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A description of many biological processes requires knowledge of the 3-D structure of proteins and, in particular, the
defined active site responsible for biological function. Many proteins, the genes of which have been identified as the
result of human genome sequencing, and which were synthesized experimentally, await identification of their
biological activity. Currently used methods do not always yield satisfactory results, and new algorithms need to be
developed to recognize the localization of active sites in proteins. This paper describes a computational model that can
be used to identify potential areas that are able to interact with other molecules (ligands, substrates, inhibitors, etc.).
The model for active site recognition is based on the analysis of hydrophobicity distribution in protein molecules. It is
shown, based on the analyses of proteins with known biological activity and of proteins of unknown function, that the
region of significantly irregular hydrophobicity distribution in proteins appears to be function related.
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Introduction

Because of the growing number of structural genomics
projects oriented toward obtaining a large number of protein
structures in rapid and automated processes [1–4], there is a
need to predict protein function (or its functionally
important residues) by examining its structure. There have
been a variety of efforts in this direction. Some of the
techniques used to identify functionally important residues
from sequence or structure are based on searching for
homologue proteins of known functions [5–8]. However,
homologues, particularly when the sequence identity is below
25%, need not have related activities [9–11]. Geometry-based
methods have shown that the location of active site residues
can be identified by searching for cavities in the protein
structure [12] or by docking small molecules onto the
structure [13]. The cave localization in silico has been
presented on the basis of the characteristics of the normal
created for each surface piece [14]. The complex analysis of
protein interfaces and their characteristics versus highly
divergent areas is presented by Jimenez [15]. Several
experimental studies have shown that mutation of residues
involved in forming interfaces with other proteins or ligands
can also be replaced to produce more stable, but inactive
proteins [16–19]. On this basis, several effective algorithms
were developed [20,21]. Finally, structural analysis coupled
with measures of surface hydrophobicity have been used to
identify sites on the surfaces of proteins involved in protein–
protein interactions [22].

The Fuzzy Oil Drop (FOD) model presented in this paper is
based on an external hydrophobic force field [23–27]. The
role of hydrophobic interactions in protein folding [28–31] as
well as in protein structure stabilization [32–36] has been
known since the classic oil drop model of representing the
hydrophobic core in proteins was introduced by Kauzmann
[37]. According to this model, the hydrophobic residues tend

to be placed in the central part of the protein molecule and
in hydrophilic residues on the protein’s surface [38–40]. Even
the recognition of native versus nonnative protein structures
can be to some extent differentiated on the basis of spatial
distribution of amino acid hydrophobicity [41–43]. The
importance of hydrophobicity distribution has been empha-
sized, particularly for Rosetta development, when the
description of the hydrophobic core significantly increased
the performance of the Rosetta program [44]. The discrete
system of ellipsoidal centroids was introduced to estimate the
concentration of hydrophobic residues, in particular protein
zones [44]. The nonrandom hydrophobicity distribution has
been proven by Irbäck et al. [45]. However, it was suggested
that the core region is not well described by a spheroid of
buried residues surrounded by surface residues due to
hydrophobic channels that permeate the molecule [46,47].
The FOD model was initially used to simulate the hydro-
phobic collapse of partially folded proteins. Those structural
forms were assumed to represent the early stages of folding
(in silico); that model is presented elsewhere [48–50]. The
comparison of structures received by folding simulations with
their native forms revealed, however, some unexpected
results. In the case of native structures, the idealized hydro-
phobicity distribution satisfying the oil drop–like hydro-
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phobicity partitioning compared with the empirically ob-
served hydrophobicity differs in a specific manner. The high
discrepancies between observed and theoretical hydropho-
bicities within FOD are observed in the area of the binding
site [23–26]. It can even be generalized that the location of
hydrophobicity differences seems to represent an aim-
oriented discrepancy. This simple observation gave us the

opportunity to develop a method that was able to recognize
functional sites or residues in a protein structure.
In this study, the FOD model is applied to 33 proteins of

known function and 33 proteins of unknown function that
resulted from structural genomics projects.

Materials and Methods

Data
The 33 proteins of known biological activity (Table 1) were

selected to verify the reliability of the method. Most of these
proteins are enzymes that have well-defined biological
function and are deposited in the Catalytic Site Atlas
(http://www.ebi.ac.uk/thornton-srv/databases/CSA), a database
of templates representing different catalytic mechanisms [51].
The residues identified in this database as active site were
used as the criteria to verify the results. Two proteins of
known function—rat annexin V, and ButF, the vitamin B12-
binding protein, which take part in regulation [52] and
transport processes [53], respectively—are also included in
the test probe.
Reports from structural genomics projects [1–4] have

described the solution of a number of proteins with unknown
functions. The procedure for potential functional site

Table 1. Proteins of Known Function Taken to Analysis

Organism Molecule Name PDB ID Number Figures

Aquifex pyrophilus Glutamate racemase 1B73 254 (252) S1, S5

Bacillus stearothermophilus Tyrosyl transfer RNA synthetase 2TS1 419(317) S2, S7

Alanine racemase 1BD0 388 (381) S2, S7

Bacteriophage t4 Lysozyme 206L 164 (162) S2, S7

Bos taurus Ribonuclease A 1RBN 124 S2, S6

Carboxypeptidase A 5CPA 307 S2, S7

Candida albicans Phosphomannose isomerase 1PMI 440 1A, 3A

Equuus caballus Alcohol dehydrogenase 1QLH 374 S2, S6

Escherichia coli Methylenetetrahydrofolate reductase 1B5T 275 S1, S5

Superoxide dismutase 1ESO 154 S1, S6

Asparagine synthetase 12AS 330 (327) S2, S7

Methylmalonyl coa decarboxylase 1EF8 261 (256) S1, S5

Deoxyribose-phosphate aldolase 1P1X 260 (250) S2, S6

Endonuclease III 2ABK 211 S2, S6

Vitamin B12 transport protein 1N2Z 245 S1, S6

Gallus gallus Triosophosphate isomerase 1TPH 247 (245) 1B, 3B

Homo sapiens Deoxyguanosine kinase 1JAG 241 (229) S1, S6

Myeloperoxidase 1MHL 108 (104) S1, S6

Dihydrofolate reductase 1DHF 186 (182) S1, S5

Protein disulfide isomerase 1MEK 120 1C, 3C

Human immunodeficiency virus HIV-1 protease 1A30 99 S1, S5

Limulus polyphemus Arginine kinase 1BG0 356 S1, S5

Rattus norvegicus Heme oxygenase-1 1DVE 267 (214) S1, S5

Annexin V 1A8A 318 S1, S5

Guanine nucleotide-binding protein 1BH2 315 S1, S5

Rhizopus niveus Ribonuclease rh 1BOL 222 S1, S5

Salmo salar Trypsin 1A0J 223 S1, S5

Schizosaccharomyces pombe Riboflavin synthase 1KZL 208 (202) S1, S6

Spinacia oleracea Glycolate oxidase 1GOX 370 (351) S1, S6

Staphylococcus aureus 7,8-dihydroneopterin aldolase 2DHN 121 1D, 3D

Homo sapiens Carbonic anhydrase 1AM6 259 (258) S1, S5

Nicotiana glutinosa Ribonuclease NT 1VD1 217 (203) S2, S6

Rhodococcus erythropolis Nitrile hydratase 2AHJ 206 (192) S2, S6

Number denotes the length of polypeptide chain. The number in parentheses is the number of residues in the polypeptide chain available in the PDB. The last column (on the right)
presents the numbers of figures representing results concerning that particular molecule.
doi:10.1371/journal.pcbi.0030094.t001
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Author Summary

We present here a method of defining functional site recognition in
proteins. The active site (enzymatic cavity or ligand-binding site) is
localized on the basis of hydrophobicity deficiency, which is
understood as the difference between empirical (dependent on
amino acid positions) and idealized (3-D Gauss function, or Fuzzy Oil
Drop model) distribution of hydrophobicity. It is assumed that the
localization of amino acids representing a high difference of
hydrophobic density reveals the functional site. The analysis of the
structure of 33 proteins of known biological activity and of 33
proteins of unknown function (with comparable polypeptide chain
lengths) seems to verify the applicability of the method to binding
cavity localization. The comparative analysis with other methods
oriented on biological function is also presented. The validation of
predictability accuracy is shown with respect to the enzyme classes.

Active Site Recognition In Silico



recognition presented in this paper was performed with a set
of 33 such proteins deposited in the Protein Data Bank (PDB)
(Table 2).

The multimeric proteins were represented solely by their
first chain in the PDB file. All molecular visualizations were
created with Pymol software [54].

Hydrophobic Force Field
The FOD hydrophobic force field is based on the

assumption that the theoretical hydrophobicity distribution
in proteins is represented by the 3-D Gaussian function. The
value of this function in a particular j-th point within the
space occupied by a protein represents the hydrophobicity
density at this point:

~Htj ¼
1

~Htsum
exp

�ðxj � �xÞ2

2r2
x

 !
exp

�ðyj � �yÞ2

2r2
y

 !
exp

�ðzj � �zÞ2

2r2
z

 !

ð1Þ

Where ~Htj is the theoretical (expected) hydrophobicity of
the j-th point, rx, ry, rz are the standard deviations, which
depend on the length of polypeptide under consideration

[23–26] and the point ð�x;�y;�zÞ is localized in the center of
coordinate system (0,0,0) of the highest theoretical hydro-
phobicity. This simplifies Equation 1:

~Htj ¼
1
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exp
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2r2
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 !
exp
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The molecule is oriented according to the following
procedure: the longest distance between two effective atoms
determines the z-axis, and the longest distance between
projections on the x–y plane determines the x-axis.
For this orientation of molecules in the coordinate system,

the values of rx, ry, rz parameters are calculated as one-third
of the highest x, y, or z coordinates of the effective atom
increased by 9 Å (cutoff distance for hydrophobic inter-
action) in each direction. The values of the Gaussian function
are standardized to give a value of 1.0.
The second component of this force field is an observed

(empirical) hydrophobicity distribution formed by the side
chains of a protein molecule, and can be expressed using the
original function introduced by Levitt [55]. The j-th point
collects hydrophobicity ~Hoj as follows:

Table 2. Proteins of Unknown Function Taken to Analysis

Research Group Organism PDB ID Number Figures

Riken Structural Genomics/Proteomics Initiative (RSGI) Thermus thermophilus 2CV9 252 S3, S8

2CVB 188 (187) S3, S8

2CW4 124 S3, S8

2CW5 255 (235) S3, S8

2CWY 94 S3, S8

2CX0 187 (184) S3, S8

2CXF 190 (167) S3, S8

2CXL 190 (158) S3, S8

2D4R 147 (146) 2C, 4C

Midwest Center for Structural Genomics (MCSG) Pseudomonas aeruginosa 2AZP 318 2A, 4A

Thermotoga maritima 2ESH 118 (114) S3, S8

Helicobacter pylori 2EVV 207 (181) S3, S8

Strptococcus pyogenes 2EWC 126 (120) S3, S9

Bacteroides thetaiotaomicron 2F06 144 S4, S9

Nitrosomonas europaea 2FBL 153 (144) S4, S9

Northeast Structural Genomics Consortium (NESG) Acinetobacter sp. 2EW0 192 (175) S3, S9

Salmonella enterica 2F9C 334 (320) S4, S9

Bacillus subtilis 2FFG 87 (80) S4, S10

Pseudomonas putida 2FFI 288 (273) S4, S10

Staphylococcus aureus 2FFM 91 (83) 2D, 4D

Structural Genomics Consortium (SGC) Toxoplasma gondii 2F4Z 193 (145) S4, S9

Homo sapiens 2FBM 291 (251) S4, S10

Plasmodium berghei 2FDS 352 (318) S4, S10

Joint Center for Structural Genomics (JCSG) Thermotoga maritima 2EWR 170 (156) 2B, 4B

Thermotoga maritima 2F4L 297 (275) S3, S9

Bacillus halodurans 2F22 144 (142) SS, S9

New York Structural Genomics Research Consortium (NYSGRC) Pseudomonas aeruginosa 2EUI 153 S3, S8

Methanococcus jannaschii 2F4N 173 (137) S4, S9

Center for Eucaryotic Structural Genomics (CESG) Danio rerio 2FB7 95 (80) S4, S9

Ontario Centre for Structural Proteomics (OCSP) Escherichia coli 2F09 102 (82) S4, S9

Southeast Collabolatory for Structural Genomics (SECSG) Pyrococcus furiosus 2F40 96 (74) S4, S9

Bunker RD, Baker EN, Arcus VL Pyrobaculum aerophilum 2FE1 156 (130) S4, S10

Kang SJ, Park SJ, Jung SJ, Lee BJ Helicobacter pylori 1ZHC 76 S3, S8

Number denotes the length of polypeptide chain. The number in parentheses in the Number column is the number of residues in polypeptide chain available in the PDB. The last column
(right) presents numbers of figures representing results concerning that particular molecule.
doi:10.1371/journal.pcbi.0030094.t002
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where ~Hoj denotes the empirical hydrophobicity value
characteristic for the j-th point, N is the number of residues
in a protein, ~H

r
i represents the hydrophobicity characteristic

for the i-th amino acid, rij is the distance between the j-th
point and the geometrical center of the i-th residue, and c
expresses the cutoff distance, which has a fixed value of 9.0 Å,
following the original paper [55]. The observed hydro-
phobicity distribution ~Ho is also standardized. More details
concerning the FOD force field are given in recently
published papers [23–27].

The similarity of the FOD-based hydrophobic scale with
others commonly used for calculations (e.g., the Eisenberg
[56] or Doolittle [40] scales) has been shown and discussed in
[57]. The differences between these scales seem to be
negligible with respect to the problem under consideration.
Use of these scales does not change the ~Ho distribution
significantly (Equation 3) [57]. The introduction of the FOD-
based hydrophobic scale unifies the system for proteins
(amino acids) and molecules interacting with proteins,
creating stable complexes (ligands).

Scoring Function. Since both theoretical ~Ht and observed
~Ho distributions of hydrophobicity are standardized to 1.0
and were calculated for the same set of points (geometrical
centers of all residues in a protein), the comparison of these
two characteristics is possible. The difference between
theoretical and empirical distributions D ~H expresses the
irregularity of hydrophobic core construction. For the i-th
residue, D ~Hi is calculated as follows:

D ~Hi ¼ ~Hti � ~Hoi ð4Þ

where ~Hti and ~Hoi are the theoretical and observed values of
hydrophobicity for the geometric center of the i-th residue,
respectively.

The maxima of D ~H recognize the residues representing the
hydrophobicity deficiency, which points out the structural
irregularity, usually in a function-related area.

Comparative Analysis. The SuMo and ProFunc methods
(both available on the Web, see urls below) were selected to
perform the comparative analysis as to functional site
recognition.

SuMo. SuMo is a Web tool [58] (http://sumo-pbil.ibcp.fr/
cgi-bin/sumo-welcome) that predicts the function of proteins
based on the chemistry of the bound ligand. Each ligand and
macromolecule part is divided into sets of arbitrary prede-
fined chemical groups. The active site is recognized by a
comparison of a minimum of three chemical groups in both
compared molecules. SuMo produces a list of probable active
sites on default ranked by the number of SuMo groups
involved in each given prediction. The active site is described
by a set of amino acids and corresponding chemical groups
[59].

ProFunc. ProFunc [60] is a Web server (http://www.ebi.ac.uk/
thornton-srv/databases/ProFunc) devoted to predicting the

function of proteins of known 3-D structure and unknown
function. The server provides both sequence- and structure-
based methods, which may be used in the analysis of proteins.
From the group of structure-based methods available on the
server, the ‘‘reverse templates’’ 3-D template–based method
[61] was chosen and applied to validate the method presented
in this study. According to the reverse-template method, the
structure itself is broken up into a large number of templates
(each containing three residues) that are scanned against a
representative set of structures in the PDB [61]. All the hits
obtained are scored and ranked. Other homology/sequence-
based tools were not taken into account; only methods of
similar (structure-based) methodologies were included.
The coordinates of all protein structures under study were

submitted to the server in PDB format. The top reverse
template–matching structures of known and unknown
functions were used in our comparative analysis.

Result Verification
The residues annotated in CSA as those playing roles in

catalytic activity were used as the gold standard to verify the
reliability of the results received according to the FOD model.
To indicate the most meaningful amino acids considered

by the FOD model to be located in the functional site, the
calculation of percentiles was used to identify the threshold
for selection of D ~H maxima, which are distinguished as
belonging to the functional site. It is possible to do so,
because the quantitative results expressing the level of D ~H
can be taken as the criteria for discrimination. For a set of
measurements arranged in order of magnitude, the p-th
percentile is the value that has p percent of the measurements
below it and (100 � p) percent above it. In this analysis, the
95th percentile was used. In other words, among the analyzed
data, 95% of values were below the 95th percentile threshold,
and only the 5% above the threshold was taken into
consideration.
The same validation method cannot be used in the SuMo or

ProFunc methods because of their different types of output
data. They produce only the numbers of amino acids that
potentially belong to functional sites and total scores (based
on which given set of amino acid residues is assessed and what
functional site is proposed). This is why the percentage of
commonly classified residues was calculated for each protein
molecule by taking the best hit by ProFunc (according to the
score value) and the solution most relevant to the FOD-based
results by SuMo.

Results

Functional Site Recognition in Proteins of Differentiated
Biological Activity
The proteins of known biological activity (Table 1) and

protein structures of unknown function that resulted from
structural genomics projects (Table 2) were examined for the
locations of their functional sites. Table 3 summarizes the
results of the method application and comparison with
experimental observations (CSA classification). The first
column presents the protein under consideration and the
list of residues recognized by CSA. For two proteins (rat
annexin V and ButF), residues that are in direct contact with
ligand [62,63] and/or are part of the functional site are given
[64].
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In Table 3, the columns representing FOD results show the
numbers of residues recognized by this method: agreement
with CSA classification (underlined), and residues defined by
two methods—FOD and at least one of two other methods
(SuMo, ProFunc) as biological activity-related residues (in
bold). Where the position of the amino acids differed by 1
(closest neighbors) versus the CSA classification or versus the
position found by SuMo or ProFunc, the numbers are in
italics in Table 3. The description of the SuMo and ProFunc
columns in Table 3 is given below (Comparative Analysis).

The residues recognized as potentially responsible for
binding site creation in proteins of unrecognized biological
function are given in Table 4.

Profile plots of D ~H were used to identify the positions
recognized by the FOD model as related to functional sites.
The profile plots of D ~H were examined for proteins of known
and unknown biological activity (Figures 1, S1, and S2; and
Figures 2, S3, and S4; respectively). The residues with the
highest D ~H appeared as peaks in the profile plots and were
predicted to be functionally important. The values of D ~H
indicate the level of hydrophobicity irregularity. It is inter-
preted that the higher the D ~Hvalue, the higher the deficiency
of hydrophobicity with respect to its idealized distribution
according to Gauss function. Thus, the D ~H maxima identified
as being represented by a particular amino acid point out the
residues in the surrounding area where the hydrophobicity
deficiency is significant. In most cases, this deficiency is caused
simply by the presence of a cavity or by the highly irregular
distribution of side chains. The D ~H profile together with the
color scale visualizes the magnitude of the irregularity. The
same scale applied to the 3-D presentation of the protein

molecule is able to visualize the location of high D ~H values,
particularly in the protein structure. It can be seen that the
residues with high D ~H values appear to be placed in close
mutual vicinity, often creating a cleft, which can be responsible
for ligand (substrate) binding.
The 3-D representations for selected proteins of known

function are shown in Figure 3, and for selected proteins of
unknown biological function in Figure 4. Other proteins
under consideration are presented in Figures S5–S7 and
Figures S8–S10.
The color scale expressing the magnitude of D ~H is as

follows: red, high D ~H; yellow, average D ~H ; green, low and
negative D ~H . The white color denotes the experimentally
verified amino acids as responsible for catalytic activity
(according to the CSA database). In most cases, the set of
amino acids selected according to the FOD model is larger
than the set of residues classified by CSA. This is because the
D ~H profile also selects amino acids that are close in space,
which create well-defined putative cavities that accompany
the residues responsible for enzymatic activity. Amino acids
indicated by FOD as belonging to the binding cavity are in
space filling form.
The molecules presented in Figure 3A and 3B are selected

to show the best results; the molecules presented in Figure 3C
and 3D demonstrate the cases of low accordance. Some of the
protein molecules with high D ~H values shown in Figure 3A
and 3B appeared to be highly accordant to the active site
location. Other proteins with high D ~H values (Figure 3C and
3D) are not exactly located in the positions of the amino acids
that make up the catalytic site. Nevertheless, the analysis of
the larger set of proteins may suggest that the specificity of

Figure 1. Profile Plots of Hydrophobicity Deviation DH̃ per Amino Acid Obtained for Exemplary Proteins of Known Function

(A) Phosphomannose isomerase and (B) triosophosphate isomerase are examples of the high agreement with experimental data.
(C) Protein disulfide isomerase and (D) 7,8-dihydroneopterin aldolase are examples of low agreement.
The common color scale is introduced: red, high DH̃; yellow, middle DH̃; green, low and negative DH̃.
doi:10.1371/journal.pcbi.0030094.g001
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the mutual location of the residues represented by high D ~H
values versus the position of the enzymatic site may be
classified according to enzyme specificity.

One hypothesis is that the residues responsible for complex
fixation (protein and ligand or substrate) were selected by the
FOD model. Another explanation for the mismatch between
experimentally identified and automatically identified resi-
dues is simply that for multimeric chains, only the first chain
was present in the analysis.

Comparative Analysis
The results summarize the comparison of the model

applied to identify the ligand-binding site and two other
methods dedicated to the same purpose: ProFunc and SuMo
are given in Table 3 for proteins of known biological function
and in Table 4 for proteins of unknown biological function.
Table 3 presents the list of proteins (the PDB accession
numbers are given) accompanied by the amino acids
identified as function-related according to CSA classification.

SuMo results (for each SuMo search in question) show the
comparison with the FOD model for only one example of a
functional site found by SuMo and present the residue
numbers, which appeared to be common for these two
methods (column 4 of Table 3). The limitation to compare
only one SuMo result for one search is caused by the
specificity of output generated by the SuMo procedure, which
produces an enormous number of possible solutions for one
particular protein molecule (in most cases, thousands of
variants). Each solution is presented with regard to another
protein (PDB number given), the functional site of which
seems to be related to that found in the molecule under

analysis. This procedure proposes a list of functional sites
that sometimes represent changed functionality (e.g., ligands
of different structure/characteristics are bound). One func-
tional site with a functional site of the same/closest properties
is selected. The presentation of all results is impossible to
present here in complete form.
In column 5 of Table 3, the ratio of commonly recognized

residues to the number of all residues recognized by SuMo for
that hit is shown. As we see, the total number of amino acids
classified by SuMo in most cases is the same or exceeds the
number identified by the FOD model.
The numbers given in the last two columns (ProFunc) of

Table 3 represent positions of amino acids recognized by
ProFunc by its best hit and method score. This is why the
number of commonly recognized residues (given in bold) is
lower than in the SuMo comparison.
The results describing the analysis of proteins of unknown

biological function are shown in Table 4. The presentation is
similar to that for proteins of known biological function with
an obvious lack of underlined positions (no CSA classification
available). The SuMo results are additionally characterized by
the relation between the SuMo score of the solution closest to
that based on the FOD model (highest number of common
positions) and the score value of best hit, as estimated by
SuMo.
The comparison of the methods selected for analysis is

generally very difficult. The SuMo and ProFunc methods
represent the methodology of the stochastic nature. The FOD
seems to be a more heuristic method. SuMo and ProFunc
produce very large outputs with long lists of possible

Figure 2. Profile Plots of Hydrophobicity Deviation DH̃ per Amino Acid Obtained for Exemplary Proteins of Unknown Function

The protein identified in the genome of Pseudomonas aeruginosa (A) and the protein identified in the genome of Thermotoga maritima (B) are examples
representing close localization of residues of high DH̃. The protein originated in the Thermus thermophilus genome (C) and the protein originated the
Staphylococcus aureus genome (D) are examples of dispersed localization of residues representing high DH̃. The common color scale (same as in Figure
1) is introduced: (low and negative DH̃ proteins need additional analysis of their specificity).
doi:10.1371/journal.pcbi.0030094.g002
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approaches. Each of them is characterized by the scoring
number calculated according to the number of contacts
(pairs of amino acids) responsible for ligand–protein inter-
action. However, the number of residues commonly recog-
nized by at least two analyzed methods seems to be quite high.

Taking into account a very large discrepancy in the results
of one particular method, the level of mutual accordance
seems to be satisfactory.

Result Validation
Tables 5 and 6 present the results aimed toward validating

the FOD model–based results. The values present error levels
calculated for the methods under consideration. These
calculations take into account the number of mismatched
residues versus the CSA, SuMo, and ProFunc classifications.
Tables 5 and 6 also include comparisons versus functional site
amino acids estimated by the D ~H above the 95th percentile
value.

The proteins of known biological function are character-
ized in Table 5, and the proteins of unknown biological
function are characterized in Table 6. The false negative
(below diagonal) and false positive (above diagonal) classi-
fications are given as average (for all analyzed proteins)
percentages of mismatched residues.

The comparison is expressed by the level of error measured
in the percentage of mismatched residues. The left value in
each table cell was calculated by taking into account the exact
amino acid numbers. The value on the right side expresses
the percentage of mismatched residues when the tolerance of
(i þ 2)/(i � 2) amino acids (the positions of the residues) is
taken into consideration.
The FOD results are based on the D ~H profile along the

polypeptide chain. The search for the percentile optimally
discriminating the residues belonging to those classified by
CSA can be performed. The D ~H values above the 95th
percentile value appeared to be the best approach of local
D ~H maxima as the criteria for function-related residue
classification. The results of the comparison of the 95th
percentile are shown in the ‘‘FOD 95th percentile’’ column.
The interpretation of values given in Tables 5 and 6 is as

follows. For example, in FOD versus ProFunc cases, 86% of
residues found by the FOD method were not selected by
ProFunc (false positives). Taking the amino acids with (iþ2)/(i
� 2) tolerance, the level decreases to 73%.

In false negative cases, 81% of residues selected by ProFunc
were not selected by FOD (65% when closest neighbors were
taken into account).
This study is not designed to give a thorough comparison

Figure 3. The 3-D Representation of Proteins of Known Biological Activity with Binding Site Recognized

Phosphomannose isomerase (A) and triosophosphate isomerase (B) are examples of the high agreement with experimental data. Protein disulfide
isomerase (C) and 7,8-dihydroneopterin aldolase (D) are examples of low agreement. Amino acids indicated by FOD as belonging to the binding cavity
are in CPK form. The common color scale (same as in Figure 1) is introduced. The white color denotes the experimentally verified amino acids as active
site (identification according to the CSA database).
doi:10.1371/journal.pcbi.0030094.g003
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of functional site tools, nor is it meant to review the current
advances in this field. Therefore, the mutual comparisons
between SuMo and ProFunc, SuMo and CSA, and ProFunc
and CSA are not presented here.

Additional analysis summarizing the applicability of the
presented method is also shown in Table 7. It is shown that
the correctness of the FOD model depends on the enzyme
class. Values in Table 7 express the percentages of the
residues identified by the FOD method versus those identified
by CSA. The highest agreement was found for the EC.3
category (hydrolases), where almost 70% of residues classified
by CSA were found by the FOD model. The functional sites in
enzymes belonging to the EC.4 (lyases) and EC.6 (ligases)
classes were recognized quite well (more than 60%). The
lowest agreement was found for the EC.2 class (transferases),
where the percentage of correctly predicted amino acids
(versus CSA classification) was about 20% (this seems
nonrepresentative due to the low number of proteins under
consideration in this class).

The specificity of the active sites in particular enzymatic
classes will be analyzed in future publications with respect to
the FOD methodology. The larger number of proteins
belonging to particular enzyme classes will be taken into
consideration in the prospective analysis with respect to the

applicability of the FOD model as the tool for functional site
recognition. The increased number of proteins representing
a particular enzyme class may clarify also the applicability of
the method in relation to the detailed type of reaction
catalyzed.

Discussion

The recognition of functional sites in protein molecules is
important for the identification of biological activity. The
fully automatic method is highly expected. In analogy to the
methods applied for protein structure prediction, the ligand-
binding site can be recognized on the basis of comparative
methods (according to CASP [critical assessment of structure
prediction] classification). The alternate possibility is to
search for a ligand-binding site using new fold (according to
CASP classification) techniques that use only the structure of
individual proteins.
The FOD method presented here identifies the potentially

function-related amino acids. In contrast to SuMo and
ProFunc, which are based on comparative analysis, the FOD
method is of heuristic form, taking as its criterion the
individual local hydrophobicity deficiency in a particular
protein body.

Figure 4. The 3-D Representation of Proteins of Unknown Biological Activity with Binding Site Recognized

The protein identified in the Pseudomonas aeruginosa genome (A) and the protein identified in the Thermotoga maritima genome (B) are examples
representing close localization of residues of high DH̃. The protein originated in the Thermus thermophilus genome (C) and the protein originated in the
Staphylococcus aureus genome (D) are examples of dispersed localization of residues representing high DH̃. The common color scale (same as in Figure 1)
is introduced.
doi:10.1371/journal.pcbi.0030094.g004
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The ligands’ (as cofactors or cosubstrates) presence makes
the biological activity possible for some proteins. The
enzymatic activity also requires substrate binding. The
presence in the cavity of high specificity versus ligand/
substrate is needed for this kind of interaction. The location
of the cavity (dependent on the protein character) in protein
molecules seems to be well recognized by the FOD model.

The part of the protein molecule with high hydrophobic
deficiency is recognized as a possible ligand-binding site (or
active site). Some results received according to the FOD
model seem to be quite satisfactory (Figure 1A and 1B and
Figure 3A and 3B). The catalytic mechanisms of enzymes are
quite differentiated and require appropriate molecular
structures. The analysis of their specificity may clarify the
origin of failure (Figure 1C and 1D and Figure 3C and 3D).
The possible protein–protein complex creation (not taken
into consideration in this analysis) may significantly influence
the results (e.g., Figures S1 and S6). Two proteins (in Figures
1C and 3C, and in Figures 1C, 3C, S2, and S7) of common
enzymatic specificity (disulphide isomerase) have been
recognized on the basis of the FOD method as highly similar
with respect to the mutual orientation of residues involved in
cavity creation. The specificity of enzymes with respect to
their active site construction is the aim of prospective
analysis, which will be published soon, as well as analysis of
proteins responsible for biological functions other than
enzymatic (e.g., proteins responsible for transport as given
in Table 3).

The calcium-binding sites in annexin V are not recognized
by FOD, although the ion channel–creating residues are
pointed out by this method according to expectations for the
method of biological function recognition.

The FOD model may also represent the specific hydro-
phobic environment for protein folding and was initially

aimed at the simulation of the hydrophobic collapse of
partially folded proteins. The heuristic model of protein
folding, according to which the folding polypeptide is
directed to follow the hydrophobicity distribution, is repre-
sented by the 3-D Gaussian function. The external force field
may direct the folding process toward the hydrophobic core
creation. The resulting structure appeared to be dissatisfac-
tory, particularly because of the absence of a ligand-binding
site in the final structural form. The presence of a ligand in
the folding environment may ensure the specific binding
cavity creation. Thus, it seems to be important or even
necessary.
The comparative analysis of the results of the FOD-based

method with the results of SuMo and ProFunc (Tables 3–6)
reveals the very high similarity of obtained results. The
methods use different criteria for classification. The exhaus-
tive comparative analysis of the results obtained by the
application of different methods seems to be necessary and
has been taken into consideration; this will be published soon
together with explanation of the source of these differences.
The proteins shown in this paper represent mostly enzymes

of varying biological activity, the relation of which to the
character of the results will be the object of independent
research.
It is generally accepted that globular proteins consist of a

hydrophobic core and a hydrophilic surface [36,40]. However,
the core region is not well described by a spheroid of
hydrophobic residues surrounded by hydrophilic residues
due to channels that permeate the molecule [46,47]. The FOD
model, when applied to protein structure, characterizes the
hydrophobicity density in a continuous form by pointing out
the irregularities in a hydrophobic core construction
disturbing the regularity of hydrophobicity distribution

Table 5. Error Analysis for Proteins of Known Biological Function

False Positive/False Negative Fuzzy Oil Drop Fuzzy Oil Drop 95th Percentile Catalytic Site Atlas SuMo Method ProFunc Method

Fuzzy Oil Drop method — 55/35 80/66 70/59 86/73

Fuzzy Oil Drop 95th percentile 58/36 — 54/33 — 87/69

Catalytic Site Atlas 46/36 — — — —

SuMo method 71 — — — —

ProFunc method 81/65 91/78 — — —

doi:10.1371/journal.pcbi.0030094.t005

Table 6. Error Analysis for Proteins of Unknown Biological Function

False Positive/False Negative Fuzzy Oil Drop Model Fuzzy Oil Drop 95th Percentile SuMo Method ProFunc Method

Fuzzy Oil Drop Model — 63/35 56/40 82/59

Fuzzy Oil Drop 95th Percentile 68/42 — — 94/72

SuMo Method 30 — — —

ProFunc Method 87/63 93/71 — —

The values measuring the disagreement (error) expressed in percentages for proteins of unknown biological activity. The Fuzzy Oil Drop column takes into consideration the amino acids
representing maxima on DH profile and that are localized in the close mutual vicinity. The values in the top row and last column are calculated for false positive results, and those in the
first column and last row for false negative results. The values on the left side express the level of error when using exact numbers of amino acids; the values on the right side express the
level of error when amino acids on positionsþ2 and/or�2 versus the exact number are taken into account.
doi:10.1371/journal.pcbi.0030094.t006
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[23–26]. Those irregularities seem to be good markers for
ligand-binding sites or functionally important residues.

Methods dedicated to active site recognition have been
widely developed: SARIG [65], Q-SITE FINDER [66], HIPPO
(SPROUT) [67,68], FEATURE [69–71], THEMATICS [72–74],
APROPOS [75], DRUGSITE [76], and LIGSITE [77], to
mention just a few. Limitation to two methods (SuMo and
ProFunc) for comparative analysis in this paper is due to the
very large variability of the models when applied.

The method described in this paper is assumed to be
applied for active site identification for a large set of
proteins, the structure of which is planned to be generated
using different methods (FOD and ROSETTA [78]). The
project geared toward biological activity identification in
never born proteins (NBPs) is assumed to deliver the
molecules of pharmacological application [79,80]. This is
the main scientific goal for pharmacology application in the
EuChinaGrid project.

The FOD method is available at http://bioinformatics.cm-uj.
krakow.pl/activesite.
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ButF (1N2Z), phosphomannose isomerase (1PMI), triosophosphate
isomerase (1TPH), protein disulfide isomerase (1MEK), 7,8-dihydro-
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SuMo server: 3D search for protein functional sites. Bioinformatics 21:
3929–3930.

59. Jambon M, Imberty A, Deléage G, Geourjon C (2003) A new bioinformatic
approach to detect common 3D sites in protein structures. Proteins 52:
137–145.

60. Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: A server for
predicting protein function from 3D structure. Nucleic Acids Res 33: W89–
W93.

61. Laskowski RA, Watson JD, Thornton JM (2005). Protein function prediction
using local 3D templates. J Mol Biol 351: 614–626.

62. Huber R, Berendes R, Burger A, Luecke H, Karshikov A (1992) Annexin V-
crystal structure and its implications on function. Behring Inst Mitt 91:
107–125.

63. Karpowich NK, Huang HH, Smith PC, Hunt JF (2003) Crystal structures of
the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally
important reduction in protein mobility upon ligand binding. J Biol Chem
278: 8429–8434.

64. Kourie JI, Wood HB (2000) Biophysical and molecular properties of
annexin-formed channels. Prog Biophys Mol Biol 73: 91–134.

65. Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, et al. (2004) Network
analysis of protein structures identifies functional residues. J Mol Biol 344:
1135–1146.

66. Laurie AT, Jackson RM (2005) Q-SiteFinder: An energy-based method for
the prediction of protein-ligand binding sites. Bioinformatics. 21: 1908–
1916.

67. Gillet VJ, Myatt G, Zsoldos Z, Johnson AP (1995) SPROUT, HIPPO and
CAESA: Tools for de novo structure generation and estimation of synthetic
accessibility. Perspect Drug Discov Design 3: 34–50.

68. Law JMS, Fung DYK, Zsoldos Z, Simon A, Szabo Z, et al. (2003) Validation of
the SPROUT de novo design program. J Mol Struct: THEOCHEM 651–657;
666–667.

69. Wei L, Altman RB (1998) Recognizing protein binding sites using statistical
descriptions of their 3D environments. Pac Symp Biocomput 497–508.

70. Liang MP, Banatao DR, Klein TE, Brutlag DL, Altman RB (2003)
WebFEATURE: An interactive web tool for identifying and visualizing
functional sites on macromolecular structures, Nucleic Acids Res 31: 3324–
3327.

71. Banatao DR, Altman RB, Klein TE (2003) Microenvironment analysis and
identification of magnesium binding sites in RNA. Nucleic Acids Res 31:
4450–4460.

PLoS Computational Biology | www.ploscompbiol.org May 2007 | Volume 3 | Issue 5 | e940922

Active Site Recognition In Silico



72. Ko J, Murga LF, Wei Y, Ondrechen MJ (2005) Prediction of active sites for
protein structures from computed chemical properties, Bioinformatics 21
(Supplement 1): i258–265.

73. Shehadi IA, Abyzov A, Uzun A, Wei Y, Murga LF, et al. (2005) Active site
prediction for comparative model structures with thematics. J Bioinform
Comput Biol 3: 127–143.

74. Ko J, Murga LF, Andre P, Yang H, Ondrechen MJ, et al. (2005) Statistical
criteria for the identification of protein active sites using theoretical
microscopic titration curves. Proteins 59: 183–195.

75. Peters KP, Fauck J, Frommel C (1996) The automatic search for ligand
binding sites in proteins of known three-dimensional structure using only
geometric criteria. J Mol Biol 256: 201–213.

76. An J, Totrov M, Abagyan R (2004) Comprehensive identification of
druggable protein ligand binding sites. Genome Inform 15: 31–41.

77. Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: Automatic and
efficient detection of potential small molecule-binding sites in proteins. J
Mol Graph Model 15: 359–363.

78. Misura KM, Chivian D, Rohl CA, Kim DE, Baker D (2006) Physically realistic
homology models built with ROSETTA can be more accurate than their
templates. Proc Natl Acad Sci U S A 103: 5361–5366.

79. Chiarabelli C, Vrijbloed JW, Thomas RM, Luisi PL (2006) Investigation of
de novo totally random biosequences. Part I: A general method for in vitro
selection of folded domains from a random polypeptide library displayed
on phage. Chem Biodivers 3: 827–839.

80. Chiarabelli C, Vrijbloed JW, de Lucrezia D, Thomas RM, Stano P, et al.
(2006) Investigation of de novo totally random biosequences, Part II: On
the folding frequency in a totally random library of de novo proteins
obtained by phage display. Chem Biodivers 3: 840–859.

PLoS Computational Biology | www.ploscompbiol.org May 2007 | Volume 3 | Issue 5 | e940923

Active Site Recognition In Silico


