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The (asymptotic) degree distributions of the best-known ‘‘scale-free’’ network models are all similar and are
independent of the seed graph used; hence, it has been tempting to assume that networks generated by these models
are generally similar. In this paper, we observe that several key topological features of such networks depend heavily
on the specific model and the seed graph used. Furthermore, we show that starting with the ‘‘right’’ seed graph
(typically a dense subgraph of the protein–protein interaction network analyzed), the duplication model captures many
topological features of publicly available protein–protein interaction networks very well.
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Introduction

In the past few years, protein–protein interaction (PPI)
networks of several organisms have been derived and made
publicly available. Some of these networks have interesting
topological properties (e.g., the degree distribution of the
yeast PPI network is heavy-tailed; that is, there are a few
nodes with many connections). It has been argued that the
degree distribution of these networks are in the form of a
power law [1,2] (some recent works challenge this by attribut-
ing the power law–like behavior to sampling issues, exper-
imental errors, or statistical mistakes [3–7]). Since well-known
random graph models also have power-law degree distribu-
tions [8–10], it has been tempting to investigate whether these
models agree with other topological features of the PPI
networks.

There are two well-known models that provide power-law
degree distributions [11–13]. The preferential attachment model
[9,14] was introduced to emulate the growth of naturally
occurring networks such as the web graph; unfortunately, it is
not biologically well-motivated for modeling PPI networks.
The duplication model, on the other hand [15–17], is inspired by
Ohno’s hypothesis on genome growth [18] by duplication.
Both models are iterative in the sense that they start with a
seed graph and grow the network in a sequence of steps.

The degree distribution is commonly used to test whether
two given networks are similar or not. However, networks
with identical degree distributions can have very different
topologies (e.g., consider an infinite 2-D grid versus a
collection of cliques of five nodes; in both cases, all nodes
have a degree of four). Furthermore, it was observed in [3]
that given two networks with substantially different initial
degree distributions, a partial (random) sample from those
networks might give subnetworks with very similar degree
distributions. Thus, the degree distribution cannot be used as
a sole measure of topological similarity.

In the recent literature, two additional measures have been

used to compare PPI networks with random network models.
The first such measure is based on the k-hop reachability. The 1-
hop reachability of a node is simply its degree (i.e., the
number of its neighbors). The k-hop reachability of a node is
the number of distinct nodes it can reach via a path of �k
edges. The k-hop reachability of all nodes whose degree is k is
the average k-hop reachability of these nodes. Thus, the k-hop
reachability (for k ¼ 2,3,...) of nodes as a function of their
degree can be used to compare network topologies. An
earlier comparison of the k-hop reachability of the yeast
network with networks generated by certain duplication
models concluded that the two network topologies are quite
different [19]. The second similarity measure is based on the
graphlet distribution. Graphlets are small subgraphs such as
triangles, stars, or cliques. In [4] it was noted that certain
‘‘scale-free’’ networks are quite different from the yeast PPI
network with respect to the graphlet distribution. This
observation, in combination with that on the k-hop degree
distribution, seems to suggest that the known PPI networks
may not be scale-free, and that existing scale-free network
models may not capture the topological properties of the PPI
networks.
There are other topological measures that have been

commonly used in comparing social networks, etc., but not
PPI networks. Two well-known examples are the betweenness
distribution and the closeness distribution [20]. Betweenness of
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a node v is the number of shortest paths between any pair of
nodes u and w that pass through v, normalized by the total
number of such paths. Closeness of v is the inverse of the total
distance of v to all other nodes u. Thus, one can use
betweenness and the closeness distributions, which respec-
tively depict the number of nodes within a certain range of
betweenness and closeness values that can be used to compare
network topologies.

Results/Discussion

As mentioned above, scale-free network generation models
such as the preferential attachment model and the duplica-
tion model can have very similar degree distributions under
appropriate choice of parameters. (See Materials and
Methods for exact definitions for the two network generation
models.) Moreover, the degree distribution of these models
converge to a power-law degree distribution whose shape is
determined solely by the edge deletion and edge insertion
probabilities, and not by the initial ‘‘seed’’ graph [11]. Hence,
it has been tempting to assume that networks generated by
these models are similar in general; moreover, the effect of
the seed graph in shaping the topologies of these networks
has largely been ignored in recent literature.

We start with the observation that two networks with very
similar degree distributions may have very different top-
ologies. For example, a network generated by the preferential
attachment and another generated by the duplication model
may have very different k-hop reachability, graphlet, betwe-
enness, and closeness distributions while having almost
identical degree distributions.
Figure 1 depicts the degree distribution, k-hop reachability,

and graphlet frequency of the duplication model and the
preferential attachment model with 4,902 nodes (as per the
yeast PPI network [21]). Both models start with identical seed
graphs; we set r ¼ 0.12, p ¼ 0.365 (the two key parameters of
the duplication model), and c¼ 7 (the single key parameter of
the preferential attachment model) so that the average degree
of nodes in both models is seven (again as per the yeast PPI
network [21]). Figure 1 compares the k-hop reachability
achieved by the two models for k . 1. As can be seen, the k-
hop reachability is quite different, especially for k ¼ 3,4.
Figure 1 also shows how the graphlet distributions differ,
especially for dense graphlets (e.g., graphlets 17–29 and 85–
145). In terms of betweenness and closeness, there are some
differences as well.
We now show that the seed graph has a role in character-

izing the topology of the duplication model. Figure 2 depicts
how various topological features of the duplication model
with fixed parameters (p¼ 0.365 and r¼ 0.12) vary as the seed
graph changes. The first seed graph (red) is obtained by highly
connecting two cliques of ten and seven nodes, respectively,
by several random edges. To reduce the average degree, some
additional nodes were generated and randomly connected to
one of the cliques. The second seed graph (blue) is obtained
by enriching a ring of 17 nodes by random connections so as
to make the average degree match that of the first seed graph.
The third seed graph (green) is formed by sparsely connecting
two cliques of ten and seven nodes, respectively, with some
added nodes randomly connected to one of the cliques.
All three networks were grown until all had 4,902 nodes as

per the yeast PPI network [21]. (We depict the ‘‘average
behavior’’ of five independent runs of each of the models.) It
can be observed that although all of them have very similar
degree distributions, their graphlet distributions may be
quite different, especially for dense graphlets. Figure 2 also
compares the k-hop reachability, closeness, and betweenness
distributions. As can be seen, the k-hop reachability and the
closeness distribution can vary considerably. Note that both
the graphlet and the closeness distributions are in logarith-
mic scale, and seemingly small variations in the figure may
imply several factors of magnitude of a difference between
the two distributions.
The key question we aim to address in this paper is the

following. If the seed selection has such an impact in shaping
the topology of the network generated by the duplication
model, is it possible to select the ‘‘right’’ seed graph so that all
interesting topological features of the PPI networks in
question can be captured? Also, is there a systematic way to
determine a subgraph of a PPI network that can provide a
good seed graph?
We answer the above questions positively by demonstrating

that the duplication model applied on the right seed graph
can result in a network that accurately captures all key
features of the PPI networks we considered.
The PPI networks we consider in this study include (the
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Author Summary

The interactions among proteins in an organism can be represented
as a protein–protein interaction (PPI) network, where each protein is
represented with a node, and each interaction is represented with
an edge between two nodes. As PPI networks of several model
organisms become available, their topological features attract
considerable attention. It is believed that the available PPI networks
are (1) ‘‘small-world’’ networks, and (2) their degree distribution is in
the form of a ‘‘power law.’’ In other words, (1) it is possible to reach
from a protein to any other protein in only a small (approximately
six) number of hops, and (2) although most proteins have only a few
interactions (one or two), there are a few proteins with many more
interactions (200 or more) and that act as ‘‘hubs.’’ It has thus been
tempting to develop simple mathematical network generators with
topological features similar to those of the available PPI networks.
One such model, the ‘‘duplication model,’’ is based on Ohno’s
model of genome growth. It starts with a small ‘‘seed network’’ and
grows by ‘‘duplicating’’ one of the existing nodes at a time, with an
identical set of interactions; a randomly selected subset of these
interactions is then deleted, and a few new interactions are added at
random. It has been mathematically proven that the duplication
model provides a small-world network and also has a power-law
degree distribution. What we show in this paper is that by choosing
the ‘‘right’’ seed network, many other topological features of the
available PPI networks can be captured by the duplication model.
The right seed network in this case turns out to include two sizable
‘‘cliques’’ (subnetworks where all node pairs are connected) with
many interactions in between. In this paper, we also consider the
preferential attachment model, which again grows by adding to a
seed network one node at a time and connecting the new node to
every other node with probability proportional to the existing
degree of the second node. Because the preferential attachment
model also provides a small-world network and has a power-law
degree distribution, it has been considered equivalent to the
duplication model. We show that the two models are vastly different
in terms of other topological features we consider, and the
preferential attachment model cannot capture some key features
of the available PPI networks.
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Figure 1. A Comparison of the Degree Distribution, k-Hop Reachability, Graphlet, Closeness, and Betweenness Distributions of the Preferential

Attachment Model (Red) and the Duplication Model (Blue)

doi:10.1371/journal.pcbi.0030118.g001
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Figure 2. The Effect of the Seed Graph on the Degree Distribution, k-Hop Reachability, Graphlet, Closeness, and Betweenness Distributions of the

Duplication Model

Each color (red, blue, green) depicts the behavior of a network with a particular seed graph. The parameters p and r are identical in all three models.
doi:10.1371/journal.pcbi.0030118.g002
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largest connected component of) the complete Database of
Interacting Proteins (DIP) yeast PPI network [21] with 4,902
proteins and 17,200 edges (as of July 2006) as well as the
smaller but more accurate core yeast network from the DIP
[22]. We also tested the lesser-developed DIP worm network
[21]. (See Materials and Methods for a detailed description of
these networks.) As will be demonstrated, we were able to
closely approximate all the interesting topological features of
these networks via the duplication model using specific seed
graphs that largely exist as a subgraph in the corresponding
PPI network.

A crucial observation toward obtaining the right seed
graph is that the duplication model is unlikely to generate
‘‘large’’ cliques (a set of nodes which are fully connected).
Notice that the only way to produce a clique of size h through
the duplication model is starting with a clique of size h � 1,
duplicating one of its nodes, and making sure that none of
the new node’s edges that are connected to the clique are
deleted. The probability of this happening is negligible for
large values of h.

The size of the maximum clique in the yeast PPI network is
ten nodes. In our experiments with the duplication model,
even if we started with a seed graph that included a clique of
nine nodes (but not ten), the chances that we ended up with a
clique of ten nodes (in ,5,000 steps) turned out to be
negligible. Thus, the seed graph has to include a clique of ten
nodes.

We enriched the seed graph by adding to the clique of ten
nodes another (independent) clique of seven nodes that is
present in the yeast PPI network. We also included the edges
between the two cliques and some additional nodes so that
the normalized degree distribution of the yeast PPI network
would be similar to that of the seed graph. The total number
of nodes in the resulting seed graph was 50.

As mentioned before, there are two key parameters
associated with the duplication model: p, the edge main-
tenance probability; and r, the edge insertion probability.
These two parameters alone determine the (asymptotic)
degree distribution and the average degree of the generated
network. We chose p ¼ 0.365 and r ¼ 0.12 so that the degree
distribution of the duplication model matches that of the
yeast PPI network (see Methods and Materials for the exact
mathematical expressions for p and r). Also, for the
preferential attachment model, we choose the value c ¼ 7 so
that the average degree of the graph created using prefer-
ential attachment would be equal to that of the yeast PPI
network. We used the duplication model and preferential
attachment model described above to generate a network
with 4,902 nodes. The resulting networks are compared with
the yeast PPI network in terms of the k-hop reachability, the
graphlet, betweenness, and closeness distributions in Figure
3. Under all these measures, the yeast PPI network is very
similar to the network produced by the duplication model
(and not similar to the network produced by the preferential
attachment model). In fact, the duplication model approx-
imates both the k-hop degree distribution and the graphlet
distribution of the yeast network much better than the
random graph models described earlier in the literature ([4]
and [19])—which were specifically devised to capture the
respective features of the yeast PPI network.

Another evidence of the power of the duplication model in

capturing the topological features of available PPI networks is
through comparing the duplication model with the main
component of the core subset of the yeast network. The core
subset contains the pairs of interacting proteins identified in
the yeast that were validated according to the criteria
described in [22]. It involves 2,345 nodes and 5,609 edges.
The values of r and p were set to r ¼ 0.12, p ¼ 0.322 as
prescribed by the average degree formula a¼ 2r / (1� PS� 2p)
and the fact that PS is a function of r and p (see the next
section for explanation). The seed graph we used was very
similar to that used for the complete yeast network. Also, for
the preferential attachment model, we set a value c ¼ 4.8 so
that the network generated using the model has the same
average degree as the CORE yeast PPI network. The results
are shown in Figure 4.
Although the yeast PPI network is the most reliable PPI

network available, it is still far from completion. Following up
on [3], we also considered the effect of sampling errors on the
duplication model with respect to all the topological features
used.
In order to emulate the effect of sampling and thus the

(potential) presence of false negatives in the yeast PPI
network, we used the duplication model to generate larger
networks than the available ones and applied the sampling
strategy proposed in [3] to ‘‘shrink’’ them to the size of the
available networks. The sampling strategy of [3] involves two
parameters: the bait sampling probability (the probability
that a node is kept in the network during sampling) and the
edge sampling probability (the probability that an edge of a
bait is kept in the network). We demonstrate the effect of
sampling as per [3] on the emulation of both the full yeast and
the CORE yeast PPI networks below.
We used a bait sampling probability and an edge sampling

probability of 0.7 each (resulting in 70% ‘‘bait coverage’’ and
again 70% ‘‘edge coverage’’) for our emulation of the full
yeast PPI network. A comparison of the features of the
resulting network with that of the full yeast PPI network is
given in Figure 5.
We then used a bait sampling probability and edge

sampling probability of 0.5 each for emulating the core yeast
PPI network (resulting in 50% ‘‘bait coverage’’ and 50%
‘‘edge coverage’’).
A comparison of the core yeast PPI network against the

resulting network is given in Figure 6. As can be seen, the
topological features of both the full yeast PPI network and
the core yeast PPI can still be closely captured by the
networks obtained via the duplication model, which have
been subject to sampling errors.
The seed graphs used in both tests involving sampling are

identical to those used in the tests that do not involve
sampling. Uniform sampling reduces the size of the maximum
clique in the resulting networks significantly, as can be seen at
the tail end of the graphlet distributions. In reality, the
sampling errors are not uniform. Very dense subnetworks
such as cliques are better covered by both the full yeast
network and the core yeast network of the DIP. It is
interesting to note that although the core yeast network has
only 5,609 edges in comparison to the full yeast network’s
17,200 edges, the maximum clique size in the former is nine
nodes, whereas it is ten nodes in the latter.
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Figure 3. The Degree Distribution, the k-Hop Reachability, the Graphlet, Closeness, and Betweenness Distributions of the Yeast PPI Network (Red),

Duplication Model (Blue), and Preferential Attachment Model (Green)

doi:10.1371/journal.pcbi.0030118.g003
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Figure 4. The Topological Properties of the Duplication Model (Blue) and Preferential Attachment Model (Green) Compared with That of the CORE

Yeast PPI Network (Red)

The degree distribution, the k-hop reachability, graphlet, closeness, and betweenness distributions of both networks are shown.
doi:10.1371/journal.pcbi.0030118.g004
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Materials and Methods

Here we describe in detail the PPI network data we used in our
analysis. We also formally describe the network generation models we
used, namely the preferential attachment model and a modified
version of the duplication model (which does not generate too many

singletons). We show how to set the parameters of the modified
duplication model so that it achieves a given degree distribution (e.g.,
that of the yeast PPI network) as well. We also describe in detail the
topological features we use for comparing two networks.

PPI network data. Perhaps the best-known PPI network database is
DIP [21], which includes the Saccharomyces cerevisiae (yeast) PPI

Figure 5. Comparison of Duplication (Blue) and Preferential Attachment (Green) with 70% Bait and 70% Edge Coverage against the Yeast PPI Network

(Red)

doi:10.1371/journal.pcbi.0030118.g005
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Figure 6. Comparison of Duplication (Blue) and Preferential Attachment (Green) with 50% Bait and 50% Edge Coverage against the CORE Yeast PPI

Network (Red)

doi:10.1371/journal.pcbi.0030118.g006
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network (the best-developed PPI network available, with 4,902
proteins and 17,200 interactions). DIP also includes a more accurate
but much smaller core yeast network (2,345 proteins and 5,609
interactions) [22]. Our results are mainly on these two networks.
Although there are other PPI networks available through DIP [23]
(e.g., those of the fruit fly, human, and mouse) as well as through
BIND [24], IntAct [25], and MINT [26] databases, they are not
sufficiently well-developed to perform a conclusive analysis. For
comparison purposes, we also provide results on the DIP Caeno-
rhabditis elegans (worm) PPI network (which includes 2,387 proteins
and 3,825 interactions) as Text S1.

Network generation models. The two network models we study
here, namely the preferential attachment model and the duplication
model, both start with a small seed graph and create an additional
node in each iteration as described below. For notational conven-
ience, let G(t) ¼ (V(t), E(t)) be the network at the end of time step t,
where V(t) is the set of nodes and E(t) is the set of edges/connections.
Let vt be the node generated in time step t. Given a node vt, we denote
its degree at the end of time step t by dt(vt).

The preferential attachment model (as analyzed in [9,11,14,27])
generates a network as follows. In iteration t a new node vt is generated
and is connected to every other node vt in the network independently
with probability c�dt�1ðvtÞ

2jEðt�1Þj. Here, c is the average degree of a node in G.
The duplication model (as analyzed in [15–17]), in contrast,

generates a network as follows. In iteration t, an existing node vt of
G(t�1) is picked uniformly at random and ‘‘duplicated’’ (i.e., an exact
copy of vt as vt is generated). The edge set of vt is then updated: first,
each existing edge of vt is deleted independently with probability (1�
p); then each node vt not connected to vt is connected to vt
independently with probability r / jV(t)j. Here, p and r are user-
defined parameters. Note that it is possible to maintain a constant
average degree (a) throughout the generation of the network by
setting r¼ (1/2� p) � a.

As mentioned earlier, the degree distributions of both the
preferential attachment model and the duplication model asymptoti-
cally approach a power law [9,11,12,14]. More specifically, the
frequency of nodes with degree d is proportional to d�b, where b is
a constant typically between 2 and 3. The value of b is solely
determined (asymptotically) by the values of p and r in the
duplication model or the value of c in the preferential attachment
model.

Both the preferential attachment and the duplication model
produce many singletons [13] (i.e., nodes that are not connected to any
other node). (For example, in the duplication model where r¼0, p¼1/
2, the proportion of singletons asymptotically approaches 1.) In
contrast, the number of singletons in known PPI networks is very
small (this is not surprising, as genes with ‘‘no functionality’’ are not
maintained by evolution).

To avoid the generation of singletons, it is possible to use a slightly
modified duplication model that deletes each singleton node as soon
as it is generated. This modified duplication model has also been
shown to achieve a power-law degree distribution [13]. However, it is
not known which values of p and r ensure that the expected average
degree can be set to a desired value and is kept fixed through all
iterations. In this paper, we derive conditions on p and r that are
necessary for having a constant expected degree. We later use these
conditions so that the modified duplication model can approximate
the degree distribution of the yeast PPI network as tightly as possible.

Network comparison methods. Perhaps the ultimate way to test
whether two networks are topologically similar or not is through the
use of graph isomorphism as described below. Unfortunately, graph
isomorphism and approximate graph isomorphism are computation-
ally hard problems. Thus, it is very common to use some of the
topological features of networks as a basis of checking their similarity.
In this paper, we focus on five such features: the degree distribution,
the k-hop reachability, the graphlet frequency, the betweenness
distribution, and the closeness distribution.

Graph isomorphism. Two networks, G and G9, are called isomorphic if
there exists a bijective mapping F from each node of G to a distinct
node in G9, such that two nodes v and w are connected in G if and
only if F(v) and F(w) are connected. G and G9 are called approximately
isomorphic if by removing a ‘‘small’’ number of nodes and edges from
G and G9, they could be made isomorphic. Ideally, a random graph
model that aims to emulate the growth of a PPI network should
produce a network that is approximately isomorphic to the PPI
network under investigation. Unfortunately, the problem of approx-
imate isomorphism is NP-complete (through a trivial reduction from
subgraph isomorphism—a known NP-complete problem); thus, this
measure cannot be used to practically test similarity of two networks.

k-hop reachability. Let V(i) denote the set of nodes in G whose degree
is i. Given a node v, denote by d(v,k) its k-hop degree (i.e., the number
of distinct nodes it can reach in �k-hops). Now we define f(i,k), the k-
hop reachability of V(i), as

f ði; kÞ ¼ 1
jVðiÞj

X
w2V ;dðwÞ¼i

dðw; kÞ ð1Þ

Note that f(i,k) is the ‘‘average’’ number of distinct nodes a node
with degree i can reach in k-hops (e.g., f(i,1)¼ i by definition).

Graphlet frequency. The graphlet frequency was introduced in [4] to
compare the topological structure of networks. A graphlet is a small
connected induced subgraph of a large graph (e.g., a triangle or a
clique). The graphlet count of a given graphlet g with r nodes in a given
graph G¼ (V,E) is defined as the number of distinct subsets of V (with
r nodes) whose induced subgraphs in G are isomorphic to g. In this
paper, we consider all 141 possible graphlets/subgraph topologies
with three, four, five, and six nodes. In addition, we consider cliques
of sizes seven, eight, nine, and ten. We enumerate these graphlets as
shown in the final figure in Text S2.

Betweenness distribution. The betweenness of a fixed node of a
network measures the extent to which a particular point lies
‘‘between’’ point pairs in the network G¼ (V,E). The formal definition
of betweenness is as follows. Let sx,y be the number of the shortest
path from x 2 V to y 2 V for all pairs x,y 2 V. (Note that sx,y ¼ sy,x in
undirected graphs.) Let sx,y(v) be the number of shortest paths from x
2 V to y 2 V which go through node v. The betweenness Bet(v) of node
v is now defined as

BetðvÞ ¼
X

ði;jÞ2V ;i;j 6¼v

si;jðvÞ
si;j

ð2Þ

Closeness. For all x,y 2 V, we define dx,y as the length of the shortest
path between x and y. The closeness of a node v 2 V is defined as

ClsðvÞ ¼ jV j � 1X
i2V

dv;i
: ð3Þ

Thus, closeness of a node v is simply the inverse of the average
distance of v to all other nodes in G.

The network comparison methods in use: The yeast PPI network versus the
Erdos–Renyi random graph model. The network features described above
can be used to test whether a given random graph model can emulate
an available PPI network. Here, we consider the standard Erdos–
Renyi random graph model [28] in comparison to the yeast PPI
network. As shown in Figure 7, each of the features we consider point
to significant differences between yeast PPI (red) and (five independ-
ent runs of) the Erdos–Renyi (green) model.

Determining the parameters of the modified duplication model. In
this section, we show how to determine the deletion probability 1� p
with respect to the insertion probability r so that the expected
average degree of the network can be set to any given value. For this,
we make the assumption that the degree frequency distribution and
the average degree of nodes are fixed asymptotically once the values
of p and r are determined. Let G(t) ¼ (V(t), E(t)) be the network
generated by the modified duplication model and let n(t)¼ jV(t)j and
e(t) ¼ jE(t)j. Also, let nk(t) be the number of nodes in time step t with
degree k and a(t) be the average degree of nodes in G(t). Finally, let
Pk(t)¼ nk(t) / n(t), the frequency of nodes with degree k at time step t.
We assume that Pk(t) is asymptotically stable (i.e., Pk(t)¼Pk(tþ1) for all
1 � k � t for sufficiently large values of t. In other words, we assume
that Pk(t) ¼ dk for some fixed dk. By definition:

aðtÞ ¼
Xt
k¼1

k � nkðtÞ
nðtÞ ¼

Xt
k¼1

k � PkðtÞ ¼
Xt
k¼1

k � dk: ð4Þ

Now we can calculate the average degree a(t þ 1) under the
condition that degree frequency distribution is stable and a(t) ¼ a, a
constant.

Exp½eðtþ 1Þ� ¼ eðtÞ þ
Xt
k¼1

k � PkðtÞ � pþ r ¼ nðtÞ � aðtÞ
2

þ p � aðtÞ þ r ð5Þ

Let Prs(t) be the probability that vtþ1 ends up as a singleton.

PrsðtÞ ¼
Xt
k¼1

PkðtÞ � ð1� pÞk � 1� r
nðtÞ

� �nðtÞ�k
’
Xt
k¼1

dk � ð1� pÞk � 1
er

ð6Þ

Since this probability does not depend on t asymptotically, we can
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Figure 7. A Comparison of the Yeast PPI Network (Red) and (Five Independent Runs of) the Erdos–Renyi Random Graph Model (Green)

doi:10.1371/journal.pcbi.0030118.g007
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set Prs(t) ¼ Prs. Now we can calculate the expected number of nodes
and the expected number of edges in step t þ 1.

Exp½nðtþ 1Þ� ¼ Prs � nðtÞ þ ð1� PrsÞ � ðnðtÞ þ 1Þ: ð7Þ

Exp½eðtþ 1Þ� ¼ Exp
nðtþ 1Þ � aðtþ 1Þ

2

� �
¼ a

2
� Exp½nðtþ 1Þ�: ð8Þ

Exp½eðtþ 1Þ� ¼ a
2
� ðPrs � nðtÞ þ ð1� PrsÞ � ðnðtÞ þ 1ÞÞ: ð9Þ

Comparing the above equation with the first equation for Exp[e(tþ
1)], we get

a
2
� ðPrs � nðtÞ þ ð1� PrsÞ � ðnðtÞ þ 1ÞÞ ¼ nðtÞ � aðtÞ

2
þ p � aðtÞ þ r

¼ nðtÞ � a
2
þ p � aþ r

ð10Þ

Solving Equation 10 results in a¼ 2r / (1� Prs� 2p), where Prs is a
function of p, r, and dk only.

The discussion above demonstrates that the two key parameters p
and r of the (modified) duplication model are determined by the

degree distribution and the average degree of the PPI network we
would like to emulate.

Supporting Information

Text S1. Worm PPI Network

Found at doi:10.1371/journal.pcbi.0030118.sd001 (99 KB PDF).

Text S2. The Enumeration Used for Graphlet Distributions

Found at doi:10.1371/journal.pcbi.0030118.sd002 (122 KB PDF).
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