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Abstract

The abundance of different SSU rRNA (‘‘16S’’) gene sequences in environmental samples is widely used in studies of
microbial ecology as a measure of microbial community structure and diversity. However, the genomic copy number of the
16S gene varies greatly – from one in many species to up to 15 in some bacteria and to hundreds in some microbial
eukaryotes. As a result of this variation the relative abundance of 16S genes in environmental samples can be attributed
both to variation in the relative abundance of different organisms, and to variation in genomic 16S copy number among
those organisms. Despite this fact, many studies assume that the abundance of 16S gene sequences is a surrogate measure
of the relative abundance of the organisms containing those sequences. Here we present a method that uses data on
sequences and genomic copy number of 16S genes along with phylogenetic placement and ancestral state estimation to
estimate organismal abundances from environmental DNA sequence data. We use theory and simulations to demonstrate
that 16S genomic copy number can be accurately estimated from the short reads typically obtained from high-throughput
environmental sequencing of the 16S gene, and that organismal abundances in microbial communities are more strongly
correlated with estimated abundances obtained from our method than with gene abundances. We re-analyze several
published empirical data sets and demonstrate that the use of gene abundance versus estimated organismal abundance
can lead to different inferences about community diversity and structure and the identity of the dominant taxa in microbial
communities. Our approach will allow microbial ecologists to make more accurate inferences about microbial diversity and
abundance based on 16S sequence data.
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Introduction

The SSU rRNA gene (also known as the 16S rRNA gene,

referred to as ‘‘16S’’ hereafter) is widely used in studies of

microbial ecology as a ‘‘barcode gene’’ [1] to quantify microbial

community structure and diversity [2,3]. The widespread adoption

of 16S as a microbial barcode gene has been driven by several

desirable properties of the gene, including the fact that it is

universal across bacteria and archaea, it can be easily amplified

from a wide diversity of taxa at one time by the polymerase chain

reaction (PCR), it is phylogenetically informative, and it can be

used to identify and phylotype sequences based on extensive

databases of 16S sequences with associated taxonomic and

phylogenetic information [2,4]. In 2011 there were 3,574

publications in the Web of Science database matching a search

for the terms ‘‘16S and (communit* or diversit* or abundance*)’’.

There are numerous advantages to using 16S as a microbial

community barcode gene, but also numerous disadvantages

including amplification and sequencing bias and error [5,6],

difficulty with the accurate taxonomic identification and binning

of short sequences [7–10], and a lack of benchmark studies to

guide decisions about quality control, filtering, and analysis of 16S

sequence data sets derived from novel sequencing technologies.

Another disadvantage of the 16S gene that is particularly relevant

to inferring microbial abundance from 16S gene sequence

abundances is that genomic 16S copy number varies a great deal

across the tree of life [11–13]. For example, among bacterial taxa

with fully sequenced genomes, 16S copy number varies from a

single copy in Erythrobacter litoralis to fifteen copies in Photobacterium

profundum [14,15]. As a result of this variation in copy number, the

variation in the relative abundance of 16S gene sequences in an

environmental sample can be attributed both to variation in the

relative abundance of different organisms, and to variation in

genomic 16S copy number among those organisms ([12,16–18];

Figure 1). The use of a single-copy protein coding gene such as

rpoB as a microbial barcode would avoid this problem [11,19,20],
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but these genes are not as widely used as the 16S gene, and there

are biases inherent in the use of every barcode gene and

sequencing technology. Though metagenomic data will help in

allowing the use of genes that have less variation in copy number

[20], PCR amplification of 16S genes is still the method of choice

in many environmental surveys. The vast majority of such studies

either explicitly or (usually) implicitly assume that the relative

abundance of 16S gene sequences is an accurate measure of

relative abundance of the organisms containing those sequences in

analyses of community diversity and composition. The degree to

which this assumption is warranted, and the effect of treating 16S

gene abundance as a surrogate measure of organismal abundance

on estimates of microbial community structure, is unknown.

In this study we present a method for phylogenetic estimation of

16S copy number and organismal abundance that allows us to

improve estimation of microbial abundance and community

structure by accounting for copy number variation among taxa.

Our specific objectives are threefold. First, we demonstrate that

16S gene abundance is a function of both organismal abundance

and 16S gene copy number, and show how this relationship can

influence the ability to estimate community structure and diversity

from sequence data. Second, we develop a method that allows

estimation of organismal 16S gene copy number and abundance

as a function of 16S gene abundances in environmental samples,

and assess the performance of this method with simulated data

sets. Finally, we apply our method to several empirical data sets to

illustrate the practical effects of treating 16S gene abundance as a

measure of organismal abundance on measures of microbial

community diversity, structure, and composition.

Methods

Linking 16S gene abundance, copy number, and
organismal abundance

Our interest lies in relating the observed abundances of 16S

genes in biological samples to the abundance of cells, or organisms,

from which these genes arise. For any taxon i within a biological

community, the relationship between the abundance of 16S genes

from that taxon, Gi, and the abundance of organisms from that

taxon, Ni, is determined by the genomic 16S copy number of that

taxon, Ci, where Gi = NiCi. Defining the relative 16S gene

abundance of taxon i, gi~
GiP

i

Gi

, and the relative organismal

Figure 1. Conceptual diagram illustrating how variation in genomic 16S copy number could influence observed abundance of 16S
gene sequences in a community. Observed 16S gene sequence abundances (G) in an environmental sequencing data set (A) could be generated
by a variety of underlying organismal abundance distributions (N; e.g. B or C) depending on the genomic copy number of the 16S gene (C) within
individual cells of the organisms in the community (gray rectangles denote single cells, black symbols denote copies of the 16S gene from different
organisms).
doi:10.1371/journal.pcbi.1002743.g001

Author Summary

Microbial ecologists cannot observe their study organisms
directly, so they use molecular sequencing to measure the
abundance of different microbes living in the wild. The
most commonly used method for measuring the abun-
dance of different microbes is to collect a DNA sample
from an environment and sequence a particular gene, the
16S SSU rRNA gene (‘‘16S’’) from those samples. The
abundance of 16S sequences from different microbes is
then used as a surrogate measure of the abundance of the
microbial taxa in the community. One problem with the
use of the 16S gene as a measure of microbial abundance
is that many microbes have multiple copies of the gene in
their genome. Thus, variation in 16S gene abundances can
be caused by both genomic copy number variation and
variation in the abundance of organisms. In this study we
present a computational method that allows estimation of
the abundance and genomic 16S copy number of
microbes based on environmental sequencing of the 16S
gene. We use simulations and analysis of microbial
community data sets to demonstrate that estimating the
abundance of organisms from 16S data improves our
ability to accurately measure the diversity and abundance
of microbial communities.

Estimating 16S Copy Number and Microbial Abundance
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abundance of taxon i, ni~
NiX

i

Ni

, it follows that:

ni~

gi

CiX

i

gi

Ci

: ð1Þ

Here, the summation
X

i

gi

Ci

is across all taxa i within the

biological community, and is thus a constant. Because
X

i

gi = 1,

equation 1 shows that in communities where all taxa have 16S

copy number equal to one, all sampled taxa will have identical 16S

gene and organismal relative abundance. As the 16S copy number

of one or more taxa increases, disparity between the 16S gene

abundance and organismal abundance of individual taxa grows.

We can also readily explore community-level patterns of

microbial abundance. We characterize the taxa-gene distribution,

P(G), as the fraction of taxa in a biological sample with 16S gene

abundance G. Similarly, we characterize the taxa-abundance

distribution, P(N), as the fraction of taxa with N organisms. These

two distributions are related by:

P Gð Þ~
X

G~NC

P N,Cð Þ ð2Þ

Here, the summation is over all possible combinations of N and C

with product equal to G, and P(N,C) is the joint probability of a

taxon having an abundance N and copy number C. In the case

where organismal abundance and copy number are independent

of one another, this simplifies to:

P Gð Þ~
X

G~NC

P Nð ÞP Cð Þ, ð3Þ

where P(C) is the distribution of copy number across taxa within

the biological community.

To understand the potential differences between gene abundance

distributions and the organismal abundance distributions from

which they are derived, we used two approaches. First we

qualitatively compared the shapes of the distributions of P(N) and

P(G). To model the taxa-abundance distribution, P(N), we simulated

biological communities assuming a zero-truncated Poisson lognor-

mal distribution [21]. We chose the lognormal distribution for

illustrative purposes because it is one of the most widely discussed

taxa-abundance distributions in biology [22,23]. To model the

distribution of genomic 16S copy number across taxa, P(C), we

simulated biological communities with a zero-truncated Poisson

distribution. We chose the Poisson distribution because it approx-

imated the empirical copy number distribution in our reference data

set (Supporting Figure S1). For each simulated community we

calculated the resulting taxa-gene distribution, P(G), from equation 3.

Second, we examined how sampling from the simulated

biological communities with corresponding distributions P(N) and

P(G) resulted in different biodiversity estimates. Our motivation for

this was to understand the differences expected when sampling

genes versus individuals from communities. To do this we sampled a

fixed number of genes, or individuals, from the simulated

communities. We focused on a key attribute of the sample

distributions: the numbers of taxa that are unobserved, or hidden

behind the ‘veil line’ of the sampled taxa-abundance and taxa-gene

distributions [22]. For each sample we used standard parametric

tools to estimate the number of unobserved taxa for P(N) and P(G)

(reviewed in [24]). We tested whether estimating the total taxa

richness based on P(G) versus P(N) could lead to different inferences

about diversity using an ANOVA to compare predicted taxa

richness using these two different distributions.

Estimating copy number and organismal abundance
using 16S gene sequences

Environmental sequencing studies that utilize the 16S gene as a

barcode provide a measure of 16S gene relative abundance gi.

Given the relationship between 16S gene relative abundance gi,

copy number Ci, and organismal relative abundance ni outlined

above (Equation 1), we can estimate ni given information on gi and

Ci. But the genomic copy number Ci of the 16S gene (referred to as

‘‘copy number’’ hereafter) is usually not observed directly from

environmental sequence data because the full genomes of the

organisms containing the gene are not sequenced. Metagenomic

studies could theoretically address this issue [19,25], but

metagenomic sequencing generally provides insufficient sampling

depth to provide full genome coverage for all of the organisms in

diverse communities. To overcome this challenge, we use methods

from comparative biology and leverage phylogenetic signal in copy

number to estimate copy number and organismal abundance for

organisms for which we observe only 16S gene abundances.

The general approach we use to estimate copy number and

organismal abundance from environmental 16S sequences is to

place those sequences onto a reference phylogeny of organisms for

which genomic 16S copy number is known (Figure 2). Using

ancestral state reconstruction via phylogenetically independent

contrasts [26,27], we can then obtain an estimate of genomic 16S

gene copy number, ĈCi, for any taxon i. By combining the

estimated copy number ĈCi, and the observed relative gene

abundance of taxon i, gi, we can obtain an estimate of the relative

abundance of taxon i following Equation 1:

n̂ni~

gi

ĈCiX

i

gi

ĈCi

: ð4Þ

Reference database construction. We created a reference

database of taxa for which full-length 16S gene sequences and

estimates of genomic 16S gene copy number were available, based

on a data set of 881 bacterial taxa with fully sequenced genomes

[28]. Reference sequences were aligned to the GreenGenes core

set [29] with PyNAST [30] and masked with the GreenGenes

lanemask. We constructed a phylogeny of the reference sequences

using RAxML [31] with a GTR+Gamma model of evolution.

The reference data set contained several clades of very closely

related taxa (i.e. 27 strains of Escherichia coli). Because short read

placement methods and ancestral state reconstruction methods do

not deal well with the extremely short or zero-length branches

linking taxa in these clades, we pruned the reference data set so

that for groups of very closely related organisms separated by

branch lengths ,0.01, a single representative of the group was

chosen at random and retained and the others were eliminated.

This resulted in the elimination of 397 of the 881 reference taxa,

leaving 484 taxa in the pruned reference data set. The eliminated

taxa were almost exclusively multiple strains of a single bacterial

species, or multiple species from a genus, with similar or identical

genomic 16S copy number.

Estimating 16S Copy Number and Microbial Abundance
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Measures of 16S copy number for each reference taxon were

obtained through enumeration of genes annotated as 16S rRNA

genes in each reference taxon’s genome. For genomes for which

the 16S rRNA genes were not annotated, the RNAmmer program

was used to identify the 16S rRNA genes [32]. We assessed the

accuracy of our method for estimating genomic 16S copy number

by comparing our estimates of copy number with estimates for the

same strains in another database of genomic 16S copy number

estimates (the rrnDB database [15]). For the 521 strains present in

both data sets, copy number estimates were almost perfectly

correlated (r = 0.99, P,0.001) and agreed exactly or differed by a

single copy for 99% of strains.

The use of phylogenetic methods for copy number estimation

depends on the existence of a phylogenetic signal in genomic 16S

copy number. Phylogenetic signal is a tendency for closely related

species to possess similar values of a trait [33]. We measured

phylogenetic signal in 16S copy number using the K statistic [34],

which compares the amount of signal in a trait to the amount

expected under a Brownian motion model of trait evolution. In

this framework, higher values of K indicate stronger phylogenetic

signal; K values close to zero indicate random phylogenetic signal,

while K = 1 is the expected signal under a Brownian motion model

of trait evolution. An associated P-value is computed by comparing

the variance of phylogenetically independent contrasts for the

observed phylogeny and data to the random values expected after

permuting taxa labels across the phylogeny. To better meet

assumptions of normal distribution, we square-root transformed

copy number for all subsequent analyses.

Estimating copy number and organismal abundance for

novel taxa. We used the framework of phylogenetically

independent contrasts [27] to estimate copy number for novel

taxa, such as the taxa observed during sequencing of environ-

mental samples. Given a reference phylogeny with copy number

known for all reference taxa, to estimate copy number for a

novel taxon we reroot the phylogenetic tree at the common

ancestor of the novel taxon and its closest relative on the

reference phylogeny (Figure 2). Using phylogenetically inde-

pendent contrasts for ancestral state reconstruction [35], we

then estimate the predicted copy number at the new root node

of the phylogeny, and use the branch length connecting the root

and the novel taxon to adjust our estimate of uncertainty in the

novel taxon’s 16S copy number. This results in an estimate of

16S copy number plus the uncertainty in that estimate for any

taxon that can be placed on the reference phylogeny. Estimated

copy number and gene abundance can then be combined

following equation 4 to provide an estimate of the relative

abundance of the organisms contributing each sequence to the

community.

Software implementation. We developed a software pipe-

line to estimate genomic 16S copy number and organismal

abundance for 16S sequences derived from an environmental

sample. A set of 16S sequences derived from an environmental

sample can be aligned and masked to the same Greengenes core

data set as the reference taxa using PyNAST [30] as

implemented in the QIIME pipeline [36]. The aligned and

masked environmental sequences can then be placed on the

reference phylogeny using pplacer [37]. The resulting phylog-

eny of reference plus environmental sequences are then

combined with the copy number information to provide

estimates of copy number for the environmental sequences,

based on phylogenetically independent contrasts ancestral state

reconstruction. These copy number estimates can then be used

to estimate organismal relative abundance for a community data

set of 16S gene abundances. The steps of this pipeline are

implemented in a series of command line and R scripts [38] and

associated reference data sets (Supporting Dataset S1). Func-

tions for estimation of copy number and organismal abundance

will be included in the picante R package [39] and pplacer [37].

Estimation of copy number and organismal abundance for

several empirical data sets took approximately one hour per

10,000 sequences on a 2.26 GHz Intel Xeon processor. Thus,

the method we present is currently usable with data sets

comprised of tens to hundreds of thousands of operational

taxonomic units (OTUs), and could easily be extended for use

with data sets orders of magnitude larger, since compute time

will scale linearly with the number of query sequences, and the

algorithm could easily be parallelized.

Assessing effects of read length and phylogenetic

placement uncertainty on copy number and relative

abundance estimation accuracy. We used leave-one-out

cross-validation analysis to assess the accuracy of copy number

Figure 2. Conceptual diagram showing how copy number can
be estimated for environmental sequences using a reference
phylogeny. Given a reference phylogeny with copy number known for
species A, B, and C, trait values for a hypothetical novel taxon or
sequence X (A) can be estimated in a phylogenetically independent
contrasts framework by rerooting the phylogeny at the ancestor of X
and its closest relative in the reference phylogeny (B). After rerooting, a
predicted trait value and standard error for X can be calculated using
ancestral state reconstruction.
doi:10.1371/journal.pcbi.1002743.g002

Estimating 16S Copy Number and Microbial Abundance
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estimates for the 484 reference taxa data set. We measured

estimation bias as the mean difference between observed and

predicted copy number, and estimation error as the mean absolute

difference between observed and predicted copy number. We also

assessed the effect of reference data set size on estimation error and

bias (see Supporting Text S1 and Supporting Figure S2).

We quantified the performance of our copy number estimation

method in terms of ability to estimate organismal abundance

accurately, taking into account uncertainty in phylogenetic

placement and copy number estimation for environmental

sequences. We simulated communities by selecting 100 sequences

at random from the pruned reference phylogeny to represent

members of an ecological community (OTUs). We simulated

organismal relative abundance (ni) values for each OTU assuming

a lognormal distribution of abundance within the community, and

calculated gi (16S gene relative abundance) as a function of ni and

the known genomic 16S copy number Ci for each OTU (Equation

3). We then simulated 16S rRNA sequencing of the simulated

community by sampling 1,000 sequences with replacement from

the community, with probability of sampling proportional to gene

abundance gi.

For each simulated environmental sample, we placed OTUs

from the simulated environmental sample onto a version of the

reference phylogeny with the 100 OTUs in the simulated

community removed from the reference phylogeny. We then

estimated copy number Ci for the 100 OTUs in the community

and estimated n̂ni. We repeated this simulation 100 times using

both the full-length reference sequences, as well as sequences

shortened to a length of 351 nucleotides to simulate the read

length obtained from high-throughput pyrosequencing of the

V2V3 hypervariable region of the 16S gene [40].

These simulations allowed us to evaluate the impact of errors in

phylogenetic placement and copy number estimation on the ability

of our method to accurately estimate the copy number and relative

abundance of taxa from their gene sequences and abundances. We

compared the correlations between ĈCi and Ci for the OTUs in

each simulated community, and compared the correlations

between gi and n̂ni versus ni.

Case studies: effect of copy number variation on
community structure in empirical data sets

To illustrate the impact of variation in copy number on

empirical estimates of microbial community structure and

diversity, we reanalyzed data from two previously published

studies: a survey of microbial communities along an oceanic depth

gradient using Sanger sequencing [41], and a survey of the skin,

gut, and mouth microbiome of a human female using pyrose-

quencing (subject F1-3 from [42]).

For each data set, we estimated the relative abundance n̂ni for each

OTU using our copy number estimation pipeline. We then asked

whether accounting for copy number variation influenced several

commonly used measures of community structure and diversity for

each data set. We estimated the fit of gi and n̂ni abundance distributions

from these data sets to a lognormal model of relative abundance

distributions. We classified each sequence in the empirical data sets to

the taxonomic order level using the RDP taxonomic classifier [43] and

evaluated changes in the relative abundance of bacterial orders based

on gi versus n̂ni. We measured overall community dissimilarity among

samples from each study using the weighted UniFrac phylogenetic

distance metric [44], based on the both the gi and n̂ni values, and then

performed a hierarchical clustering with complete linkage to evaluate

the overall similarity of samples in each study.

Figure 3. Taxa-abundance and taxa-gene curves (number of species in log2-abundance octaves) fit to a simulated distribution of
organismal abundances (Ni; black) and resulting gene abundances (Gi; red) for 5000 species. For each species, abundance P(N) was
simulated as a zero-truncated lognormal distribution (mean = 2, variance = 4), copy number P(C) was simulated as a zero-truncated Poisson
distribution (mean = 4, variance = 4), and P(G) was calculated as P(G) = P(N)P(C) following Equation 3.
doi:10.1371/journal.pcbi.1002743.g003

Estimating 16S Copy Number and Microbial Abundance
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Results

Linking 16S gene abundance, copy number, and
organismal abundance

Plots of simulated P(N) and P(G) abundance distributions

(Figure 3) indicated that the shape of these distributions are

different. For the simulation parameters we considered, treating Gi

as a measure of organismal abundance lead to an underestimation

of the abundance of rare taxa and overestimation of the

abundance of the most abundant taxa compared to the

distribution of Ni (Figures 3 and 4). Estimates of total species pool

richness fit using a parametric method [23] were significantly

lower for Gi than for Ni (ANOVA; all P,0.01; Figure 4).

Estimating copy number and organismal abundance
using 16S gene sequences

Phylogenetic signal in copy number and copy number

estimation accuracy. There is phylogenetic signal in 16S copy

number in bacteria (Figure 5; K = 0.48, P,0.001) based on

analysis of square-root transformed copy number for the 484

Figure 4. Rank abundance distributions and estimated species pool richness from 100 simulations of communities of (A) 1000, (B)
10000, and (C) 50000 individual genes or organisms sampled from an underlying distribution of abundances (P(N)) and genes
(P(G)). For each simulation, a distribution of organismal abundances (P(N); black) and resulting gene abundances (P(G); red) was generated for 5000
species following the methods described in the caption for Figure 3. Rank-abundance distributions are presented for a single randomly chosen
simulation at each sampling intensity. For each simulation, we estimated the number of species S in the species pool using a parametric method
[22,23], with the true S = 5000. Estimates of species pool size were significantly higher and closer to the true value based on N versus G at all sampling
intensities (ANOVA; P,0.01).
doi:10.1371/journal.pcbi.1002743.g004

Estimating 16S Copy Number and Microbial Abundance
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reference taxa, supporting the use of a phylogenetic approach to

predicting copy number. The leave-one-out cross-validation

analysis of observed and predicted copy number for the 484

reference taxa indicated that copy number can be predicted

accurately through the use of phylogenetic prediction methods; the

mean prediction bias (the mean difference between observed and

predicted copy number) for the 484 reference taxon data set was

20.05 copies and the mean prediction error (the mean absolute

difference between observed and predicted copy number) was 1.04

copies (Supporting Text S1, Supporting Figure S2).

Effects of read length and phylogenetic placement

uncertainty on relative abundance estimation

accuracy. Our simulations of community OTU abundance

and copy number estimation indicated that estimated organismal

abundances n̂ni were more similar to true abundances than were

gene abundances gi (Figure 6). The correlation between gene

abundance and true abundance was significantly weaker

(r = 0.7060.04) than the correlation between true abundance

and estimated organismal abundance n̂ni based on full-length

(r = 0.8160.04) and 350 bp (r = 0.8060.04) sequences (ANOVA;

F2,297 = 223.5, P,0.001). The correlation between true copy

number and estimated copy number did not significantly differ

between full length versus 350 bp sequences (r = 0.8260.04;

ANOVA; F1,198 = 0.1, P = 0.74).

Case studies: effect of copy number variation on
community structure in empirical data sets

Copy number variation can have substantial effects on

inferences about numerous aspects of community diversity and

structure including relative abundance distributions, the estimated

abundance of different taxa, and the overall similarity of ecological

communities. In both empirical data sets, rank abundance

distribution plots of n̂ni and gi revealed that failure to account for

Figure 5. Bacterial reference phylogeny with genomic 16S copy number indicated with black bars (bar length proportional to
genomic 16S copy number) and taxonomic order (determined using RDP Taxonomic Classifier [43]) indicated with color shading of
branches.
doi:10.1371/journal.pcbi.1002743.g005

Figure 6. The strength of correlations between true abundance
(ni) versus observed gene abundance (gi) or estimated relative
abundance (n̂ni) for 100 simulated communities generated by
drawing 100 taxa from the 484-taxon reference phylogeny
followed by estimation of the phylogenetic placement and
copy number for those taxa. We simulated phylogenetic placement
and copy number estimation using full-length 16S sequences and
sequences trimmed to the 351 bp V2V3 hypervariable region to
simulate pyrosequencing data. Letter codes at top of panel indicate
simulations that differed according to a Tukey HSD test (P,0.05;
simulations that share a letter not significantly different).
doi:10.1371/journal.pcbi.1002743.g006

Estimating 16S Copy Number and Microbial Abundance

PLOS Computational Biology | www.ploscompbiol.org 7 October 2012 | Volume 8 | Issue 10 | e1002743



copy number variation resulted in gi underestimating the relative

abundance of the most abundant taxa and overestimating the

relative abundance of the rarest taxa relative to n̂ni (Figure 7). The

fit of empirical rank abundance distributions of n̂ni and gi to a log-

normal distribution model was much better for n̂ni than for gi

(human microbiome: AIC(gi) = 2200903, AIC(n̂ni) = 2215791;

ocean: AIC(gi) = 24573.7, AIC(n̂ni) = 24808.1).

In addition to changes in the overall shape of rank-abundance

distributions, the relative abundance of several microbial taxa also

changed substantially after accounting for copy number variation

among taxa. In the human microbiome data set, these changes did

not greatly modify the overall abundance structure of the

community (Figure 8). However, in the ocean data set the relative

abundance of several taxa differed greatly when based on gene

versus organismal abundance estimates (Figure 8). For example,

the relative abundance of sequences assigned to Cyanobacteria

Family II nearly doubled and this taxonomic group went from

being the ninth most abundant based on gene abundance

(gi = 0.04) to the second most abundant based on estimated

organismal abundance (n̂ni = 0.09).

The use of organismal versus gene abundances did not have a

major effect on the clustering of ocean communities based on their

phylogenetic similarity, with samples tending to cluster together

with other samples from similar depths regardless of whether gi or

n̂ni was used to calculate weighted UniFrac similarity of samples

(results not shown). However, for the human microbiome data set,

using gi versus n̂ni as the abundance measure changed the overall

similarity of communities from different habitats as measured by

hierarchical clustering of communities based on the weighted

UniFrac phylogenetic distance metric (Figure 9). Based on gene

abundances, microbial communities from the inner ear/earwax

clustered with communities from the sole of the foot (Figure 9A),

but based on estimated organismal abundance the inner ear/

earwax community formed a distinct cluster with communities

from the nostril, and these two communities from relatively moist

skin microhabitats were compositionally distinct from all other

microbial communities on drier skin sites and the gut and mouth

(Figure 9B).

Discussion

We have demonstrated how data on the sequence and

abundance of 16S genes in environmental samples can be used

to accurately estimate 16S gene copy number and improve

estimates of organismal abundance in microbial communities.

Using simulated and empirical data sets, we have shown that

treating gene abundance as if it were equivalent to organismal

abundance can lead to misleading inferences about microbial

community structure and diversity. Our simulations indicate that

genomic 16S copy number can be estimated accurately for

environmental sequences through the use of phylogenetic refer-

ence data, and that failure to account for copy number variation

among taxa in environmental samples can lead to the observed

relative abundance of 16S sequences (gi) being weakly correlated

with the true abundance of organisms in the community (ni).

Our findings have wide-ranging implications for studies treating

16S gene sequence abundances as a measure of organismal

abundances in communities. In some simulations, less than 30% of

the variance in true organismal abundance was explained by

observed gene abundance (Figure 6). The weak correlations

between observed 16S gene abundance and true organismal

abundance suggest that estimation of organismal abundance from

gene abundance and copy number should be a routine part of any

16S sequencing study, since it will reduce one of the numerous

Figure 7. Rank-abundance distributions for two empirical microbial community data sets from (A) human skin microbiome and (B)
ocean bacterial communities. Solid line indicates the expected relative abundance distribution under a lognormal distribution. Gray points are
the observed relative gene abundances (gi) of sequences in each data set, and black points are the estimated relative organismal abundances (n̂ni).
doi:10.1371/journal.pcbi.1002743.g007
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potential biases inherent to inferring microbial community

structure from environmental sequencing data. Analyses of several

empirical data sets indicated that copy number variation can affect

numerous aspects of community structure that are commonly

measured by studies using the 16S gene, including relative

abundance distributions, estimates of the abundance of different

taxa, and overall measures of community diversity and similarity.

The effects of copy number variation on community structure

will not be consistent across studies, as they will depend on the

relative copy number of taxa in a particular community, and on

the distribution of, and relationship between, Ni and Ci in that

community. Our simulations of gene and organismal abundance

distributions, P(G) and P(N), indicate that these distributions can

have different properties. Under the simulation parameters we

explored, there was a tendency for P(G) to have lower abundances

for the rarest species and higher abundances for the most

abundant species in comparison with P(N). Estimates of species

richness based on gene abundances were also consistently lower

than estimates based on organismal abundances. These differences

are likely due both to the fact that P(G) is a function of P(C) and

P(N) (cf. Equations 2 and 3) leading to a difference in the shape of

gene and organismal abundance distributions, and due to

sampling depth being effectively lower for gene abundance

distributions than for organismal abundance distributions for a

given number of genes/individuals sampled, since multiple copies

of the genes of each organism make up the pool of genes in the

community. We simulated P(N) and P(C) as statistically indepen-

dent distributions, but it is also possible to imagine situations

where P(N) and P(C) are correlated (e.g. where abundant taxa

have consistently higher or lower 16S copy number), which could

further obscure relationships between gene abundance and

organismal abundance.

In the abundance distributions for the empirical data sets we

examined, we observed that gene abundances were generally

higher for the rarest taxa and lower for the most abundant taxa

compared to estimated organismal abundances, a pattern opposite

that seen in our simulations. This discrepancy highlights the fact

that relationships between gene and organismal abundances will

vary depending on numerous factors including the distribution of

organismal abundances and copy numbers as well as the

relationship between organismal abundance and copy number in

natural communities, and further highlights the need to estimate

copy number and organismal abundance for empirical data sets.

There was not always a large effect of using gene versus

organismal abundance to measure community structure in the

empirical data sets we examined, but we did see major impacts on

our inferences about community structure in some data sets,

including changes in estimates of the identity of the common and

rare taxa within communities and the similarity of communities

among different habitats. If there is not a consistent difference in

Figure 8. Comparison of relative abundance of the 20 most abundant taxonomic classes in (A) human microbiome and (B) ocean
data sets based on observed gene abundances (gi) and estimated organismal abundances (n̂ni).
doi:10.1371/journal.pcbi.1002743.g008
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copy number between abundant and rare taxa, there could be

little effect of adjusting relative abundance to account for copy

number, but the only way to assess differences in gene versus

organismal abundances for a particular community will be to

estimate copy number and organismal abundance for the taxa in

that community.

There is great interest in understanding the structure and dynamics

of the ‘‘rare biosphere’’, the rare microbial taxa whose detection in

ecological communities was only possible with the advent of high-

throughput sequencing technology and deep sequencing of environ-

mental samples [45]. In our simulations and analyses of ecological

communities, we found that estimates of the relative abundance of

rare taxa were consistently affected by variation in copy number,

likely due to the fact that the effects of copy number on detection

probability and abundance estimation will be strongest for the rarest

taxa in a community [46]. It will be useful to disentangle the effects of

copy number variation versus ecological rarity per se on our

perception of the ecology of the rare biosphere.

The phylogenetic method for copy number estimation we

present in this study could be applied to predict any microbial trait

for which reference sequence and trait data are available, and will

help to further develop a trait-based approach to microbial

ecology [47]. Numerous hypotheses about the environmental

distribution of microbial traits including genomic 16S copy

number have been proposed [48,49] and it will be possible to

test these hypotheses using estimation of the traits of microbial

communities. This approach will complement metagenomic

approaches to understanding the distribution of microbial traits

and functions, since it could be applicable to phenotypic traits of

microbes that cannot be directly measured from metagenomic

data such as genomic copy number or ecological attributes of taxa

such as growth rate or pathogenicity.

Since uncertainty in copy number estimates depends on the

branch length separating environmental sequences from reference

sequences, there will be greater uncertainty in estimates of copy

number for sequences from poorly known and unculturable

bacterial clades lacking close relatives in reference genomic data

sets. However, for the empirical data sets we analyzed, the largest

standard error of copy number predictions was less than one copy

per sequence, even for the environmental sequences distantly

related to all taxa in the reference data set. Our ability to estimate

copy number accurately will be improved as the genomes of

greater numbers of uncultured and rare microorganisms continue

to be sequenced. The method we present in this study can be used

with any set of reference sequences, and as greater numbers of

genomes from uncultured and phylogenetically diverse microbes

are sequenced [28], we expect that our ability to estimate copy

number and abundance will become even more accurate.

Understanding patterns of organismal abundance across space,

time and environments lies at the core of microbial biodiversity

and biogeography research. The ability to estimate copy number

and abundance for microorganisms based on environmental

sequences opens the door to the application of numerous

ecological methods developed for estimating taxa richness, taxa

range distributions, and community similarity while taking

variation in detection probability into account. Future studies

utilizing the copy number and abundance estimation approach we

have developed will improve our understanding of the structure

and dynamics of microbial communities.

Supporting Information

Dataset S1 Software for copy number and organismal abun-

dance estimation.

(ZIP)

Figure S1 Histogram of genomic 16S copy number variation

across the 881 bacterial genomes in the full reference data set.

(TIF)

Figure S2 Error (absolute difference between observed and

predicted) and bias (difference between observed and predicted)

for genomic 16S copy number predictions based on leave-one-out

cross-validation for 484 bacterial taxa in pruned reference data set.

Error bars indicate standard error across 100 random draws of

reference taxa from the 484-taxon reference phylogeny.

(TIF)

Figure 9. Hierarchical clustering (complete linkage) of commu-
nities from the microbiome of a human (subject F1-3 in [13])
based on phylogenetic similarity (weighted UniFrac distance
metric) for observed relative gene abundances gi (A) and for
estimated organismal relative abundances n̂ni (B). Samples are
shaded based on human microbiome habitat characteristics (black = -
gut/mouth, gray = moist skin sites, white = dry skin sites).
doi:10.1371/journal.pcbi.1002743.g009
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Text S1 Effects of reference data set size on copy number

estimation accuracy.
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