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Abstract

A scientific ontology is a formal representation of knowledge within a domain, typically including central concepts, their
properties, and relations. With the rise of computers and high-throughput data collection, ontologies have become
essential to data mining and sharing across communities in the biomedical sciences. Powerful approaches exist for testing
the internal consistency of an ontology, but not for assessing the fidelity of its domain representation. We introduce a family
of metrics that describe the breadth and depth with which an ontology represents its knowledge domain. We then test
these metrics using (1) four of the most common medical ontologies with respect to a corpus of medical documents and (2)
seven of the most popular English thesauri with respect to three corpora that sample language from medicine, news, and
novels. Here we show that our approach captures the quality of ontological representation and guides efforts to narrow the
breach between ontology and collective discourse within a domain. Our results also demonstrate key features of medical
ontologies, English thesauri, and discourse from different domains. Medical ontologies have a small intersection, as do
English thesauri. Moreover, dialects characteristic of distinct domains vary strikingly as many of the same words are used
quite differently in medicine, news, and novels. As ontologies are intended to mirror the state of knowledge, our methods
to tighten the fit between ontology and domain will increase their relevance for new areas of biomedical science and
improve the accuracy and power of inferences computed across them.
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Introduction

Controlled terminologies and ontologies are indispensable for

modern biomedicine [1]. Ontology was historically restricted to

philosophical inquiry into the nature of existence, but logicians at

the turn of the 20th Century translated the term into a precise

representation of knowledge using statements that highlight

essential qualities, parts and relationships [2]. In the early

1970’s, explicit approaches to knowledge representation emerged

in artificial intelligence [3], and in the 1990’s were christened

ontologies in computer science [4]. These representations were

promoted as stable schemas for data—a kind of object-oriented

content—to facilitate data sharing and reuse. Ontologies have

since been used intensively for research in biomedicine, astrono-

my, information science and many other areas. Biomedical

scientists use ontologies to encode the results of complex experi-

ments and observations consistently, and analysts use the resulting

data to integrate and model system properties. In this way,

ontologies facilitate data storage, sharing between scientists and

subfields, integrative analysis, and computational reasoning across

many more facts than scientists can consider with traditional

means.

In addition to their computational utility, key biomedical

ontologies serve as lingua franca: they allow numerous researchers

to negotiate and agree on central, domain-specific concepts and

their hierarchical interrelations. Concepts commonly modeled

with ontologies include organismal phenotypes [5–7] and gene

functions in genetics and genomics [1,8]; signs, symptoms and

disease classifications in medicine [9]; species, niche names and

inter-species relations in ecology and evolution [10]. Building an

ontology in any of these areas faces similar challenges: lack of an

external standard that defines the most critical concepts and

concept linkages for the ontology’s proposed function; vast

numbers of aliases referring to the same concept; and no yardstick

with which to compare competing terminologies. This paper

considers scientific ontologies generally and then develops a

framework and validates a family of measures that helps to

overcome these challenges.

Proper ontologies, group ontologies and free text
The word ontology historically represented the product of one

person’s philosophical inquiry into the structure of the real world:

What entities exist? What are their properties? How are they

grouped and hierarchically related?

While this original definition still holds in philosophy, the

computational interpretation of an ontology is a data structure

typically produced by a community of researchers through a

procedure that resembles the work of a standards-setting

committee or a business negotiation (L. Hunter, 2010, personal

communication). To agree on the meaning of shared symbols, the

process involves careful utility-oriented design. The collective

ontologies that result are intended to be used as practical tools,
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such as to support the systematic annotation of biomedical data by

a large number of researchers. A standard domain-specific

ontology used in the sciences today includes a set of concepts

representing external entities, a set of relations, typically defined as

the predicates of statements linking two concepts (such as cat is-an

animal, cat has-a tail), and taxonomy or hierarchy defined over

concepts, comprised by the union of relations. An ontology may

also explicitly represent a set of properties associated with each

concept and rules for these properties to be inherited from parent

to child concept. Furthermore, formal ontologies sometimes

incorporate explicit axioms or logical constraints that must hold

in logical reasoning over ontology objects.

In practice, what different research groups mean by the term

ontology can range from unstructured terminologies, to sets of

concepts and relations without complete connection into a

hierarchy, to taxonomies, to consistent, formal ontologies with

defined properties and logical constraints.

An ontology developed by group represents a glimpse into the

specific worldviews held within that group and its broader domain.

By the same logic, we can consider the union of all published

articles produced by a scientific community as a much more complete

sample of scientific worldviews. While a research team that writes

a joint paper agrees on its topic-specific worldview to some extent,

its collective domain ontology is neither explicitly defined, nor free

from redundancy and contradiction. Insofar as scientists commu-

nicate with each other and respond to prior published research,

however, these worldviews spread and achieve substantial

continuity and homogeneity [11]. A large collection of scientific

documents therefore represents a mixture of partially consistent

scientific worldviews. This picture is necessarily complicated by the

flexibility and imprecision of natural language. Even when

scientists agree on specific concepts and relations, their corre-

sponding expressions often differ, as the same meaning can be

expressed in many ways.

Nevertheless, if we accept that the published scientific record

constitutes the best available trace of collective scientific

worldviews, we arrive at the following conclusion: Insofar as an

ontology is intended to represent knowledge within a scientific

domain, it should correspond with the scientific record. Moreover,

an ontology would practically benefit from evaluation and

improvement based on its match with a corpus of scientific prose

that represents the distribution of its (potential) users’ worldviews.

Previous work on ontology evaluation
Previously proposed metrics for ontology evaluation can be

divided into four broad categories: Measures of an ontology’s (1)

internal consistency (2) usability (or task-based performance), (3) comparison

with other ontologies and (4) match to reality. While this review is

necessarily abbreviated, we highlight the most significant ap-

proaches to ontology evaluation.

Metrics of an ontology’s internal consistency are nicely reviewed by

Yu and colleagues [12]. They especially highlight: clarity, coherence,

extendibility, minimal ontological commitment, and minimal encoding bias

[4]; competency [13]; consistency, completeness, conciseness, expandability,

and sensitiveness [14]. The names of these metrics suggest their

purposes. For example, conciseness measures how many unique

concepts and relations in an ontology have multiple names.

Consistency quantifies the frequency with which an ontology

includes concepts that share subconcepts and the number of

circularity errors.

Measurements of an ontology’s usability [15–17] build on

empirical tools from cognitive science that assess the ease with

which ontologies can be understood and deployed in specific tasks

[18]. Results from such studies provide concrete suggestions for

improving individual ontologies, but they are also sometimes used

to compare competing ontologies. For example, Gangemi and

colleagues [19] described a number of usability-profiling measures,

such as presence, amount, completeness, and reliability, that assess the

degree to which parts of an ontology are updated by ontologists

[19]. The authors also discuss an ontology’s ‘‘cognitive ergonom-

ics’’: an ideal ontology should be easily understood, manipulated,

and exploited by its intended users.

Approaches to ontology comparison typically involve the 1) direct

matching of ontology concepts and 2) the hierarchical arrange-

ment of those concepts, often between an ontology computation-

ally extracted and constructed from text and a reference or ‘‘gold

standard’’ ontology built by experts. Concept comparison draws

on the information retrieval measures of precision and recall

[12,20,21] (sometimes called term [22] or lexical precision and recall

[22]; see Materials and Methods section below for precise

definitions of precision and recall). Matching ontology terms,

however, raises challenging questions about the ambiguity of

natural language and the imperfect relationship between terms

and the concepts that underlie them. Some ignore these challenges

by simply assessing precision and recall on the perfect match

between terms. Others deploy string similarity techniques like

stemming or edit distance to establish a fuzzy match between

similar ontology terms [23,24].

The second aspect of ontology matching involves a wide variety

of structural comparisons. One approach is to measure the

Taxonomic Overlap, or intersection between sets of super- and

subconcepts associated with a concept shared in both ontologies,

then averaged across all concepts to create a global measure [23–

25]. Another uses these super and subconcept sets to construct

asymmetric taxonomic precision and recall measures [26], closely

related to hierarchical precision and recall [27,28]. A similar approach

creates an augmented precision and recall based on the shortest path

between concepts [29] or other types of paths and a branching

factor [30]. An alternate approach is the OntoRand index that uses

a clustering logic to compare concept hierarchies containing

shared concepts [31]. The relative closeness of concepts is assessed

based on common ancestors or path distance, and then hierarchies

are partitioned and concept partitions are compared.

Author Summary

An ontology represents the concepts and their interrela-
tion within a knowledge domain. Several ontologies have
been developed in biomedicine, which provide standard-
ized vocabularies to describe diseases, genes and gene
products, physiological phenotypes, anatomical structures,
and many other phenomena. Scientists use them to
encode the results of complex experiments and observa-
tions and to perform integrative analysis to discover new
knowledge. A remaining challenge in ontology develop-
ment is how to evaluate an ontology’s representation of
knowledge within its scientific domain. Building on classic
measures from information retrieval, we introduce a family
of metrics including breadth and depth that capture the
conceptual coverage and parsimony of an ontology. We
test these measures using (1) four commonly used medical
ontologies in relation to a corpus of medical documents
and (2) seven popular English thesauri (ontologies of
synonyms) with respect to text from medicine, news, and
novels. Results demonstrate that both medical ontologies
and English thesauri have a small overlap in concepts and
relations. Our methods suggest efforts to tighten the fit
between ontologies and biomedical knowledge.

A Yardstick for Ontologies
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Approaches for matching an ontology to reality are more diverse and

currently depend heavily on expert participation [12]. For

example, Missikoff and colleagues [32] suggested that an

ontology’s match to reality be evaluated by measuring each

ontology concept’s ‘‘frequency of use’’ by experts in the

community. Missikoff and colleagues’ ultimate goal was to

converge to a consensus ontology negotiated among virtual users

via a web-interface. Smith [33] recommended an approach to

ontology evolution which rests on explicitly aligning ontology

terms to unique entities in the world studied by scientists.

Ontology developers would then be required to employ a process

of manual tracking, whereby new discoveries about tracked entities

would guide corresponding changes to the ontology. In a related

effort, Ceusters and Smith suggested studying the evolution of

ontologies over time [34]: they defined an ontology benchmarking

calculus that follows temporal changes in the ontology as concepts

are added, dropped and re-defined.

A converse approach to matching ontologies with domain

knowledge appears in work that attempts to learn ontologies

automatically (or with moderate input from experts) from a

collection of documents [35–38] using machine learning and

natural language processing. The best results (F-measure around

0.3) indicate that the problem is extremely difficult. Brewster and

colleagues [36,39] proposed (but did not implement) matching

concepts of a deterministic ontology to a corpus by maximizing the

posterior probability of the ontology given the corpus [36,39]. In

this framework, alternative ontologies can be compared in terms of

the posterior probability conditioned on the same corpus. Their

central idea, which shares our purpose but diverges in detail, is

that ‘‘the ontology can be penalized for terms present in the corpus

and absent in ontology, and for terms present in the ontology but

absent in the corpus’’ (see also [19]). Each of these approaches to

mapping ontologies to text face formidable challenges associated

with the ambiguity of natural language. These include synonymy

or multiple phrases with the same meaning; polysemy or identical

expressions with different meanings; and other disjunctions

between the structure of linguistic symbols and their conceptual

referents.

In summary, among the several approaches developed to

evaluate an ontology’s consistency, usability, comparison and

match to reality, metrics that evaluate consistency are the most

mature among the four and have inspired a number of practical

applications [40–42]. The approach that we propose and

implement here belongs to the less developed areas of matching

ontologies to each other and to discourse in the world. When

considering approaches that compare ontologies to each other and

to discourse, metrics comparing ontologies to one another jump

from the comparison of individual concepts to the comparison of

entire concept hierarchies without considering intermediate

concept-to-concept relationships. This is notable because discourse

typically only expresses concepts and concept relationships, and so

the measures we develop will focus on these two levels in mapping

ontologies to text.

Our purpose here is to formally define measures of an

ontology’s fit with respect to published knowledge. By doing this

we attempt to move beyond the tradition of comparing ontologies

by size and relying on expert intuitions. Our goal is to make the

evaluation of an ontology computable and to capture both the

breadth and depth of its domain representation—its conceptual

coverage and the parsimony or efficiency of that coverage. This

will allow us to compare and improve ontologies as knowledge

representations. To test our approach, we initially analyzed four of

the most commonly used medical ontologies against a large corpus

of medical abstracts. To facilitate testing multiple ontologies in

reference to multiple domains we also analyzed seven synonym

dictionaries or thesauri—legitimate if unusual ontologies [43]—

and compared their fit to three distinctive corpora: medical

abstracts, news articles, and 19-century novels in English.

Medical ontologies
Medical ontologies have become prominent in recent years, not

only for medical researchers but also physicians, hospitals and

insurance companies. Medical ontologies link disease concepts and

properties together in a coherent system and are used to index the

biomedical literature, classify patient disease, and facilitate the

standardization of hospital records and the analysis of health risks

and benefits. Terminologies and taxonomies characterized by

hierarchical inclusion of one or a few relationship types (e.g.,

disease_conceptx is-a disease_concepty) are often considered

lightweight ontologies and are the most commonly used in medicine

[44,45]. Heavyweight ontologies capture a broader range of

biomedical connections and contain formal axioms and constraints

to characterize entities and relationships distinctive to the domain.

These are becoming more popular in biomedical research,

including the Foundational Model of Anatomy [46] with its

diverse physical relations between anatomical components.

The first, widely used medical ontology was Jacques Bertillon’s

taxonomic Classification of Causes of Death, adopted in 1893 by

the International Statistical Institute to track disease for public

health purposes [47]. Five years later, at a meeting of the

American Public Health Association in Ottawa, the Bertillon

Classification was recommended for use by registrars throughout

North America. It was simultaneously adopted by several Western

European and South American countries and updated every ten

years. In the wake of Bertillon’s death in 1922, the Statistics

Institute and the health section of the League of Nations drafted

proposals for new versions and the ontology was renamed the

International List of Causes of Death (ICD). In 1938 the ICD

widened from mortality to morbidity [48] and was eventually

taken up by hospitals and insurance companies for billing

purposes. At roughly the same time, other ontologies emerged,

including the Quarterly Cumulative Index Medicus Subject

Headings, which eventually gave rise to the Medical Subject

Headings (MeSH) that the NIH’s National Library of Medicine

uses to annotate biomedical research literature [49,50]. By 1986

several medical ontologies were in wide use and the National

Library of Medicine began the Unified Medical Language System

(UMLS) project in order to link many of them to facilitate

information retrieval and integrative analysis [51]. By far the most

frequently cited ontology today in biomedicine is the Gene

Ontology (GO), a structurally lightweight taxonomy begun in

1998 that now comprises over 22,000 entities biologists use to

characterize gene products [52].

Thesaurus as ontology
We propose to further test and evaluate our ontology metrics

using the fit between a synonym dictionary or thesaurus and a

corpus. A thesaurus is a set of words (concepts) connected by

synonymy and occasionally antonymy. Because synonymy consti-

tutes an is-equivalent-to relationship (i.e., wordx is-equivalent-to wordy),

thesauri can be viewed as ontologies, albeit rudimentary ones.

Moreover, because a given thesaurus is intended to describe the

substitution of words in a domain of language, the relationship

between a thesaurus and a corpus provides a powerful model for

developing and testing general measures of the fit between

ontology and knowledge domain. Most useful for our purposes,

the balance between theoretical coverage and parsimony is

captured with the thesauri model: A bloated 100,000 word

A Yardstick for Ontologies
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thesaurus is clearly not superior to one with 20,000 entries

efficiently tuned to its domain. A writer using the larger thesaurus

would not only be inconvenienced by needing to leaf through

more irrelevant headwords (the word headings followed by lists of

synonyms), but be challenged by needing to avoid inappropriate

synonyms.

Synonymy is transitive but not necessarily symmetric – the

headword is sometimes more general than its substitute.

Occasionally thesauri also include antonyms, i.e., is-the-opposite-of,

but fewer words have antonyms and for those that do, antonyms

listed are far fewer than synonyms.

A typical thesaurus differs from a typical scientific ontology.

While ontologies often include many types of relations, thesauri

contain only one or two. Thesauri capture the natural diversity of

concepts but are not optimized for non-redundancy and frequently

contain cycles. Any two exchangeable words, each the other’s

synonym, constitute a cycle. As such, thesauri are not consistent,

rational structures across which strict, logical inference is possible.

They instead represent a wide sample of conflicting linguistic

choices that represent a combination of historical association and

neural predisposition. Despite these differences, we believe thesauri

are insightful models of modern, domain-specific ontologies.

Working with thesauri also contributes practically to evaluating

the match between ontologies and discourse. Because all of our

measures depend on mapping concepts from ontology to text,

assessment of the match between thesaurus and text can directly

improve our identification of ontology concepts via synonymy.

Results

Overview of analysis
Our proposed approach to benchmarking an ontology X with

respect to a reference corpus T is outlined in Figure 1. The essence

of the approach requires mapping concepts and relations of the

test ontology to their mentions in the corpus – a task as important

as it is difficult [53]. Given this mapping, we show how to compute

ontology-specific metrics, Breadth and Depth, defined at three

levels of granularity (see Materials and Methods). We also define

another important concept – the perfect ontology with respect to

corpus T. This ideal ontology represents all concepts and relations

mentioned in T and can be directly compared to X. If corpus T is

sufficiently large, the perfect ontology is much larger than the test

ontology X. This allows us to identify a subset of the perfect

ontology that constitutes the fittest ontology of the same size as test

ontology X –the one with maximum Breadth and Depth. Finally,

given knowledge about the fittest ontology of fixed size and metrics

for the test ontology X, we can compute loss metrics, indicating

how much ontology X can be improved in terms of its fit to the

corpus. All definitions are provided in the Materials and Methods

section.

Analysis of biomedical ontologies
To demonstrate our approach to the comparison of biomedical

ontologies, we identified concepts associated with disease pheno-

types and relations in four medical ontologies: ICD9-CM [48,54],

CCPSS [55], SNOMED CT [56] and MeSH (see Table 1 and

Figure 2). Comparing each medical ontology concept-by-concept

(as assessed with UMLS MetaMap—see Materials and Methods),

we found that despite a reasonable overlap in biomedical terms

and concepts, different ontologies intersect little in their relations

(see Figure 2 A and B). This suggests that each ontology covers

only a small subset of the full range of possible human disease

concepts and circumstances. This likely results from the different

ways in which each ontology is used in biomedicine.

To evaluate the fit between an ontology and a corpus, we first

estimated the frequency of ontology-specific concepts and relations

in the corpus. We mapped ontology concepts to the biomedical

literature and then estimated their frequency using MetaMap,

which draws on a variety of natural language processing

techniques, including tokenization, part-of-speech tagging, shallow

parsing and word-sense disambiguation [57]. We then estimated

the frequency of concept relations in the literature (see Materials

and Methods). We parameterized these relation frequencies as the

probability that two concepts co-occur within a statement in our

medical corpus (see Table 2, Materials and Methods).

Our measures of ontology representation build on established

metrics from information retrieval (IR), which have been

previously used in ontology comparison. IR tallies the correspon-

dence between a user’s query and relevant documents in a

collection: When the subset of relevant documents in a collection is

known, one can compute IR metrics such as recall, precision and

their harmonic mean, the F-measure, that capture the quality of a

query in context (see Materials and Methods). We compute these

measures as first-order comparisons between ontologies in terms of

whether concept-concept pairs ‘‘retrieve’’ contents from the

corpus.

The major rift between IR metrics and the nature of ontologies

lies in the binary character of IR definitions: IR measures weight

Figure 1. An overview of our proposed approach to bench-
marking ontologies. The test ontology, X, is represented as a set of
concepts and set of relations, CX and RX respectively, and is compared
to domain-specific reference corpus, T. Our analysis begins by mapping
concepts and relations of X to T using natural language processing tools
(step 1). This mapping allows us to estimate from the text a set of
concept- and relation-specific frequency parameters required for
computing Breadth and Depth metrics for X with respect to T (step
2). The next step involves estimating the complete ontology for corpus
T – an ideal ontology that includes every concept and every relation
mentioned in T (step 3). Given the complete ontology, we can estimate
the fittest ontology (a subset of the complete ontology) of the same
size as the test ontology X (step 4) and compute the loss measures for X
(step 5). See Materials and Methods section for precise definitions of the
concepts and metrics involved.
doi:10.1371/journal.pcbi.1001055.g001

A Yardstick for Ontologies
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all relations in an ontology equally, but concepts and relations

from an ontology vary widely in their frequency of usage within

the underlying domain. Further, unlike IR documents retrieved

from a query, concepts and relations present in an ontology but

not a corpora should not be considered ‘‘false positives’’ or

nonexistent in scientific discourse. Unless the ontology contains

explicit errors, it is reasonable to assume that by expanding the

corpus, one could eventually account for every ontology relation.

Formulated differently, we cannot justifiably classify any ontology

relation as false, but only improbable. This logic recommends we

avoid IR measures that rely on false-positives (e.g., precision) and

augment the remaining metrics to model theoretical coverage and

parsimony as functions of concept and relation importance rather

than mere existence in the domain of interest.

To do this, we first define the complete ontology that incorporates

every concept and relation encountered in a corpus. In our

implementation, we approximate this with all of the concepts and

relations that appear in the corpus and are identified by UMLS

MetaMap with the semantic type ‘‘disease or syndrome.’’ We then

define two measures, breadth and depth, to describe the fit between

an ontology and a corpus. Breadth2 (see Materials and Methods for

definition of several versions of Breadth and Depth) is a

generalization of recall that substitutes true-positives and false-

negatives with real-valued weights corresponding to the frequency of

concepts and the probability of relations in text. Depth2 normalizes

breadth by the number of relations in the ontology (see Materials

and Methods) and so captures the average probability mass for

each ontology relation in the corpus. Large ontologies tend to have

better breadth of coverage relative to a corpus, but not necessarily

more depth: They may be padded with rare concepts lowering their

corpus fit compared with small, efficient ontologies containing only

the most frequent ones.

Breadth and depth allow us to compare ontologies of different size,

but do not account for the fact that as ontologies grow, each

incremental concept and relation necessarily accounts for less of

the usage probability in a corpus. To address this challenge, we

define the fittest ontology of fixed size (with a predetermined

number of relations) such that depth is maximized over all possible

concepts and relations. Furthermore, for an arbitrary ontology we

can compute its depth loss relative to the fittest ontology of same size

(see Materials and Methods). This approach allows us to more

powerfully control for size in comparing ontologies.

Our analysis of the disease-relevant subsets of four medical

ontologies indicates that CCPSS, despite having the smallest

number of concepts and a moderate number of relations, performs

comparably or better with respect to our clinical corpus than its

larger competitors. When we consider concepts and relations

jointly (see Table 3), CCPSS outperforms the three other

terminologies in terms of Breadth2 and Relative Depth2, while being

second only to MeSH in Depth2. ICD9-CM and SNOMED rank

last in Breadth2 and Depth2, respectively. When only concepts (but

not relations) are considered (Table 3), SNOMED CT has the

greatest Breadth1 and Relative Depth1 but the worst Depth1, whereas

MeSH and CCPSS lead in terms of Depth1. It is striking that the

relatively small CCPSS matches clinical text equally or better than

the three other ontologies. Table 3 also indicates that Depth2 Loss is

smallest for the largest ontology, SNOMED CT and that CCPSS

is next. Given its small size, CCPSS is still less likely to miss an

important disease relation than MeSH or ICD9-CM. ICD9-CM,

with the highest Relative Depth1,2 Loss, would benefit most by

substituting its lowest probability concepts with the highest

probability ones missed.

Analysis of thesauri
In order to demonstrate the power of our metrics to capture

different dimensions of the fit between ontology and knowledge

domain, we compared 7 of the most common English thesauri (see

Table 1 and Figure 2) against three corpora that sampled

published text from the domains of medicine, news and novels

(see Table 2). Our thesauri included (1) The Synonym Finder, (2)

Webster’s New World Roget’s A–Z Thesaurus, (3) 21st Century

Synonym and Antonym Finder, (4) The Oxford Dictionary of

Synonyms and Antonyms, (5) A Dictionary of Synonyms and

Antonyms, (6) Scholastic Dictionary of Synonym, Antonyms and

Homonyms, and (7) WordNet (see Materials and Methods).

While comparing multiple thesauri word-by-word, we found a

pattern similar to our medical ontologies. Despite a larger overlap

in headwords than medical ontology concepts, different dictionar-

ies intersect little in their relations. (A headword in a thesaurus is a

word or phrase appearing as the heading of a list of synonyms and

Table 1. Size of biomedical ontologies and seven thesauri.

Biomedical Ontologies Disease concepts Disease relations

International Classification of Diseases, Clinical Modification (ICD9-CM) 6,011 5,904

Canonical Clinical Problem Statement System (CCPSS) 3,500 12,112

Systematized Nomenclature of Medicine, Clinical Terms (SNOMED-CT) 30,760 62,146

Medical Subject Headings 2009 (MeSH) 3,776 2,605

Thesauri Headwords Synonym pairs

The Synonym Finder [72] 20,249 758,611

Webster’s New World Roget’s A–Z Thesaurus [73] 29,925 329,669

21st Century Synonym and Antonym Finder [74] 7,507 146,806

The Oxford Dictionary of Synonyms and Antonyms [75] 8,487 105,902

A Dictionary of Synonyms and Antonyms [76] 3,771 57,366

Scholastic Dictionary of Synonym, Antonyms and Homonyms [77] 2,147 19,759

WordNet [78] 115,201* 306,472

*Note: WordNet is subdivided into synonymous sets (synsets) rather than being organized by headwords. We extracted all possible synonym pairs, which explains why
WordNet contains so many headwords.
doi:10.1371/journal.pcbi.1001055.t001

A Yardstick for Ontologies
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antonyms. Not every word or phrase that is listed as a synonym in

a thesaurus also occurs as a separate headword.) On average, only

one relation per headword is found in all three of the largest

dictionaries (see Figures 2 C and D). This trend persists as we

consider a longer list of thesauri (see Table 2 in Text S1) and

indicates that any single dictionary covers only a small portion of

Table 2. Three corpora.

Corpus Description Size in words

Medicine Clinical journal article abstracts from PubMed database 113,007,884

Novels 19th century literature—written in or translated to English 10,099,229

News The Reuters corpus containing news stories published between August 20, 1996 and August 19, 1997 207,833,336

doi:10.1371/journal.pcbi.1001055.t002

Figure 2. Overlap of the three largest thesauri and three medical ontologies in our study. (Inset diagrams represent modified Venn
diagrams where each set is depicted in such a way that the number of elements in the set is exactly proportional to size of the corresponding area.) (A–B)
Venn diagrams showing intersections between three of the compared medical ontologies: ICD9 CM, SNOMED and CCPSS at the level of concepts
(disease and syndrome only) and at the level of relations between these concepts. (C–D) Venn diagrams showing intersections between the three largest
thesauri: WordNet, The Synonym Finder (Finder), and Webster’s New World Roget’s A–Z Thesaurus (Roget’s) at the level of headwords and synonym pairs.
doi:10.1371/journal.pcbi.1001055.g002
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synonyms used in the body of English. But some dictionaries are

better than others.

To evaluate the fit between thesaurus and corpus, we estimated

the frequencies of thesauri headwords and synonyms in the corpus.

We assessed headword frequency as we did with medical ontology

concepts. In the case of synonymy relations, we parameterize the

synonym frequencies as the probability that a headword is

substituted with each of its synonyms within a specific four-word

context (see Materials and Methods).

While thesauri typically aim to capture universal properties of

language, corpora can be surprisingly dissimilar and sometimes

disjoint in their use of words and synonym substitutions. Figures 3

and 4 visualize ten words whose synonym substitution probabilities

are most unlike one another across the medicine, news and novels

corpora. Some words carry a different semantic sense in each

corpus (e.g., cat as feline versus CT scan versus Caterpillar construction

equipment), while other words have very different distributions of

common senses.

It is illuminating to consider the dominant substitutions for the

three corpora: The noun insult translates most frequently to injury

in Medicine, slur in News, and shame in Novels; the verb degrade to

impair, demean, and depress in the same respective corpora (see

Figures 3 and 4); the adjective futile to small, fruitless and vain. In

some contexts words are used literally and consistently, while in

others, metaphorically and widely varying. The meaning of the

noun headache in our medical corpus is always literal: the closest

synonyms here are migraine and neuralgia – with no other

synonyms used. In novels and news the predominant meaning of

headache is metaphorical. Novels are replete with headache’s

synonym mess, a disordered and problematic situation (i.e.,

headache-inducing). The news corpus also predominantly uses

headache to mean problem, but the most frequent synonyms are

more precise and literal (problem, concern, worry, trouble). The

metaphorical mess and hassle are also present, but at far lower

frequencies than in novels. The verb stretch is treated as equiva-

lent to develop, increase, prolong, and enlarge in the medical corpus.

In novels it means open, spread, and draw. The news corpus hosts

dozens of distinct synonyms for stretch, the most frequent three

being extend, widen, and sprawl.

Figure 5, a–i and table 2 in the Supplement compare all metrics

discussed for all seven thesauri and three corpora. From Figure 5 d

and g, we observe that our importance-based breadth corresponds

to counts-based recall (a). The correspondence is not perfect,

however: Oxford and WordNet have greater breadth than 21st Century,

but this is reversed in recall. On the other hand, larger thesauri

tend to lead in both recall and breadth, but small thesauri excel in

precision and depth, as shown in Figure 5 e and h. The rankings of

depth across all seven thesauri on three corpora, however, are very

different from those of precision, which suggests that depth captures a

different internal characteristic of ontology. For fixed precision and

recall, we can define multiple equal-sized corpus-matched ontol-

ogies with widely varying depth and breadth by sampling from the

complete ontology. The converse, however, is not true: Our breadth

and depth metrics uniquely define an ontology’s precision and recall.

Figure 5 f and i indicate that depth loss is negatively correlated with

the size of our seven thesauri (see Discussion). This is likely because

a large thesaurus nearly exhausts the common relations in all

domains by including synonyms that are rare in one context

but common in another. Small dictionaries must focus. Unless

explicitly tuned to a domain, they are more likely to miss

important words in it.

Finally, we can compare corpora to each other with respect to

all thesauri. As clearly shown in Figure 5, our three corpora map

onto the seven thesauri non-uniformly. Precision, for example, is

significantly lower across all thesauri for the medical corpus than for

news or novels. This is likely due to the specialized and precise

medical sublanguage, which renders a large portion of common

synonyms irrelevant.

Discussion

We introduced novel measures that assess the match between an

ontology and discourse. These differ from former approaches to

ontology comparison by focusing on concept and concept-to-

concept relations, as these are the ontology elements present in

textual statements. Moreover, our measures account for concep-

tual distinctions between comparing ontologies to one another

versus to the discourse associated with a knowledge domain. In the

latter comparison, the notion of a false positive, or a concept that

appears in ontology but not in text is misleading, as it does not

necessarily indicate the concept was not in discourse, but that the

discourse was insufficiently sampled. Building on these insights, we

introduce novel measures that capture the Breadth and Depth of an

ontology’s match to its domain with three versions of increasing

complexity. Breadth is the total probability mass behind an

ontology’s concepts and relations with respect to the reference

corpus. Depth, in contrast, is its average probability mass per

concept and relation. Metaphorically, if breadth is ‘‘national

income,’’ then depth is ‘‘income-per-capita.’’ An ontology with

greater breadth captures more concepts and relations; an ontology

with greater depth better captures its most important ones.

By measuring the match between a medical ontology and a

corpus of medical documents, we are also assessing the utility of

each ontology’s terms and relations for annotating that corpus. In

this sense, breadth measures the overall utility of a given ontology in

annotation, whereas depth measures the average annotation utility

per ontology constituent.

We also defined the fittest ontology of fixed size such that depth is

maximized over all concepts and relations in order to more

carefully compare ontologies of different sizes. For an arbitrary

ontology we also computed its depth loss relative to the fittest

ontology of same size (see Materials and Methods). This approach

not only allows us to control for size in comparing ontologies, but

also has direct application for pruning an ontology of its most

improbable parts.

Table 3. Comparison of three medical ontologies in terms of
Breadth, Depth and (Depth) Loss, Relative Depth and Relative
Depth Loss.

Metric ICD9 CM (I) CCPSS (C) SNOMED (S) MESH (M)

Breadth1 1.41661022 2.25961022 3.22761022 2.65561022

Depth1 2.34761026 6.45461026 1.04961026 1.01961025

Relative Depth1 0.365 0.605 0.818 0.687

Depth1 Loss 4.08361026 4.21861026 0.23461026 4.64661026

Relative Depth1

Loss
0.635 0.395 0.182 0.313

Breadth2 1.64861023 1.40561022 9.82961023 7.84361023

Depth2 0.27961026 1.16061026 0.15861026 2.07761026

Relative Depth2 0.055 0.455 0.319 0.272

Depth2 Loss 4.83161026 1.38761026 3.38361027 5.55161026

Relative Depth2

Loss
0.945 0.545 0.681 0.728

doi:10.1371/journal.pcbi.1001055.t003
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To illustrate the meaning and relation of depth loss to depth

and breadth, imagine a casino with an enormous roulette wheel

on which numbers may appear more than once, and some much

more frequently than others. A gambler has limited time to

observe the wheel before picking a set of numbers on which to

bet. In this analogy, the numbers correspond to concepts and

relations in science, the gambler to an ontologist, and a win to an

efficient representation of science. The probability of winning or

achieving a good scientific representation given a set of bets maps

to breadth and the probability of winning normalized by number

of bets to depth. The fittest ontology of given size is an optimal

bundle of bets: the gambling ontologist can still lose by missing

any particular concept or relation, but her risk is minimized.

Depth loss, then, is the unnecessary risk of losing a gamble beyond

that required by the constrained number of bets. As an ontology

grows in size, the overall probability of missing an important

Figure 3. Four examples of synonym substitution probabilities in three corpora in our study. Plots A–D correspond to the headwords
futile (adjective), stretch (verb), headache (noun) and cat (noun) respectively. The horizontal position of each synonym represents the substitution
probability on a logarithmic scale as does the font size. The color of each synonym indicates the corpus in which the substitution is most probable:
black – medicine, red – novels, and blue – news. The frequency of each headword in the three corpora is also listed using the same color codes.
doi:10.1371/journal.pcbi.1001055.g003
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scientific concept or relation shrinks. Therefore, depth loss will

usually decrease as ontologies grow, even if the smaller ontology

has greater depth.

By capturing the breadth and depth of an ontology’s coverage, our

measures suggest precisely what the analyst gains by assessing the

direct match between ontology and discourse, rather than

attempting to extract or ‘‘learn’’ an ontology from discourse and

subsequently compare it with a reference ontology. When an

ontology is developed from discourse, all information about the

relative frequency with which concepts and relations occur in the

domain is lost. Consequently, a match with such an ontology can

only grossly capture the representativeness of relations in the

reference ontology. The larger difference between these approach-

es, however, is in the position of authority. Our measures suggest

that discourse is the authoritative source of a community’s

scientific knowledge and should be the reference against which

most scientific ontologies are judged. Measures that assess

‘‘learned ontologies’’ with a gold standard, by contrast, assume

that ontologists and their constructions are the ultimate reference.

Our approach to ontology evaluation has several limitations. It

may be viewed as restrictive due to its reliance on the availability

of a large corpus related to the domain of interest. This is usually

not a problem for biomedical ontologies as the amount of

biomedical text is typically overwhelming. For esoteric ontologies,

however, it may be difficult to locate and sufficiently sample the

textual domain they are intended to map. At the extreme, consider

a hypothetical ontology configuring entities corresponding to a

novel theory.

Further, one can imagine ontologies for which any degree of

match to an external domain is meaningless. For example, a

hypothetical mathematical ontology should be, first and foremost,

clear and internally consistent. As is common in mathematics,

relevance to external research may not be required. This level of

abstraction and invariance to reality, however, is atypical for

biomedicine and other areas of science where the corpus of

published research indicates much of what is known.

Our approach addresses only one dimension of ontology

quality: its match to collective discourse. Other quality dimensions

such as consistency and usability are also clearly important. We do

not advocate retiring other views of ontology quality: our measures

of external validity can be used synergistically with assessments of

internal validity to expand the overall utility of an ontology.

Figure 4. Six additional examples of synonym replacement (see Figure 3 legend). Plots A–F correspond to the headwords driver (noun),
insult (noun), beforehand (adverb), verdict (noun), degrade (verb) and nervousness (noun).
doi:10.1371/journal.pcbi.1001055.g004
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Another limitation of our method is that we assume that formal

relations among ontology concepts are represented explicitly in

text, like the concepts themselves. As Brewster and colleagues have

pointed out [36], this is often not the case. More advanced

methods are needed to improve on our use of concept co-

occurrence. Our approach depends heavily on the advancement of

parsing and mapping technologies to enable linkages between

ontology concepts and their textual instances. It is particularly

dependent on quality in the part-of-speech tagging, recognition of

verb nominalization [58] and the association of inflectional and

morphological variations in vocabulary.

In this way, proper application of our proposed method

demands that users surmount significant technical hurdles. It is

not trivial to map concepts and relations from an ontology to a real

corpus considering the ambiguities and complexities of unstruc-

tured discourse. Although we believe that these technical problems

can be resolved with a reasonable degree of accuracy, there

remains a lingering concern that ontology evaluation is confound-

ed by imperfections in the analysis of text. To address this concern,

our analysis of synonym substitution probabilities suggests a

practical approach for generating probabilistic domain-specific

thesauri that can be immediately used in more closely mapping

arbitrary ontologies to text. These substitution probabilities can

also be deployed to improve the cross-mapping of ontologies,

expanding database queries, and text mining.

Several previous approaches to ontology comparison involve

explicit comparison of the entire taxonomy of relations. Our

approach instead emphasizes comparison of ontology relationships

individually. This is because metrics of taxonomic distance

between two ontologies [23–28] are not easily transplanted to

the comparison of ontology with text. Ontology comparisons often

weight the match between concepts by the centrality of those

concepts in each ontology’s hierarchy [26]. The upper-level – the

most central and abstract – relations in an ontology, however, are

rarely mentioned explicitly in prose. This is partly because of the

indexical power of context: an article published in the journal

Metabolism does not need to mention or describe metabolism to its

audience. The publication alone signals it. In contrast, specific

concepts that are taxonomically close to the bottom of the

hierarchy – the ‘‘leaves’’ of the tree – are often mentioned in text

with disproportionate frequency. In short, while centrality denotes

importance within an ontology, and ontology importance should

correlate with frequency in discourse, we expect that this

relationship is confounded in scientific domains where the most

central ‘‘branching’’ concepts are likely so conditioned by context

(e.g., a biology journal) that they remain unspoken.

In summary, our measures provide a reliable assessment of

ontologies as representations of knowledge. We demonstrated their

utility using biomedical ontologies, English thesauri and corpora,

and we showed that different corpora call for different represen-

tations. We believe our straightforward approach can be extended

to arbitrary ontologies and knowledge embedded in the literature

of their communities. For example, our approach can directly

assess the degree to which other popular ontologies represent

published knowledge in their respective domains. Our approach

would also recommend how these ontologies could be made more

efficient or parsimonious. Finally, our measures facilitate compar-

ison between competing ontologies. In conjunction with efforts to

make ontologies logically consistent, greater external validity will

insure that ontological inferences anchor to the most salient

concepts and relations used by the community of science.

Materials and Methods

Data
We used four medical ontologies, seven English thesauri

(Table 1), and three corpora (Table 2) from the areas of medicine,

news, and novels. The four biomedical ontologies we used were

Figure 5. Nine metrics computed for all seven English thesauri across three corpora. The size of each dictionary symbol is proportional to
the total number of synonymous relations it contains. (A, B, C) Information retrieval metrics Recall, Precision, and F-measure; (D, E, F) concept-
frequency metrics Breadth1, Depth1, and Depth1 Loss; and (G, H, I) metrics based on frequency of both concepts and relations—Breadth2, Depth2, and
Depth2 Loss.
doi:10.1371/journal.pcbi.1001055.g005
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ICD9-CM, CCPSS, SNOMED-CT, and MeSH each described in

the following paragraphs.

ICD9-CM [48,54], the International Statistical Classification of

Diseases and Related Health Problems, is a taxonomy of signs,

symptoms, abnormal findings, complaints, social circumstances,

and external causes of injury or disease. It uses predominantly one

type of relation (is-a), whereas CCPSS and SNOMED CT employ

richer repertoires of relation types. The International Classifica-

tion of Diseases is published by the World Health Organization

(WHO) and is used worldwide for morbidity and mortality

statistics, reimbursement systems, and automated decision support

in medicine. The ICD9-CM version was created by the U.S.

National Center for Health Statistics as an extension of the ICD9

system to include diagnostic and operative procedures – the CM

referring to clinically modified. Here we use the 2009 version of

ICD9-CM. A typical relation between two concepts in ICD9-CM

looks as follows:

Hepatic coma is-a liver abscess and chronic liver disease

causing sequelae NOS:

CCPSS, the Canonical Clinical Problem Statement System [55],

is a knowledge base that encodes clinical problems encountered by

ailing humans. It is specifically designed to encode clinical knowledge

regarding relations between medical conditions. Typical relations

encoded in CCPSS look as follows:

Acquired Immunodeficiency Syndrome

is-clinically-associated-with pneumonia,

Pneumocystis carinii;

Hemiparesis co-occurs-with cerebrovascular accident;

Abcess of breast is-a breast problem:

SNOMED CT, Systematized Nomenclature of Medicine – Clinical

Terms [56], is a synthesis of terminologies produced by the

College of American Pathologists and by the National Health

Service of the United Kingdom. The American component is

called SNOMED Reference Terminology, and the British one is referred

to both as Clinical Terms and Read Codes. SNOMED CT is the most

comprehensive clinical terminology in existence and includes

,350,000 concepts. A typical relation in SNOMED CT looks as

follows:

Alpha-mannosidosis is-mapped-to other specified disorders of

carbohydrate transport and metabolism:

Medical Subject Headings (MeSH) [49] is a comprehensive

controlled vocabulary designed by the United States National

Library of Medicine (NLM). Its intended use is information

retrieval; MeSH was not designed as a formal ontology. The 2009

version contains a total of 25,186 subject headings spanning

anatomy; organism classification; diseases; chemicals and drugs;

food and beverages; analytical, diagnostic and therapeutic

techniques and equipment; health care, psychiatry and psychol-

ogy; biological and physical sciences; anthropology, education,

sociology and social phenomena; persons; technology and

information science; humanities; publication characteristics and

geographic locations. It is mainly used by the MEDLINE/

PubMed article database for indexing journal articles and books. A

typical relation present in the MeSH is-a hierarchy looks like

Myelitis is-a Spinal Cord Disease:

We tested the medical ontologies against a corpora of modern

medicine comprised of clinical journal article abstracts from the

PubMed database. We limited ourselves only to English abstracts

in the core clinical journals for the entire period covered by

PubMed, 1945 through February of 2009. The resulting corpus

included 786,180 clinical medicine-related abstracts (see Table 2).

Our broader analysis of synonym dictionaries included seven of

the most common, sampling from very different kinds of thesauri.

These include the large thesauri (1) The Synonym Finder and (2)

Webster’s New World Roget’s A–Z Thesaurus; moderately-sized

thesauri (3) 21st Century Synonym and Antonym Finder and (4)

The Oxford Dictionary of Synonyms and Antonyms; and

portable, compact thesauri (5) A Dictionary of Synonyms and

Antonyms and (6) Scholastic Dictionary of Synonym, Antonyms

and Homonyms. Each thesaurus shared a common layout

involving alphabetically arranged headwords followed by syno-

nyms (and antonyms). Finally, we included the electronic diction-

ary (7) WordNet, which arranges its words asymmetrically into sets

of synonyms or ‘‘synsets.’’

To evaluate the match between these thesauri and a variety of

text corpora, we added English news and novels to our sample of

clinical medicine (see Table 2). The news corpus covered all

Reuters news stories between 08/20/1996 and 08/19/1997. The

novels corpus contained 50 of the most influential novels of the

19th Century, written or translated into English. Complete

information regarding each of these data sources can be found

in the supplement.

Parsing and mapping
To map biomedical concepts to our clinical corpus we used

MetaMap. MetaMap [59] is a knowledge-intensive natural

language processing program developed at the National Library

of Medicine for mapping snippets of biomedical text to the UMLS

Metathesaurus [60,61].

MetaMap uses the SPECIALIST minimal commitment parser

[62] to conduct shallow syntactic parsing of text – using the Xerox

part-of-speech tagger. For each identified phrase its variants are

generated using the SPECIALIST lexicon and a supplementary

database of synonyms. A phrase variant comprises the original

phrase tokens, all its acronyms, abbreviations, synonyms, deriva-

tional variants, meaningful combinations of these, and inflectional

and spelling variants. Given a collection of phrase variants, the

system retrieves from the Metathesaurus a set of candidate strings

each matching one of the variant constituents. Each Metathe-

saurus-derived string is evaluated against the input text by a linear

combination of four metrics, called centrality, variation, coverage

and cohesiveness. The first two metrics quantify matches of

dictionary entries to the head of the phrase, and the mean inverse

distance between dictionary and text phrases. The latter two

metrics measure the extent and sparsity of matches between the

textual and dictionary strings. The candidate matches are then

ordered according to mapping strength, and the highest-rank

candidate is assigned as the final match. We used MetaMap’s

Strict Model to filter matches in order to achieve the highest level

of accuracy [57].

The UMLS (Unified Medical Language System) Metathesaurus

is a rich terminological resource for the biomedical domain
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PLoS Computational Biology | www.ploscompbiol.org 11 January 2011 | Volume 7 | Issue 1 | e1001055



[63,64]. All concepts in the UMLS Metathesaurus are categorized

into 135 semantic types (or categories). In this work we focused on

the semantic type of ‘‘Disease or Syndrome’’. This is why the

counts of concepts and relations in Table 3 are much less than the

total number of concepts and relations from each of the four

ontologies in Table 1.

We used the Stanford POS tagger [65,66] to parse the news and

novels corpora comparable to MetaMap’s parsing of medical texts.

After parsing, we processed the inflectional and morphological

variations of each word. For the medical corpus, we retrieved the

base form of a word by querying the UMLS Specialist Lexicon

based on its appearance in the text (e.g., singular or plural for a

noun, different tenses for a verb). For the news and novels corpora,

we converted all words to their base word form (e.g., translating

nouns from plural to singular and verbs from past and future to

present tense) with a rich set of morphological rules. Then we used

these base word forms, in addition to their part of speech, to

indicate word context for the calculations below. We also used

these base forms to match against thesaurus entries.

The probability of ontology relationships in text
In this section, we define several metrics for mapping an ontology

to a corpus, arranging the metrics by increasing complexity. The

simpler metrics do not distinguish between multiple predicate types

in an ontology, summarizing all relations between the same pair of

concepts, i and j, with a single association probability, pij. More

general versions of our metrics account for multiple relation types

that occur in more complex ontologies, but these involve numerous

additional parameters that require estimation from real data and

therefore are more challenging to implement. For this reason, we

count relations represented in a test ontology X in two separate

ways. |RX | is the number of ordered pairs of concepts with at least

one relation defined between them in ontology X, while |RX| is the

total number of all relations in the ontology. For predicate-poor

ontologies such as thesauri, these two ways of counting relations are

equivalent. In predicate-rich ontologies with more than one relation

between the same pair of concepts, |RX|.|RX |.

Suppose an ontology has N concepts and each concept i has

relations with other Mi concepts (each denoted as concept j where

j = 1, 2, …, Mi). We practically infer the probability pij that concept

i is associated with concept j through simple concept co-occurrence

in text. Namely, we estimate:

pij~
nij

PMi

l~1

nil

, ð1Þ

where nij is the number of times concept i co-occurs with concept

j in the same unit of text, such as a sentence or a paragraph (the

medical abstract in our implementation). Note that when concept i

is unobserved in the corpus, we encounter a singularity (zero

divided by zero) when applying equation 1 directly and pij violates

the basic property of probability by not summing to 1. For this

study we pragmatically postulate that if concept i is not observed in

the corpus, then the value of pij is set to 0. Datasets S1, S2, and S3

contain complete sets of non-zero estimates of synonym substitution

probabilities for our three reference corpora.

The advantage of setting pij to 0 when i is unobserved is that the

ontology will be punished for concepts and relations unobserved in

the corpus. One could alternately make pij behave as a probability

under all conditions (for all values of nij) and still punish the

ontology by making pij very small for all unobserved i in the

following manner:

pij~

nijz
a

Mi

PMi

l~1

nilzazb

ð2Þ

where parameter a and b are small positive constants (0#a % b
% 1). This would require us to further add a pseudo-concept 1,

that relates to every concept i with the following probability:

pi1~
b

PMi

l~1

nilzazb

ð3Þ

such that pi1 is close to 1 when i is not observed and every pij is

approximately 0.

One can imagine the use of more advanced natural language

processing techniques than co-occurrence to assess the precise

semantic relation in text, but we use the probability estimate from

equation 1 in our preliminary evaluation of four medical

ontologies against our corpus of clinical abstracts.

Consider further an arbitrary ontology that has multiple distinct

relations defined for the same pair of concepts. In such a case, we

could supplement pij with an additional set of parameters, pk|ij.

These new parameters reflect the relative frequency (importance) of

textual mentions of the kth relation between concepts i and j, where

X

k

pkjij~1:

In the case of thesauri, in which the primary relation is

synonymy, we are able to assess pij more precisely than with

medical ontologies. An English thesaurus has N headwords and

each headword (denoted as wi where i = 1, 2, …, N) has a list of M

synonyms (denoted as wi,j where j = 1, 2, …, Mi). We compute the

probability of substituting word wi with its synonym wi,j through

probabilistic conditioning on all contexts observed in a corpus in

the following way.

pij~P(wi?wi,j)~

P?

k~1

P(contextk of wijwi)P(wi,j j contextk of wi)

PMi

j0~1

P?

k0~1

P(contextk0 of wijwi)P(wi,j0 j contextk0 of wi)

,
ð4Þ

where
P?

k~1 is a shorthand for ‘‘sum over all possible contexts

of headword wi’’.

Equation (4) is closely related to distributional similarity metrics

explored by computational linguists, e.g. [67]. This notion, that

words occurring in the same contexts tend to have similar meanings

is called the Distributional Hypothesis and was introduced by Zellig

Harris [68], then popularized by Firth—‘‘a word is characterized by

the company it keeps’’ [69]. Some researchers prefer to induce word

relationships like synonymy and antonymy from co-occurrence rather

than substitution in order to capture lexical as well as semantic

similarity [70,71]. In our analysis, however, we do not induce

synonymy, but rather begin with established synonyms from a
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published Thesaurus. We then simply calculate their substitution

frequencies based on shared context.

In our practical implementation, we defined the context of word

wi within a sentence as a list of k words immediately preceding and

following it, enriched with positional and part-of-speech (POS)

information:

. . . ,wi{k(POSi{k), . . . ,wi{1(POSi{1),

wi(POSi),

wiz1(POSiz1) . . . ,wizk(POSizk), . . .

To increase the number of comparable four-token contexts for

synonyms in our relatively small corpus, we only considered

nouns, verbs, adjectives and adverbs in our analysis of context,

disregarding tokens with other part-of-speech tags. That is, given a

word wi in the text, we select the nouns, verbs, adjectives and

adverbs around it within window size 2k = 4 (two before and two

after wi), providing a four-word context for all words except those

at a sentence boundary. Because many contexts constructed in this

way are unique or very rare, we generalize them by ignoring word

order and binning words that appear uniquely in the corpus into

part-of-speech pseudo-words (e.g., rare-noun, rare-verb, rare-adjective,

and rare-adverb). Equation 4 suffers the same limitation as equation

1 for headwords i that do not occur in corpus. One could extend it

in the same manner as equation 1 by adding the pseudo-concept

1 such thatpi1collects the vast majority of the probability mass

for unobserved headwords.

Information retrieval metrics
In information retrieval (IR), the goal is to identify documents

from a large collection most relevant to a user’s query. If the subset

of relevant documents is known, we can calculate the quality of an

information retrieval method with the metrics precision, recall, and

the F-measure (harmonic mean of precision and recall).

Precision ~
Ntp

NtpzNfp

, ð5Þ

Recall ~
Ntp

NtpzNfn

, ð6Þ

F ~2:
Precision:Recall

PrecisionzRecall
ð7Þ

True positives (tp), false positives (fp), false negatives (fn) and true negatives (tn)

are defined by the cross-tabulation between relevance and retrieval:

True positives comprise documents that are both relevant to the query

and retrieved by the method; false positives are documents retrieved

but irrelevant; false negatives are relevant but not retrieved; and true

negatives are irrelevant documents not retrieved.

More measures, such as accuracy and fallout, are introduced

and computed in Text S1.

Ontology evaluation metrics
For a given reference corpus T, we define the complete ontology

OCT RT
, which incorporates all concepts and all relations encoun-

tered in corpus T. We also use the corpus to derive a frequencyfi for

each concept i in CT, the set of all concepts in T, and concept

association probabilitypijfor each relation in RT, the set of all

relations in T. In the special case of a thesaurus, we understand this

probability to be the probability of appropriate substitutability, or

‘‘substitution probability’’ for short. It should be noted that our

ability to estimate fi depends on mapping concepts from ontology to

text. This is why we spent so much time and energy working with

thesauri to facilitate the detection of concept synonyms in text.fi

should be normalized in such a way that
P

i[CT

fi~
PN

i~1

fi~1 (N is the

total number of concepts in corpus T) and, by definition,pij is

normalized so that
PMi

j~1 pij~1 for any concept, ci, involved in at

least one relationship. In our implementation, we approximate the

complete ontology for our medical corpus with all ‘‘Disease or

Syndrome’’ concepts in MetaMap, which includes the union of our

four medical ontologies in addition to more than a hundred

additional terminologies, such as the UK Clinical Terms, Logical

Observation Identifiers Names and Codes (LOINC) that identifies

medical laboratory observations, RxNorm that provides normalized

names for clinical drugs, and the Online Mendelian Inheritance in

Man (OMIM) database that catalogues diseases with a known

genetic component. The complete ontology only retains those

concepts and relations that appear in the corpus. For our thesauri,

we approximated the complete ontology with the union of compared

thesauri, excluding concepts and relations not found in the corpus.

Consider that we are trying to evaluate arbitrary ontology X

with respect to reference corpus T. We define CX and RX as sets of

concepts and relations within X, and | CX | and | RX | the

cardinalities of those sets. To evaluate X with respect to T, we

identify sets CX(true-positives—tp), CX(false negatives—fn), RX(tp), and

RX(fn) such that CX(tp) = CX > CT, RX(tp) = RX > RT, CX(fn) = CT

— CX(tp), and RX(fn) = RT — RX(tp), where ‘‘—’’ represents set

difference.

Then we derive the first ontology evaluation measure—Breadth—

to capture the theoretical coverage of an ontology’s concepts:

Breadth1
X (T)~

X
i[CX (tp)

fi, ð8Þ

We derive a corollary version of breadth to capture the

theoretical coverage of an ontology’s concept and relations:

Breadth2
X (T)~

X
i[CX (tp)

X
j[CX (tp)

fipij , ð9Þ

where pij equals 0 if there is no relation between them in X. Both

Breadth metrics are defined on the interval [0,1].

By modifying these measures to account for the number of

concepts and relations, we develop measures of Depth to capture

theoretical parsimony:

Depth1
X (T)~

Breadth1

jCX j

~

P
i[CX (tp) fi

jCX j
,

ð10Þ

Depth2
X (T)~

Breadth2

j<X j

~

P
i[CX (tp)

P
j[CX (tp)

P
k[<X (tp) fipij

j<X j
,

ð11Þ

where |RX| is the number of ordered pairs of concepts with at

least one relation defined between them in ontology X. This
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normalization thus ignores the number of different relations that X

may catalog between concepts i and j.

We can also compare an arbitrary ontology X with the fittest

ontology of the same size O(X) by including the most representative

CX concepts and RX relations from corpus T that maximize depth.

In practice, to compute the fittest ontology of fixed size, we have to

perform a numerical optimization over a set of concepts and

relations where the size of the ontology being optimized is kept

fixed, but the concepts and relations taken from the fittest ontology

are added or removed to improve the breadth and depth of the

optimized ontology. An estimate of the depth of the fittest ontology

of fixed size, DepthO(X)(T), allows us to define and compute a Loss

measure.

LossX (T)~DepthO(X )(T){DepthX (T): ð12Þ

The above measure can be called the Loss of Depth or Depth

Loss. In a similar way we can compute an ontology’s Loss of

Breadth. (In practice, our estimates of the fittest ontology of fixed

size were constrained only by the total number of relations in the

corresponding test ontology, so that the Depth Loss in Table 2 was

computed using equation (19) in Text S1.)

Note that unlike Breadth, Depth is not naturally defined on the

interval [0,1], but will rather tend to result in small positive

numbers. Therefore, we define normalized versions of Depth and

Depth Loss in the following way.

Relative Depth ~
DepthX (T)

DepthO(X )

, ð13Þ

Relative Depth Loss ~
DepthO(X ){DepthX (T)

DepthO(X )
: ð14Þ

If we consider an arbitrary ontology with multiple types of

relations between concepts i and j, we can further extend Breadth2

and Depth2 measures in the following way:

Breadth3
X (T)~

X
i[CX (tp)

X
j[CX (tp)

X
k[RX (tp)

fipijpkjij , ð15Þ

Depth3
X (T)~

Breadth3
X (T)

jRX j

~

P
i[CX (tp)

P
j[CX (tp)

P
k[RX (tp) fipijpkjij

jRX j
:

ð16Þ

Note that this definition of Depth3 and Breadth3 involves three

levels of ontology evaluation: parameter fi captures usage of the ith

concept in the corpus; parameter pij reflects the relative

importance of all relations between concepts i and j with respect

to all relations involving concept i in the corpus; and parameter

pk|ij measures the relative prevalence of the kth relation between

concepts i and j in the corpus.

Precise implementation of this task would require capturing

mentions of every concept i – relation k – concept j triplet in the

text using natural language processing tools. The parameter

estimates would then be computed by normalizing counts of

captured relations and concepts in an appropriate way.

If, on average, there is only one type of relation per pair of

concepts, use of metric Depth3 and Breadth3 would be overkill.

For computational simplicity, we use only the first- and the

second-level Breadth and Depth in our practical implementation.
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Oscar Corcho. London; New York: Springer.

45. Sure Y, Domingue J (2006) The semantic web: research and applications: 3rd
European Semantic Web Conference, ESWC 2006, Budva, Montenegro, June

11-14, 2006: proceedings. Berlin; New York: Springer.

46. Cook DL, Mejino JL, Rosse C (2004) The foundational model of anatomy: a

template for the symbolic representation of multi-scale physiological functions.

Conf Proc IEEE Eng Med Biol Soc 7: 5415–5418.

47. American Public Health Association. (1899) The Bertillon classification of causes

of death. Lansing Mich. R. Smith print.

48. WHO (2010) International Classification of Diseases (ICD). Geneva, Switzer-

land: World Health Organization.

49. Lipscomb CE (2000) Medical Subject Headings (MeSH). Bull Med Libr Assoc
88: 265–266.

50. Rogers FB (1963) Medical subject headings. Bull Med Libr Assoc 51: 114–116.

51. McCray AT, Miller RA (1998) Making the conceptual connections: the Unified
Medical Language System (UMLS) after a decade of research and development.

J Am Med Inform Assoc 5: 129–130.

52. Bodenreider O (2008) Issues in mapping LOINC laboratory tests to SNOMED

CT. AMIA Annu Symp Proc. pp 51–55.

53. McCray AT (2006) Conceptualizing the world: lessons from history. J Biomed
Inform 39: 267–273.

54. Spencer LM, Spencer VN (1986) Spencer’s current ophthalmic terminology &
abbreviations: includes the classification of ophthalmic disorders, current ICD9

and CPT listings & over 2000 systematically abbreviated terms. OxnardCA

(1200 W. Gonzales Rd., #200, Oxnard 93030): MedWorld Publications.

55. Brown SH, Miller RA, Camp HN, Guise DA, Walker HK (1999) Empirical

derivation of an electronic clinically useful problem statement system. Ann
Intern Med 131: 117–126.

56. Cornet R, de Keizer N (2008) Forty years of SNOMED: a literature review.

BMC Med Inform Decis Mak 8(Suppl 1): S2.

57. Aronson AR, Lang FM (2010) An overview of MetaMap: historical perspective

and recent advances. J Am Med Inform Assoc 17: 229–236.

58. Cohen KB, Palmer M, Hunter L (2008) Nominalization and alternations in
biomedical language. PLoS One 3: e3158.

59. Aronson AR (2001) Effective mapping of biomedical text to the UMLS
Metathesaurus: the MetaMap program. Proc AMIA Symp. pp 17–21.

60. Aronson AR, Rindflesch TC (1997) Query expansion using the UMLS

Metathesaurus. Proc AMIA Annu Fall Symp. pp 485–489.

61. Walden V (1996) Defining the UMLS Metathesaurus. J AHIMA 68: 38.

62. McCray AT (1991) Extending a natural language parser with UMLS knowledge.

Proc Annu Symp Comput Appl Med Care. pp 194–198.

63. McCray AT, Aronson AR, Browne AC, Rindflesch TC, Razi A, et al. (1993)

UMLS knowledge for biomedical language processing. Bull Med Libr Assoc 81:
184–194.

64. McCray AT, Razi AM, Bangalore AK, Browne AC, Stavri PZ (1996) The

UMLS Knowledge Source Server: a versatile Internet-based research tool. Proc
AMIA Annu Fall Symp. pp 164–168.

65. Toutanova K, Klein D, Manning CD, Singer Y (2003) Feature-Rich Part-of-
Speech Tagging with a Cyclic Dependency Network. In: Human Language

Technology Conference (HLT-NAACL 2003). pp 252–259.

66. Toutanova K, Manning CD (2000) Enriching the Knowledge Sources Used in a
Maximum Entropy Part-of-Speech Tagger. In: Proceedings of the Joint

SIGDAT Conference on Empirical Methods in Natural Language Processing
and Very Large Corpora (EMNLP/VLC-2000). pp 63–70.

67. Lin D, Pantel P (2002) Concept Discovery from Text. In: Proceedings of

Conference on Computational Linguistics (COLING-02) Taipei, Taiwan. pp
577–583.

68. Harris Z (1954) Distributional structure. Word 10: 146–162.

69. Firth JR (1957) A synopsis of linguistic theory 1930-1955. In: Studies in
Linguistic Analysis: Oxford: Philological Society. pp 1–32.

70. Justeson JS, Katz SM (1991) Co-occurrences of antonymous adjectives and their
contexts. Comput Linguist 17: 1–19.

71. Riloff E, Jones R (1999) Learning dictionaries for information extraction by

multi-level bootstrapping. In: Proceedings of the sixteenth national conference
on Artificial intelligence and the eleventh Innovative applications of artificial

intelligence conference innovative applications of artificial intelligence. Orlando-
Florida, , United States: American Association for Artificial Intelligence. pp

474–479.

72. Rodale JI (1986) The Synonym Finder; Laurence Urdang NL, ed. Grand
Central Publishing.

73. Laird C (1999) Webster’s New World Roget’s A-Z Thesaurus; Agnes ME, ed.
Webster’s New World.

74. Kipfer BA (1993) 21st Century Synonym and Antonym Finder; Institute PL, ed.

Dell Publishing.

75. Spooner A, Oxford University Press. (2007) The Oxford dictionary of synonyms

and antonyms. Oxford/New York: Oxford University Press.

76. Devlin J (1987) A Dictionary of Synonyms and Antonyms; Fried J, editor.
Warner Books, Inc.

77. Scholastic I (2001) Scholastic dictionary of synonyms, antonyms, and
homonyms. New York: Scholastic Reference.

78. Miller G (1990) WordNet: an online lexical database. Int J Lexicogr 3: 235–312.

A Yardstick for Ontologies

PLoS Computational Biology | www.ploscompbiol.org 15 January 2011 | Volume 7 | Issue 1 | e1001055


