 16 c/deg increase the likelihood of a 16 c/deg

grating (Figure 4b, left panel, black line), even when those neurons

are actually responding to a high-pass filtered noise background

added to a 5.5 c/deg grating (Figure 4a, right panel).

To isolate possible effects of variables such as correlated noise,

pooling noise, late decision noise or general attention level, mainly

affecting overall observer efficiency, we additionally included a late

efficiency parameter to rescale the signal-to-noise ratio of the

decoder by a constant factor.

Evaluation of model fit
The best-fitting model accurately predicts the bias in perceived

spatial frequency in the discrimination task (Figure 2, full lines) while

simultaneously capturing grating visibility in the detection task

(Figure 3, full lines). Akaike’s Information Criterion (AIC) was used

to evaluate the quality of the model fit while taking into account

model complexity formalized as the amount of free parameters. To

provide an upper limit on model performance given the variability

inherent in the data, we computed AIC for the best-fitting theory-

free and thus highly flexible Weibull psychometric function model.

AIC of our model is not significantly higher than the AIC of the

Weibull model (x2~90:1881, parametric Monte-Carlo test,

p~0:07), suggesting a relatively good model fit given the variability

in the data and the limited number of free parameters.

Physiologically-plausible encoding of spatial frequency
information

Remarkably, the estimates of the encoding stage parameters lie

well within the range of values reported in monkey or cat V1

Figure 3. Contrast detection data and model fits. White noise (green) impairs detection performance considerably, while detectability in
notched noise (gray) and in the absence of external noise (black) are approximately equal. Symbols indicate the pooled data of individual observers.
Full lines represent the fit of our population code model in which likelihood read-out function width is a free parameter. Broken lines denote the fit
when narrow read-out functions are assumed in the same model. Our population code model captures contrast detection performance in all
conditions when low-precision likelihood read-out is assumed (full lines). The same model implementing high-precision read-out underestimates
grating detectability in notched noise and white noise (broken lines).
doi:10.1371/journal.pcbi.1002453.g003

Suboptimal Decoding of Sensory Responses
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single-cell recording studies. Spatial frequency tuning bandwidth

of the excitatory receptive field was estimated at 0.9 octaves.

DeValois, Albrecht and Thorell [21], for instance, report that a

considerable portion of measured V1 cells had an excitatory

receptive field bandwidth between 0.5 and 1.5 octaves. The

estimated bandwidth of the inhibitory gain control mechanism is

considerably broader, equalling 2.9 octaves. The fact that our gain

control pool is not infinitely broad implies a degree of frequency-

specific suppression, which has been suggested in multiple

physiological studies [30–32]. The cells’ semisaturation contrast

is estimated at 3%, in agreement with estimates of human V1

semisaturation contrast [33]. Our model predicts a spontaneous

discharge rate of 5.3 Hz in broadband noise and a shift of the

contrast response function towards higher contrasts and lower

Figure 4. Overview of the population code model. (a) Model of V1 encoding of gratings in filtered noise. Left panel: simulated V1 responses to
a grating of 2 c/deg in the absence of external noise (gray symbols) and in the presence of white noise (white symbols). Right panel: simulated V1
responses to a grating of 5.5 c/deg in the absence of noise (gray symbols) and in the presence of high-pass filtered noise (black symbols). It can be
seen that visual noise reduces the response of informative neurons tuned to the grating frequencies while increasing the activity of neurons tuned to
the noise pass-band. Consequently, the population response is asymmetrical in filtered noise. (b) Decoding of grating spatial frequency. Left panel:
Reduced log likelihood function for the population response to a 5.5 c/deg grating in the absence of external noise (gray line) and in the presence of
high-pass filtered noise (black line). Embedding the grating in high-pass noise increases the log likelihood of high spatial frequencies relative to the
veridical frequency of 5.5 c/deg. The reduced log likelihood function is thus asymmetrical in filtered noise. The broken lines represent the read-out
functions assumed when sampling discrete likelihood values. Right panel: the linear weighting profiles corresponding to the read-out functions. The
likelihood of a specific grating spatial frequency can be obtained with high precision (left panel, green) by preferentially weighting the responses of
neurons that are tuned to that specific frequency (right panel, green). Computing the likelihood of a grating spatial frequency with low precision (left
panel, blue) corresponds to summing the responses of a broad population of neurons tuned to various spatial frequencies (right panel, blue).
doi:10.1371/journal.pcbi.1002453.g004

Suboptimal Decoding of Sensory Responses
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response rates, leading to an average response reduction of

approximately a factor of four at grating contrast levels between

10% and 30% (Figure 5). Touryan, Lau and Dan [28] measured

an average spontaneous discharge of approximately 6 Hz to 1-D

broadband noise stimuli in cat V1 and report a four-fold response

reduction. Rust et al. [27] measured a three-fold response

reduction in macaque V1 using similar 1-D noise stimuli.

Suboptimal decoding involving broad read-out functions
and low-precision pooling

Crucially, the estimated read-out functions deviate considerably

from optimal, infinitely narrow delta functions. Their width is

estimated at 4.2 octaves (95% CI ranging from 3.4 to 4.8 octaves,

Figure 6a), suggesting that the log likelihood function is read out

with limited precision. Observers consider the log likelihood values

of spatial frequencies that are a-priori unlikely to occur during the

tasks, which lowers grating detectability and leads to a bias in

perceived spatial frequency. As mentioned earlier, log likelihood

functions are asymmetrical around the veridical grating frequency

in the presence of low-pass and high-pass filtered noise. When

these log likelihood functions are integrated with broad read-out

functions, the asymmetry biases perceived spatial frequency

towards lower and higher spatial frequencies in low-pass and

high-pass filtered noise (Figure 4).

Figure 5. Best-fitting contrast response functions assumed in
our population code model in which read-out function width is
either a free parameter (full lines) or infinitely narrow (broken
lines). Green and black lines respectively indicate the contrast response
to gratings embedded in white noise and presented in the absence of
noise.
doi:10.1371/journal.pcbi.1002453.g005

Figure 6. (a) Our population code model accounts for the perceptual bias and captures grating detectability in the presence and absence of external
noise using a single set of parameters when low-precision likelihood read-out is assumed. The full line represents the best-fitting read-out function to
detect or discriminate a 5.5 c/deg grating. The broken line denotes the optimal, infinitely narrow read-out function. (b) The linear weighting profile
for discrimination between 1 c/deg and 5.5 c/deg that is consistent with the broad read-out function in (a). The dotted line represents the optimal
weighting profile for the best-fitting model. (c) An example signal template consistent with the read-out function displayed in (a).
doi:10.1371/journal.pcbi.1002453.g006

Suboptimal Decoding of Sensory Responses
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The log likelihood ratio can be obtained through weighted

summation using a specific weighting profile (see supporting texts

S1.2.2 and S1.3.2). Figure 6b shows the weighting profiles for

discrimination between a grating of 1 c/deg and 5.5 c/deg that

are consistent with the read-out functions provided in Figure 6a.

High-precision read-out corresponds to precision pooling, i.e.,

preferentially weighting neurons that are tuned to either 1 c/deg

or 5.5 c/deg (broken lines). In case of low-precision read-out,

considerable weight is assigned to neurons that are insensitive to

the two relevant frequencies (full lines).

The read-out function displayed in Figure 6a is equivalent to the

signal template provided in Figure 6c. While the template

resembles the ideal template of a noise-free grating, it additionally

contains a considerable amount of irrelevant spatial frequency

components. The template thus closely matches the actual noise-

embedded gratings presented during the experiment.

Comparison of empirical and ideal observer performance
To evaluate the performance of an ideal observer implementing

optimal decoding, we reduced the width of the model’s read-out

functions to an infinitely small value while keeping all other

parameters at the best-fitting values. Under these conditions, the

predicted perceptual bias disappears and discrimination perfor-

mance increases from 84% to 95% correct (Figure 1b, right panel).

Even for read-out function widths as broad as 1.5 octaves, the

model predicts nearly unbiased discrimination performance and

reaches 94% correct on average. This indicates that a considerable

amount of spatial frequency information is encoded in the V1

population response, even in the presence of filtered visual noise,

but that this information is not used to maximize performance.

Ideal observer performance may match empirical performance

when a lower amount of information is assumed in the encoding

stage. To test this possibility, we constrained read-out function

width to an infinitely-small value but refitted all other model

parameters. Excitatory receptive field bandwidth increased from

0.9 octaves in the unconstrained model to 1.9 octaves while the

bandwidth of the inhibitory gain mechanism increased to 5.5

octaves. The spontaneous discharge rate in broadband noise is

now estimated at 26 Hz instead of 5.3 Hz. The model thus reacts

to the optimal decoding constraint by reducing the amount of

spatial frequency information encoded in the simulated population

response. The constrained model manages to predict the bias in

the discrimination task to a reasonable degree (Figure 2, broken

lines). However, as a result of the broad spatial frequency tuning

and strong noise excitation, the model considerably overestimates

the degree of masking in the notched noise condition and to a

lesser extent in the broadband noise condition (Figure 3, broken

lines). Overall goodness-of-fit of the constrained model is

significantly lower compared to the unconstrained model

(x2~325:38, parametric Monte-Carlo test, pv0:01) and the

Weibull model (x2~415:57, parametric Monte-Carlo test,

pv0:01). Additionally, we evaluated an ideal observer model in

which optimality is assumed for contrast detection while

unconstrained read-out functions are implemented for discrimi-

nation. Goodness-of-fit of this model approximated the goodness-

of-fit of the fully unconstrained model (x2~21:96, parametric

Monte-Carlo test, p~0:36), suggesting that the possibility of

optimal read-out in the contrast detection task cannot be excluded

based on our data.

A possible issue concerns the relatively high performance

achieved by our observers in the discrimination task. Despite being

significantly biased, observers reached an average performance of

84.5% correct (binomial 95% CI = [0.839, 0.851]). Such high

performance might discourage the use of an unbiased yet possibly

more demanding decoding strategy. Furthermore, the perfor-

mance gain that can be obtained using a more optimal decoding

scheme is limited. As the observed high performance is due to a

considerable number of unbiased stimulus conditions, we

conducted a similar discrimination experiment and only included

stimulus conditions in which the bias was particularly strong (see

methods). Observers reached an average performance of 68%

correct in this control experiment. This value is significantly lower

than the performance of 86% correct predicted by the ideal

observer (parametric Monte-Carlo test, pv0:0001). Furthermore,

performance did not increase significantly over trials (linear

regression slope = 0.002%, parametric Monte-Carlo test,

p~0:21), suggesting that suboptimal performance in our exper-

iments was not due to a lack of training (Figure 7).

Discussion

In the present study, we report a new perceptual bias. Filtered

visual noise significantly alters the perception of two known

gratings in a two-alternative spatial frequency discrimination task,

shifting perceived spatial frequency to lower and higher

frequencies in respectively low-pass and high-pass filtered noise

conditions. The fact that we observed such a strong bias is not

self-evident. Observers received extensive training prior to the

start of the experiments and auditory feedback was provided after

each trial. Furthermore, we informed observers of the veridical

grating spatial frequencies via noise-free grating templates

presented at the beginning of each trial block. It should be noted

that the bias cannot be attributed to merely a low signal-to-noise

ratio, preventing observers from detecting the gratings when

embedded in visual noise. Gratings were presented at relatively

high contrasts in the discrimination experiment, corresponding to

the 84%-correct detection thresholds measured in broadband

noise. Moreover, the fact that we measured high overall

performance and correspondingly steep psychometric functions

in the discrimination task indicates that observers base their

decisions -at least partially- on the veridical grating spatial

frequency.

We propose a population code model, consisting of a

physiologically inspired encoding front-end followed by a simple

linear decoder. The best-fitting model accurately predicts the

perceptual bias in the discrimination task while simultaneously

capturing contrast detection performance in the absence of visual

noise, in broadband noise as well as in filtered notched noise using

a single set of parameters. Although few constraints were imposed,

the estimates of the encoding stage parameters lie close to values

reported in macaque or cat V1 single-cell recording studies. Ideal

observer analysis revealed that a considerable amount of spatial

frequency information is available in the encoding stage, even in

the presence of filtered visual noise. Furthermore, using this

information to achieve unbiased spatial frequency discrimination

does not require complex decoding. A biologically plausible linear

decoder [12], only requiring knowledge of V1 spatial frequency

tuning but adopting narrow read-out functions to transform the

likelihood function into a likelihood ratio decision variable, can

achieve unbiased discrimination performance. In principle,

however, a model implementing optimal read-out functions can

account for the bias in the discrimination task, provided that the

amount of information assumed to be available in the encoding

stage is limited. The perceptual bias is thus a hallmark of

suboptimal spatial frequency processing, which can be due to

either inefficiencies in the encoding or decoding stage. However,

grating detectability tightly constrains the amount of information

available in the encoding stage, which allowed us to attribute the
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perceptual bias to suboptimal decoding involving broad read-out

functions.

While our unified suboptimal likelihood read-out scheme for

contrast detection and spatial frequency discrimination accounts

for all behavioural measurements, our data are not inconsistent

with optimal read-out in the contrast detection task. However,

previous studies [34] comparing human to ideal contrast detection

performance have reported low detection efficiencies, which may

be consistent with suboptimal likelihood read-out. Furthermore, it

seems unlikely that observers, while able to read out the likelihood

function optimally in the detection task, would not manage to do

so in the discrimination task. One possibility is that observers do

not use a likelihood ratio to discriminate between spatial

frequencies. For instance, observers may estimate grating spatial

frequency and indicate which of two gratings yields the largest

estimate. Previous studies [35,36] have proposed maximum-

likelihood, maximum-a-posteriori (MAP) or minimum mean

squared error (MMSE) decoding to estimate unknown stimulus

quantities from the population response. In our task, however,

maximum-likelihood decoding will yield unbiased estimates of

grating frequency in the presence of filtered noise. While filtered

noise induces an asymmetry in the likelihood function, the location

of its peak remains largely unchanged (Figure 4). The MAP and

MMSE decoders would estimate grating spatial frequency based

on respectively the maximum and the mean of the posterior

probability function. The posterior is obtained by integrating the

likelihood function with a prior probability function. In a two-

alternative discrimination task, only two grating spatial frequencies

are a-priori likely to occur. Therefore, the prior probability of

these specific frequencies equals 0.5 while the prior probability of

other, irrelevant frequencies equals zero. Integrating the likelihood

function with such an optimal prior to obtain the posterior is

equivalent to reading out the likelihood function using infinitely-

small and appropriately-placed read-out functions. Consequently,

decoders operating on the posterior are equivalent to our decoder

computing a likelihood ratio decision variable with high precision

and fail to predict the perceptual bias (see supporting text S1.4).

An interesting hypothesis is that observers do not use a prior that is

optimal to the task at hand, but instead rely on a general prior

based on natural scene statistics [36]. As the spatial frequency

spectrum of natural scenes can be characterised by a 1/f

relationship between amplitude and spatial frequency [37], this

prior would presumably be broadband and skewed towards low

spatial frequencies. A MAP or MMSE estimator incorporating

such a prior might also predict a noise-induced perceptual bias.

This bias, however, will be asymmetric as likelihoods of low spatial

frequencies are preferentially weighted when obtaining the

posterior. More specifically, low-pass filtered noise is expected to

induce a stronger bias compared to high-pass noise. Our data

provide no consistent evidence for such an asymmetry (see

supporting text S2).

To read out the likelihood function with high precision, the

visual system requires a-priori knowledge of the grating spatial

frequencies presented on each trial in the discrimination

experiment. In other words, the brain has to be able to represent

appropriate, narrow signal templates. A theoretical issue concerns

whether and how such templates can be reliably implemented in

populations of noisy and broadly-tuned neurons. Recurrent

network models have been proposed, capable of removing noise

from the population response and representing arbitrarily small

templates with high accuracy [38,39]. Our results indicate that

observers did not have access to such accurate templates and may

have been uncertain about grating spatial frequency. Signal

uncertainty has been studied extensively in psychophysical

detection tasks [19,40] but not in the context of neural population

decoding [41].

Our model differs from traditional psychophysical models of

early visual encoding of gratings embedded in external noise [42],

as these models typically assume that external noise only affects the

variability of sensory responses without changing the average

response (see supporting text S4). Physiological evidence, however,

suggests that response variability is proportional to response mean,

Figure 7. Results of the control experiment. Symbols indicate the pooled data of individual observers. The full line indicates the linear
regression fit. The broken line denotes the performance of the ideal observer.
doi:10.1371/journal.pcbi.1002453.g007
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even in the presence of early additive noise [43]. Furthermore, in

our discrimination experiment, changes in sensory variability

alone may affect the slope of the psychometric functions but

cannot account for systematic shifts in their position [36].

Moreover, similar physiologically inspired population code models

have been successfully used to relate single-cell response

characteristics to human psychophysical grating detectability and

discriminability [29,44].

Various studies have measured psychophysical two-alternative

detection and discrimination performance while simultaneously

determining the amount of sensory information encoded by early

visual brain areas. A common finding, consistent with our results,

is that simple decoding schemes, while straightforward to

implement and achieving near-optimal performance, consistently

overestimate empirical performance [8–11]. An important ques-

tion that remains to be answered is how these results can be

reconciled with studies reporting near-optimal population decod-

ing and precision pooling in two-alternative discrimination tasks.

The answer may lie in the complexity and predictability of stimuli

used in different tasks. For instance, Purushotaman and Bradley

[7] report precision pooling in a fine orientation discrimination

task using highly-coherent and thus highly-predictable random dot

stimuli. Shadlen et al. [11] and Cohen and Newsome [9],

reporting a lack of precision pooling, used coarse discrimination

tasks in which the average coherence of the random dot stimuli

was considerably lower. We also used highly-stochastic broadband

stimuli in our experiments, which might have prevented the

formation of small-band signal templates.

Perceptual biases are usually interpreted as a hallmark of

optimal statistical inference [36]. Here, we developed a novel

paradigm to obtain a set of findings that challenge this view.

Although we focused on grating detection and discrimination, the

utility of our approach is not limited to the domain of pattern

vision. Future studies may investigate whether a similar bias can be

found in other tasks such as fine motion orientation discrimination,

often used to demonstrate optimal population decoding. A crucial

question for future research will be to identify determinants that

explain the large variations in sensory decoding efficiency across

different stimulus domains and tasks.

Methods

Psychophysics
Equipment. Stimuli were presented on a carefully linearized

monochrome Siemens SMM 21106 LS monitor with white

phosphor (P-45). Spatial resolution was 9966777 pixels at

130 Hz and 8-bit luminance precision was obtained at each

contrast level used in the experiments. Viewing distance was

124 cm, corresponding to a pixel size of 0.0181 degrees of visual

angle. The experiment was run in a darkened room, with the

display’s mean background luminance equal to 47.5 cd=m2.

Observers. Three observers (TP, BM and KT) participated

in two spatial frequency discrimination experiments. Two

observers (RV and NV) participated in a contrast detection

experiment. All observers but TP were naive to the purpose of the

experiments. Observers received extensive training prior to data

collection and had normal or corrected-to-normal vision.

Stimuli. Stimuli were Gabor gratings, consisting of a

horizontally-orientated sinusoidal grating subtending 9.2 degrees

of visual angle, multiplied by a 2-D circularly-symmetrical

Gaussian envelope with a standard deviation of 3.7 degrees of

visual angle. A set of 1-D horizontally-orientated noise images was

generated by sampling pixel luminance values from a Gaussian

distribution centred at mean luminance. Mean noise-power

density equalled 10{5 deg2. The noise-power density spectrum

of broadband noise images was flat to an upper bound of 27.4 c/

deg. Low-pass and high-pass filtered noise images were obtained

by removing spatial frequency components respectively above or

below 5.5 c/deg. We obtained notched noise images by removing

spatial frequency components within a 4-octave-wide notch

around 5.5 c/deg. Grating and noise images were presented on

alternating frames without visible flicker. A fresh noise sample was

used for each stimulus presentation.

Spatial frequency discrimination experiments. A two-

alternative two-interval forced-choice (2-AFC) procedure was used

to measure spatial frequency discrimination performance in the

presence of broadband and filtered visual noise. On each trial, a

fixation cross was presented for 250 ms which disappeared 500 ms

before the onset of auditory-cued 50 ms stimulus intervals. One

interval contained a grating of 5.5 c/deg (the standard grating).

The other interval contained a grating of variable spatial

frequency (the comparison grating). Observers indicated the

interval containing the grating of the highest spatial frequency.

Auditory feedback was provided after each trial. In the main

conditions, the standard grating was embedded in low-pass or

high-pass filtered noise with a cut-off at 5.5 c/deg while the

comparison grating was presented in broadband noise. Control

conditions in which comparison instead of standard grating was

embedded in filtered noise were included to prevent the use of the

noise conditions as discrimination cues. In addition, we included

two conditions in which both gratings were presented either in

broadband noise or in the absence of noise. All noise conditions

were randomly intermixed. High-contrast, noise-free templates of

standard and comparison gratings were presented at the beginning

of each block of 50 trials, within which comparison spatial

frequency was kept constant. Eight comparison frequencies,

sampled logarithmically between 1.9 and 15.6 c/deg, were

tested in a first discrimination experiment. The relative

matching frequency, corresponding to the comparison frequency

yielding a choice proportion of 50%, was determined by fitting

cumulative Weibull psychometric functions using a maximum-

likelihood fitting procedure [45]. Confidence intervals were

determined using a parametric Monte-Carlo bootstrap

procedure [46]. To ensure a constant and sufficiently high

signal-to-noise ratio across grating spatial frequencies, each

grating was presented at the contrast level corresponding to the

84% detection threshold in broadband noise, estimated separately

for each observer in a preliminary contrast detection experiment

(see supporting text S3). Each observer completed a total of 4800

trials. We conducted a second discrimination experiment, only

including one comparison condition in which a strong bias was

observed (observer BM and TP: 4.7 c/deg, KT: 6.4 c/deg).

Observers completed 250 trials per experimental condition,

yielding a total of 1500 trials. Proportion correct was calculated

for each subset of 60 trials. A linear function relating proportion

correct to subset index was fitted to the data using least-squares

regression.

Contrast detection experiment. A similar 2-AFC

procedure was used to measure contrast detection performance

in the absence of visual noise and in the presence of broadband

and notched noise. In the no-noise condition, one interval

contained a blank while the target interval contained a grating

of 5.5 c/deg, i.e., the spatial frequency of the standard grating in

the discrimination task as well as the average spatial frequency of

all gratings presented in the discrimination experiments. In the

noise conditions, both intervals contained a different background

noise image. Observers were instructed to indicate the target

interval and received auditory feedback after each trial. The
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grating was presented at one of sixteen (in the no-noise and

broadband noise conditions) or nine (in the notched noise

condition) fixed contrast levels. Noise and contrast conditions

were randomized across trials. A high-contrast, noise-free template

was presented at the beginning of each trial block. Cumulative

Weibull psychometric functions were fitted to the data using a

maximum-likelihood fitting procedure [45]. Confidence intervals

were determined using a parametric Monte-Carlo bootstrap

procedure [46]. Each observer completed a total of 4100 trials.

Model
Encoding stage. V1 population responses to gratings

embedded in filtered visual noise were derived following the

logic of the normalization model of simple cells [20]. The average

response of an individual neuron i to a sinusoidal grating of spatial

frequency h and contrast c embedded in noise background N is

given by the following equation:

ri(h,c,N)~t r0zrmax
Li(h,c)2zaLi(N)2

c2
50zGi(h,c)2zbGi(N)2

 !
ð1Þ

where r0 is the spontaneous discharge rate of the neuron (in

Hertz), rmax the maximal firing rate (in Hertz) and c50 the semi-

saturation constant. t equalled the stimulus presentation time (in

seconds). Li equals the response of the linear excitatory receptive

field of neuron i, while Gi denotes the linear response of the

broadly-tuned contrast gain control pool inhibiting the responses

of neuron i. These responses are obtained using a linear

convolution of the 1-D spatial frequency amplitude spectrum of

a grating or (filtered) noise background and a Gaussian-shaped

tuning function. It should be noted that we normalized the linear

filter responses to a full-contrast grating to equal one across all

grating spatial frequencies (see supporting text S3). The main

effects of visual noise on the contrast response function, i.e., an

excitatory increase in spontaneous discharge and an inhibitory

shift towards higher contrasts and lower response rates, are

respectively captured by Li(N) and Gi(N). The absolute size of

these effects are controlled by two scaling parameters a and b.

Notably, we assumed separate pathways for the processing of

signal and noise to obtain a highly-flexible descriptive model

rather than functional model of visual noise effects. As

physiological data describing these effects are scarce, we do not

impose strong a-priori constraints on the relative size of excitatory

and inhibitory responses to signal and noise.

Response variance, known to scale with mean response rate

[47], is defined as:

var(ri)~kri ð2Þ

where k is the proportionality constant. As implementing the full

covariance matrix is computationally prohibitive, we use a

diagonal covariance matrix in our simulations, thus effectively

ignoring interneural correlations. Such correlations have been

observed in many studies [9,48]. For primary visual cortex, most

estimates lie between 10% and 15%. Incorporating (limited-range)

correlations of that magnitude in our model merely rescales the

overall signal-to-noise ratio of the population code and limits the

amount of information gained by increasing population size

beyond approximately 100 neurons. These effects were closely

approximated in our model by limiting population sizes to 100

uncorrelated neurons and including an overall efficiency param-

eter in the decoding stage.

Decoding stage. We implemented a biologically plausible log

likelihood ratio decoder that assumes independent Poisson noise

and is ignorant about the effect of the filtered noise on the

population response. The log likelihood function of spatial

frequency h obtained by this decoder is provided by:

log L(h)~
X

i

ni log fi(h){
X

i

fi(h){
X

i

log(ni!) ð3Þ

where ni equals the response and fi(h) denotes the spatial

frequency tuning function of neuron i. In supporting text S1.1,

we provide the full derivation of this equation and show that only

the first term of the right hand side is relevant to the decision

variable in two-alternative two-interval grating detection and

discrimination tasks. We therefore define the reduced log

likelihood function as:

log Lr(h)~
X

i

ni log fi(h) ð4Þ

The log likelihood of a specific spatial frequency h0, denoted

log Ls(h0), is obtained by integrating the reduced likelihood

function with a Gaussian-shaped read-out function p(h) centred at

h0:

log Ls(h0)~

ðz?

{?

p(h) log Lr(h)dh ð5Þ

In the optimal log likelihood ratio decoder, p(h) is infinitely small

(see supporting text S1.2). This decoder is able to compute the log

likelihood of h0 with infinitely-high precision. We include read-out

function bandwidth as a free parameter. Our decoder

approximates the optimal decoder when the bandwidth

parameter approaches zero. For large bandwidths, the decoder

is suboptimal and computes the log likelihood of h0 with low

precision, averaging the likelihood of a broad range of spatial

frequencies (see supporting text S1.3).

In our two-alternative two-interval spatial frequency discrimi-

nation task, gratings of high and low spatial frequency are

presented on each trial. A log likelihood ratio is used to

discriminate between these two frequencies. The log likelihood

ratio for interval j[f1,2g is defined as:

LRj hh,hlð Þ~log Ls,j hhð Þ{log Ls,j hlð Þ ð6Þ

where hh and hl equal the high and low grating spatial frequency

presented during the trial. A log likelihood ratio is computed for

each interval. When instructed to indicate the interval containing

the high spatial frequency grating, the decoder will select the

interval yielding the highest log likelihood ratio. The resulting

decision variable is given by:

D~LR1 hh,hlð Þ{LR2 hh,hlð Þ ð7Þ

A similar decision variable was defined for the grating detection

task (see supporting text S1.2.1). The derivation of predicted

choice proportion and proportion correct are provided in

supporting text S1.2.2.

From equation 4, one can see that the (reduced) log likelihood

can be obtained through linear precision pooling. To compute the

log likelihood of spatial frequency h, the response of each neuron is

weighted by the sensitivity of that neuron to h. This sensitivity is
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captured by the logarithm of the neuron’s spatial frequency tuning

function evaluated at h. The log likelihood of a spatial frequency

thus only depends on the responses of neurons tuned to that

frequency. Likewise, the ratio of the log likelihoods of two grating

spatial frequencies only depends on the responses of two

subpopulations of neurons, each tuned to one of the grating

frequencies. Notably, such precision pooling requires the likeli-

hood function to be read out with infinitely-high precision. When

the likelihood function is read out with lower precision following

equation 5, the likelihood of a spatial frequency h will depend on

the responses of a broader subpopulation of neurons, including

neurons that are insensitive to h. The neural implementation of the

log likelihood ratio decoder through linear weighted summation

and precision pooling is described in detail in supporting texts

S1.2.2 and S1.3.2.
Model constraints and fitting. A limited number of

parameters were fixed at physiologically plausible values. Our

data did not provide sufficient constraints to estimate these

parameters. Most importantly, changing the exact values of these

parameters does not affect the conclusions of the present study.

More specifically, r0 was set to 1% of the maximal response [49]

and rmax equalled 100 Hz [21]. Neuron preferred spatial

frequencies were sampled uniformly between 0.25 and 60 c/deg.

The proportionality constant k determining response variance was

set to 1.5 [50]. Thus, external noise only indirectly affects response

variance through changes in the mean response, which is in

agreement with recent physiological evidence [43] (see supporting

text S4). Noise-power density equalled the actual value used in the

experiments. Discrimination performance was simulated at the

average grating contrast used in the discrimination experiments for

computation convenience (see supporting text S3). All other model

parameters were included as free parameters. The efficiency

parameter was constrained between 0 and 1. A maximum-

likelihood fitting procedure [45] was used to fit the model

simultaneously to the contrast detection and spatial frequency

discrimination datasets. The deviance statistic, expressing the ratio

between the likelihood of the model under consideration and a

saturated model with no residual error, was calculated for each

dataset. The parameter combination minimizing total deviance

was determined using an implementation of the Nelder-Mead

simplex algorithm. Multiple fits were performed using random

initial parameter values. Confidence intervals on parameter

estimates were determined using parametric Monte-Carlo

bootstrap procedures [46].

Supporting Information

Figure S1 Weighting profile wi in case of two-alternative

detection of a grating spatial frequency h0 (left) and two-alternative

discrimination of grating spatial frequencies hh and hl (right).

Vertical lines denote the grating spatial frequencies. It can be seen

that a log likelihood ratio decoder, selectively evaluating the

likelihood of relevant spatial frequencies, preferentially weights

neurons tuned to these frequencies and ignores neurons tuned to

other frequencies. The best-fitting parameter values reported in

the main text were used to specify the encoding front-end.

(TIF)

Figure S2 Off-looking when discriminating two close-together

grating spatial frequencies hh and hl . Neurons tuned slightly away

from hh and hl are preferentially weighted. The weighting profile

wi approximates a difference of two Gaussian functions centred at

hh and hl . As a result of the subtraction and because these

functions are not infinitely narrow, the peak and trough of the

weighting profile are shifted away from hh and hl . The best-fitting

parameter values reported in the main text were used to specify

the encoding front-end.

(TIF)

Figure S3 Relationship between likelihood read-out precision

and precision pooling. Left: read-out functions used to obtain the

discrete likelihood of spatial frequency hh. Right: corresponding

weighting profiles when discriminating between grating spatial

frequencies hl and hh. The best-fitting parameter values reported

in the main text were used to specify the encoding front-end.

(TIF)

Figure S4 Individual data for the discrimination task. Data of

the main and control conditions are provided respectively in the

top and bottom row. Red, green and blue colors respectively

denote low-pass filtered, white and high-pass filtered noise

conditions. Full lines represent the best-fitting Weibull psycho-

metric functions.

(TIF)

Figure S5 Individual data for the detection task. Dark gray, light

gray and green colors respectively denote the no-noise, notched

noise and white noise conditions. Full lines represent the best-

fitting Weibull psychometric functions.

(TIF)

Figure S6 84%-correct detection thresholds in broadband noise

for different grating spatial frequencies. Full lines indicate the best-

fitting second-degree polynomial contrast sensitivity functions.

Blue, green and red colors respectively represent the data of

subject KT, BM and TP. The broken line denotes the average

contrast used in the discrimination tasks. This contrast was used to

simulate discrimination performance.

(TIF)

Figure S7 Predicted discrimination performance for the con-

strained model (left panel) and unconstrained model (right panel)

when a Fano factor of 1 (dotted lines) instead of 1.5 (full lines) was

assumed. Other parameters were kept at the best-fitting values.

(TIF)

Figure S8 Predicted detection performance for the constrained

model (left panel) and unconstrained model (right panel) when a

Fano factor of 1 (dotted lines) instead of 1.5 (full lines) was

assumed. Other parameters were kept at the best-fitting values.

(TIF)

Text S1 Supporting text providing a detailed description of the

population decoding model.

(PDF)

Text S2 Supporting text discussing inter-individual differences

and data pooling.

(PDF)

Text S3 Supporting text discussing contrast sensitivity across

spatial frequency.

(PDF)

Text S4 Supporting text discussing the role of across-trial neural

response variability.

(PDF)

Author Contributions

Conceived and designed the experiments: TP. Performed the experiments:

TP. Analyzed the data: TP. Wrote the paper: TP. Provided support and

helped in writing the paper: JW. Provided support and helped in designing

the project, performing the computational modelling and writing the

paper: RG MB FW.

Suboptimal Decoding of Sensory Responses

PLoS Computational Biology | www.ploscompbiol.org 12 April 2012 | Volume 8 | Issue 4 | e1002453



References

1. Jazayeri M (2008) Probabilistic sensory recoding. Curr Opin Neurobiol 18:

431–7.

2. Ernst M, Banks M (2002) Humans integrate visual and haptic information in a

statistically optimal fashion. Nature 415: 429–433.

3. Jazayeri M, Movshon JA (2007) A new perceptual illusion reveals mechanisms of

sensory decoding. Nature 446: 912–5.

4. Jazayeri M, Movshon JA (2007) Integration of sensory evidence in motion

discrimination. J Vis 7: 7.1–7.

5. Law C, Gold J (2008) Neural correlates of perceptual learning in a sensory-

motor, but not a sensory, cortical area. Nat Neurosci 11: 505–513.

6. Parker A, Krug K, Cumming B (2002) Neuronal activity and its links with the

perception of multi–stable figures. Philos T R Soc B 357: 1053.

7. Purushothaman G, Bradley DC (2005) Neural population code for fine
perceptual decisions in area mt. Nat Neurosci 8: 99–106.

8. Chen Y, Geisler W, Seidemann E (2008) Optimal temporal decoding of neural
population responses in a reaction-time visual detection task. J Neurophysiol 99:

1366.

9. Cohen M, Newsome W (2009) Estimates of the contribution of single neurons to

perception depend on timescale and noise correlation. J Neurosci 29: 6635.

10. Palmer C, Cheng S, Seidemann E (2007) Linking neuronal and behavioral

performance in a reaction-time visual detection task. J Neurosci 27: 8122.

11. Shadlen M, Britten K, Newsome W, Movshon J (1996) A computational analysis

of the relationship between neuronal and behavioral responses to visual motion.
J Neurosci 16: 1486.

12. Jazayeri M, Movshon JA (2006) Optimal representation of sensory information

by neural populations. Nat Neurosci 9: 690–6.

13. Ma W, Beck J, Latham P, Pouget A (2006) Bayesian inference with probabilistic

population codes. Nat Neurosci 9: 1432–1438.

14. Gold J, Shadlen M (2007) The neural basis of decision making. Annu Rev

Neurosci 30: 535–574.

15. Green DM, Swets JA (1966) Signal Detection Theory and Psychophysics Wiley,

New York.

16. Yang T, Shadlen M (2007) Probabilistic reasoning by neurons. Nature 447:

1075–1080.

17. Blakemore C, Nachmias J, Sutton P (1970) The perceived spatial frequency shift:

evidence for frequency-selective neurones in the human brain. J Physiol 210:
727.

18. De Valois R, De Valois K (1988) Spatial vision Oxford University Press, USA.

19. Graham N (1992) Visual Pattern Analyzers Oxford University Press, USA.

20. Carandini M, Heeger D, Movshon J (1997) Linearity and normalization in

simple cells of the macaque primary visual cortex. J Neurosci 17: 8621.

21. De Valois R, Albrecht D, Thorell L (1982) Spatial frequency selectivity of cells in

macaque visual cortex. Vis Res 22: 545–559.

22. Heeger D (1992) Half-squaring in responses of cat striate cells. Vis Neurosci 9:
427–443.

23. Heeger D (1992) Normalization of cell responses in cat striate cortex. Vis
Neurosci 9: 181–197.

24. Gulyas B, Orban G, Duysens J, Maes H (1987) The suppressive inuence of
moving textured backgrounds on responses of cat striate neurons to moving bars.

J Neurophysiol 57: 1767.

25. Hammond P, MacKay D (1977) Differential responsiveness of simple and

complex cells in cat striate cortex to visual texture. Exp Brain Res 30: 275–296.

26. Maffei L, Morrone C, Pirchio M, Sandini G (1979) Responses of visual cortical
cells to periodic and non-periodic stimuli. J Physiol 296: 27.

27. Rust N, Schwartz O, Movshon J, Simoncelli E (2005) Spatiotemporal elements
of macaque v1 receptive fields. Neuron 46: 945–956.

28. Touryan J, Lau B, Dan Y (2002) Isolation of relevant visual features from
random stimuli for cortical complex cells. J Neurosci 22: 10811.

29. Goris R, Wichmann F, Henning G (2009) A neurophysiologically plausible

population code model for human contrast discrimination. J Vis 9.
30. Bauman L, Bonds A (1991) Inhibitory refinement of spatial frequency selectivity

in single cells of the cat striate cortex. Vis Res 31: 933–944.
31. De Valois K, Tootell R (1983) Spatial frequency inhibition in cat striate cortex

cells. J Physiol 336: 359–376.

32. Movshon J, Thompson I, Tolhurst D (1978) Spatial summation in the receptive
fields of simple cells in the cat’s striate cortex. J Physiol 283: 53.

33. Moradi F, Heeger D (2009) Inter-ocular contrast normalization in human visual
cortex. J Vis. pp 9.1–22.

34. Legge GE, Kersten D, Burgess AE (1987) Contrast discrimination in noise. J Opt

Soc Am 4: 391–404.
35. Webb BS, Ledgeway T, McGraw PV (2007) Cortical pooling algorithms for

judging global motion direction. Proc Natl Acad Sci USA 104: 3532–7.
36. Stocker A, Simoncelli E (2006) Noise characteristics and prior expectations in

human visual speed perception. Nat Neurosci 9: 578–585.
37. Field DJ (1987) Relations between the statistics of natural images and the

response properties of cortical cells. J Opt Soc Am 4: 2379–2394.

38. Deneve S, Latham PE, Pouget A (1999) Reading population codes: a neural
implementation of ideal observers. Nat Neurosci 2: 740–5.

39. Pouget A, Dayan P, Zemel RS (2003) Inference and computation with
population codes. Annu Rev Neurosci 26: 381–410.

40. Pelli DG (1985) Uncertainty explains many aspects of visual contrast detection

and discrimination. J Opt Soc Am 2: 1508–32.
41. Parker AJ, Newsome WT (1998) Sense and the single neuron: probing the

physiology of perception. Annu Rev Neurosci 21: 227–77.
42. Lu Z, Dosher B (2008) Characterizing observers using external noise and

observer models: Assessing internal representations with external noise. Psychol
Rev 115: 44.

43. Carandini M (2004) Amplification of trial-to-trial response variability by neurons

in visual cortex. Plos Biol 2: e264.
44. Chirimuuta M, Tolhurst D (2005) Does a Bayesian model of V1 contrast coding

offer a neurophysiological account of human contrast discrimination? Vis Res
45: 2943–2959.

45. Wichmann FA, Hill NJ (2001) The psychometric function: I. fitting, sampling,

and goodness of fit. Percept Psychophys 63: 1293–313.
46. Wichmann FA, Hill NJ (2001) The psychometric function: Ii. bootstrap-based

confidence intervals and sampling. Percept Psychophys 63: 1314–29.
47. Vogels R, Spileers W, Orban GA (1989) The response variability of striate

cortical neurons in the behaving monkey. Exp Brain Res 77: 432–6.
48. Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge

rate and its implications for psychophysical performance. Nature 370: 140–3.

49. Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons:
implications for connectivity, computation, and information coding. J Neurosci

18: 3870–96.
50. Geisler W, Albrecht D (1997) Visual cortex neurons in monkeys and cats:

detection, discrimination and identification. Vis Neurosci 14: 897–920.

Suboptimal Decoding of Sensory Responses

PLoS Computational Biology | www.ploscompbiol.org 13 April 2012 | Volume 8 | Issue 4 | e1002453


