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Abstract

Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-
genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity
purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI
network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example,
for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from
43% to 71%. TAP experiments are believed to have comparable levels of noise. We present a novel technique to assess the
confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new
interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting
network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use
it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID.
Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which
correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our
predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the
methods are freely available from the web site: http://www.kuchaev.com/Denoising.
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Introduction

Protein-Protein Interaction Networks
Networks (also called graphs) are used to model natural

phenomena studied in computational and systems biology. Nodes

in networks represent biomolecules such as genes or proteins, and

edges between the nodes indicate interactions between the

corresponding biomolecules. These interactions could be of many

different types, including functional, genetic, and physical interac-

tions. Understanding these complex networks is a fundamental issue

in systems biology. Of particular importance are protein-protein

interaction (PPI) networks. In PPI networks, nodes correspond to

proteins and two nodes are linked by an edge if the corresponding

proteins can interact. The topology of PPI networks can give new

insight into the function of individual proteins, protein complexes

and cellular machinery as a complex system [1,2].

Advances in high-throughput techniques such as yeast-2-hybrid

(Y2H), tandem affinity purification (TAP), and mass spectrometric

protein complex identification (HMS-PCI) are producing a

growing amount of experimental PPI data for many organisms

[3–11]. However, the data produced by these techniques have

very high levels of false positives and false negatives. Y2H screens

have false negative rates in the range from 43% to 71% and TAP

has false negative rates of 15%–50% [12]. False positive rates for

Y2H could be as high as 64% and for TAP experiments they could

be as high as 77% [12]. Thus, reducing the level of noise in PPI

networks and assessing the confidence of each interaction is an

essential task.

Two recent studies provided two high quality PPI data sets for

Saccharomyces cerevisiae [5,10]. Gavin et al. [5] defined ‘‘socio-

affinity’’ scores measuring the log-odds of the number of times two

proteins are observed together, relative to their frequency in the

data set. They use not only direct bait-prey connections but also

indirect prey-prey relationships. In this, two proteins are each

identified as preys in a purification in which a third protein is used

as bait. Krogan et al. [10] used machine learning methods,

including Bayesian networks and boosted stump decision trees, to

define confidence scores for potential interactions. These scores

are based on direct bait-prey observations. They used a Markov

clustering algorithm to define protein complexes.

Data sets produced by these two groups are very different and

thought to contain many false positives. In [11] these two data sets

were merged into one set of experimentally based PPIs by

analyzing the primary affinity purification data using the

purification enrichment (PE) scoring system. Using the set of

manually curated PPIs, they showed that this new data set is more

accurate than the original individual sets and is comparable to

PPIs defined using small scale experimental methods. From the

original 12,122 interactions from these two studies in the General

Repository of Interaction Data (BioGRID) [13] they discarded

7,504 as being of low confidence. Applying their metric they

discovered 4456 new interactions, that were not among the
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original 12,122 interactions, and produced a set of 9,074

interactions with accuracy comparable to the accuracy of the

small scale experiments. In this paper we use this high confidence

data set to test our approach.

In recent years several random graph models have been

proposed to model PPI networks: Erdös-Rényi random graphs

with the same degree distribution as in data [14], scale-free graphs

[15], geometric random graphs [16–18], and stickiness-index-

based models [19]. The technique presented in this paper is one of

the first to use a network model of PPI networks for purposes other

than just generating synthetic data. We demonstrate that a

geometric graph model can be used for assessing the confidence

levels of known interactions in PPI networks and predicting novel

ones. We apply our technique to de-noise PPI data sets by

detecting false positives and false negative interactions. This new

approach is compared with existing PPI network post-processing

techniques in the final section.

Geometric Graph Model
Proteins form interactions with each other based on their

biochemical properties. Mathematically, we can consider these

properties to be dimensions of some abstract metric space.

Therefore, PPI networks reside in some biochemical space with

finite number of dimensions. Currently, it is hard even to

hypothesize about the nature or dimensionality of that space,

however in previous work [16–18,20], using various mathematical

and computational techniques, we have shown that PPI networks

are well modeled by low dimensional geometric random graphs [21]. In

a geometric random graph, nodes correspond to points distributed

uniformly at random in a metric space and edges exist between

nodes that are within a chosen distance e according to a chosen

distance norm. Thus, geometric random graphs are a versatile

graph family, since they can be constructed using different metric

spaces, distance norms, and distance parameter. Many of their

properties can be proved theoretically [21]. We choose low-

dimensional Euclidean boxes and the Euclidean distance norm to

construct geometric random graphs with the number of nodes

equal to that of a PPI network; we chose e that makes the number

of edges in the geometric graph equal to the number of edges in

the PPI network. Euclidean space is chosen only as a proof of

concept; it is likely that customized models would provide better

fits, at the expense of model complexity.

It is well known that geometric random graphs constructed

using 2-dimensional Euclidean space cannot contain certain types

of induced bipartite subgraphs that appear to be abundant in the

currently available PPI networks [21,22]. However, increasing the

dimension of the Euclidean space makes more subgraphs possible,

in particular K2,3, the complete bipartite graph based on two sets

of two and three nodes is allowed in three dimensions. Note that

there is a bias coming from experimental ‘‘spoke’’ model used for

detecting protein interactions [23] which will necessarily introduce

small bipartite graphs containing false positives in the data. Also,

nothing prevents geometric graphs from being scale-free [24].

The random geometric graph model matches PPI networks in terms

of various global and local network properties such as pathlengths,

clustering coefficients, relative graphlet frequency distance [16], and

graphlet degree distribution [17]. We have also designed an algorithm

to test directly whether PPI networks are geometric by embedding

them into a low dimensional Euclidean space [18]. The algorithm is

based on Multi-Dimensional Scaling [25], with pathlengths playing the

role of Euclidean distances. The embedding is ‘‘successful’’ if it assigns

to nodes of a network a set of points in space such that adjacent nodes

in the network correspond to points that are close in space, whereas

non-adjacent nodes correspond to points that are further away in

space. Given such an embedding, we are able to reconstruct the

original network by choosing a distance cutoff, which also controls

sensitivity and specificity [18]. Success may be quantified through

Receiver Operator Characteristic (ROC) curve and precision versus

recall analysis.

We applied this algorithm on 19 PPI networks of various

organisms that were produced by a range of biological techniques

with various confidence levels. The algorithm successfully

embedded these networks into a low-dimensional space thus

supporting the hypothesis that PPI networks are geometric [18].

Methods

Overview
A graph G~(V ,E), where V is a set of nodes and E is a set of

edges, is called connected if for all pairs of nodes x,y[V there is a

path between them comprised of edges from E. Real PPI networks

are not connected, but they usually have one large connected

component, which includes most (about 90%) of the network’s

nodes and edges. For example, the human PPI network obtained

from BioGRID (version 2.0.35) [13] has 7,930 proteins with 7,513

of them belonging to the largest connected component. In this

paper, we use only the largest connected component, since

embedding disconnected components of a graph into space may

result in meaningless spatial overlap. Intuitively, it is difficult to see

how any algorithm that uses PPI data alone could infer links

between members of disconnected components. Hence, in

particular, we are not aiming to predict new interactions between

members of disconnected components.

We embed the largest connected component of a PPI network

into low dimensional space, and compute spatial distances

between the embedded nodes. Some nodes are very close in the

projection space compared to the average distance between pairs

of nodes that are recorded as interacting (true positives obtained

from the high-confidence data set). Also, some nodes are far apart

compared to the average distance between pairs of nodes that are

known, with a certain confidence, not to interact (true negatives).

Pairs of nodes that are unusually close to each other, but are not

Author Summary

Proteins are responsible for much of the biological ‘heavy
lifting’ that keeps our cells functioning. However, proteins
don’t usually work alone; instead they typically bind
together to form geometrically and chemically complex
structures that are tailored for a specific task. Experimental
techniques allow us to detect whether two types of
proteins are capable of binding together, or ‘interacting’.
This creates a network where two proteins are connected
if they have been seen to interact, just as we could regard
two people as being connected if they are linked on
Facebook. Such protein-protein interaction networks have
been developed for several organisms, using a range of
methods, all of which are subject to experimental errors.
These network data reveal a fascinating and intricate
pattern of connections. In particular, it is known that
proteins can be arranged into a low-dimensional space,
such as a three-dimensional cube, so that interacting
proteins are close together. Our work shows that this
structure can be exploited to assign confidence levels to
recorded protein-protein interactions and predict new
interactions that were overlooked experimentally. In tests,
we predicted 251 new human protein-protein interactions,
and through literature curation we independently validat-
ed a statistically significant number of them.
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connected in the PPI network, are good candidates for false

negatives. On the other hand, pairs of nodes that are connected in

the PPI network, but are unusually far apart in the embedding

space, are strong candidates for false positives. These are the

principles on which we develop our algorithm.

The Embedding Algorithm
We briefly describe our embedding algorithm. It is based on Multi-

Dimensional Scaling (MDS) [25]. Note that MDS is a spectral

method, based on eigenvalues and eigenvectors, and in this sense it is

similar to algorithms that use the Fiedler vector from the graph

Laplacian [26]. However, there is a key difference in the way in which

pairwise weights between nodes are interpreted. MDS regards a larger

pairwise weight between nodes as an indication of more dissimilarity.

Given pairwise Euclidean distances dij between all pairs of N
elements in a set, the task is to find locations in m-dimensional

Euclidean space (vectors fx½i�gN
i~1 in Rm) for these elements so that

pairwise distances are preserved, i.e., x½i�{x½j�
�� ��

2
~dij for all i, j.

This is not possible, in general, for a given dimension mvN{1,

and therefore we want to find the best approximation. If the

distance information data respects the triangle inequality, double

centering gives the symmetric, positive semi-definite matrix A[RN|N ,

aij~{12 d2
ij{1N

XN

k~1

d2
ik{1N

XN

k~1

d2
kjz1N2

XN

k~1

XN

l~1

d2
kl

 !
: ð1Þ

It may be shown that

X T X~A [ x½i�{x½j�
�� ��

2
~dij , for all i, j, ð2Þ

where X[Rm|N is the matrix whose jth column is x½j�. The matrix A

has the real Schur decomposition [27] A~UTSU , where

U[RN|N is orthogonal and S~diag(si). Rows of U are the

eigenvectors of A and diagonal entries in S are the eigenvalues of A
ordered high-to-low. The solution X in equation (2) may be

computed as X~S
1
2U .

An embedding into r-dimensional space is found by truncating

to the largest r eigenvalues, giving

X̂X~

ffiffiffiffiffi
s1
p

u 1½ �T . . . . . .

..

.

ffiffiffiffiffi
sr
p

u r½ �T . . . . . .

2
664

3
775, ð3Þ

where u½k�[RN is the kth row of U . This is the optimal embedding

into r dimensions in the sense that X̂X is the closest matrix of rank at

most r to the exact solution X , in any orthogonally invariant norm

[27].

In PPI networks, we only have {0,1} connectivity information,

rather than Euclidean distances. This is why we use a function of

the pathlength (the length of the shortest path between nodes in

the network) in lieu of the Euclidean distance. Our experiments

suggest that square root of the graph pathlength is a good function

for this purpose. Thus, we use dij~
ffiffiffiffiffiffiffiffiffiffiffiffi
pathij

p
, where pathij denotes

the pathlength between nodes i and j. We also set an upper

threshold on dij . This allows sparsity to be exploited for

computational efficiency. Subspace iteration [27] is used to

compute eigenpairs of the matrix A in equation (1). The algorithm

typically requires only a few sparse matrix multiplications and the

overall complexity is less than the O(N2) cost of computing

pairwise distances between nodes in the new embedding, where N

is the number of nodes. For practical details about the algorithm,

see [18].

Geometric De-noising of PPI Networks
Our de-noising approach exploits the fact that high quality PPI

networks are well modeled by geometric graphs [16–18]. The

basic version of our de-noising procedure consists of the following

steps:

Algorithm 1

N Embed a PPI network into Euclidean space of dimension r§2.

N Choose a threshold e.

N Find all ‘‘non-edges’’ (pairs of nodes corresponding to proteins

that are not interacting in the PPI network) with Euclidean

distance between their embedding pointsƒe. These are our

new predicted PPIs (edges).

This procedure may be iterated in the sense that we can add our

predictions to the network and re-embed to produce new

predictions. In all our experiments for any dimension, this process

converged after very few iterations. We used this procedure to test

our approach (see section ‘‘Testing of geometric de-noising’’).

For real applications, we use a slightly modified procedure in

which rather than strictly classifying pairs of nodes into edges

(interaction) and non-edges, we assign confidence scores to them

reflecting the likelihood for the pairs of nodes to interact. In this

manner, we learn the following two probability density functions

from the data: p(distjedge) and p(distjnonedge), where

p(distjedge) is the probability density function which describes

the distribution of distances between pairs of proteins which are

known to interact (i.e., form edges in the PPI networks) and

p(distjnonedge) is the probability density function which describes

the distribution of distances between pairs of proteins which are

not interacting (non-edges in the PPI network). We learn

p(distjedge) and p(distjnonedge) from the data given by the

embedding step (see Figure 1 A and B). These densities are

modeled as mixtures of three Gaussians and all parameters are

learned from the data using the Expectation Maximization

algorithm [28]:

p(distjedge)~
X3

k~1

pe,kN(dist,me,k,s2
e,k): ð4Þ

The density of the distribution p(distjnonedge) is computed

using formula (5) below over all pairs of proteins for which

interaction is not known to exist. Note that since the fraction of the

real interaction is orders of magnitude lower than the possible

number of protein pairs in the network [29], unknown interactions

will not have significant effect on this density

p(distjnonedge)~
X3

k~1

pn,kN(dist,mn,k,s2
n,k): ð5Þ

These are the linear combinations of three Gaussian distribu-

tions with means me,k and variances s2
e,k for edges and mn,k and

s2
n,k for non edges. The number of mixtures in models (4) and (5)

was selected to be 3, since we observed that the histograms

corresponding to the densities p(distjedge) and p(distjnonedge)
had no more than 3 modes in all of our experiments.

Note that both distributions presented in Figure 1 A and B are

bi-modal. Therefore, posteriors p(edgejdist) and p(nonedgejdist)

Geometric De-noising of PPI Networks

PLoS Computational Biology | www.ploscompbiol.org 3 August 2009 | Volume 5 | Issue 8 | e1000454



will also be bi-modal (see Figure S1 and Figure S2). This low

modality comes comes from the fact that these PPI networks are

well modeled even by 2-dimensional geometric random graphs.

Intuitively, the smaller the distance between two proteins, the

higher the likelihood for them to interact. This is reflected by

confidence scores (formula 6), which take into account p(edgejdist)
and p(nonedgejdist) simultaneously and monotonically increase

when distance between two proteins decreases (Figure S3).

Our modified procedure may be summarized as follows:

Algorithm 2

1 Embed PPI network into Euclidean space of dimension

r§2.

2 Learn probabil ist ic densit ies p(distjedge) and

p(distjnonedge) from coordinates of node embedding points

in the space.

3 Choose some threshold d.

4 For each pair of nodes with distanceƒd compute its

confidence score (CS).

The confidence score for the pair of nodes (i, j) is computed as

CS(i, j)~
p(edge(i, j)jdist(i, j))

p(edge(i, j)jdist(i, j))zp(nonedge(i, j)jdist(i, j))
, ð6Þ

where dist(i, j) is the distance between points corresponding to

nodes i and j in the embedding and edge(i, j)~1 if (i, j) is an edge

in the PPI network and nonedge(i, j)~1{edge(i, j). This score is

proportional to the likelihood of a pair of nodes to form an edge if

all noise that prevents the current PPI network from being a

geometric graph is removed.

Using Bayes’ rule we compute posterior densities p(edgejdist)
and p(nonedgejdist):

p(edgejdist)~
p(distjedge)P(edge)

p(dist)
ð7Þ

p(nonedgejdist)~
p(distjnonedge)P(nonedge)

p(dist)
ð8Þ

where P(edge) is a prior belief about what fraction of pairs of

nodes in the PPI network are true interactions (edges). One can

choose different priors to reflect existing knowledge about the

density of a particular PPI network. We compute P(nonedge) as

P(nonedge)~1{P(edge). The fraction of real edges among all

possible node pairs in real PPI networks is very small. For

example, it is estimated that among about 6,000 proteins in the

yeast S.cerevisiae, there are only 30,000–75,000 interactions [29–

31], which is a small portion of the maximum possible total of

<176106. The human PPI network is estimated to have 154,000–

369,000 interactions among 20,000–25,000 proteins [29]. Thus, in

reality P(edge) is very small, which helps us avoid many false

positives in the network. We do not need to know p(dist), since it

can be treated as a normalization constant.

The parameter d prevents us from assigning confidence scores

(CS) to the pairs of nodes that are very far apart and thus are very

unlikely to interact. Algorithm 2 could be reduced to Algorithm 1

by choosing an appropriate confidence score threshold value.

Data
We use two different datasets, one to test our approach and the

other to provide a practical application of our method. Since the

yeast PPI network described by Collins et al. [11] is believed to be

of high confidence, we use it to test our approach. The high

confidence part of this network consists of 9,074 interactions

amongst 1,622 proteins and it is not connected. We take its largest

connected component (henceforth denoted by ‘‘Yhigh’’) which has

8,323 interactions between 1,004 proteins. We use low confidence

edges of this network to verify our predictions, i.e., we try to

‘‘predict’’ these low confidence interactions. That is, by true

positive, we mean an edge that is predicted by our method and

present in the full network described by Collins et al. [11].

Analogously, a true negative is a pair of nodes predicted by our

method not to interact that does not correspond to any edge in the

Collins et al. network [11].

For application purposes, we use the human PPI network

downloaded from BioGRID (version 2.0.35), which consists of

23,543 interactions amongst 7,930 proteins. In our analysis, we

considered only physical interactions from BioGRID detected by

one (or several) of the experimental methods presented in Table

S6. We consider only the largest connected component of this

network, which contains 23,372 interactions amongst 7,513

proteins (henceforth denoted by ‘‘HumanBG’’).

Figure 1. Probability density functions p(distjedge) and p(distjnonedge). Probability density functions p(distjedge) and p(distjnonedge) learned
from embedding the largest connected components of the following PPI networks into 5-dimensional Euclidean space: (A) the yeast S. cerevisiae
high confidence PPI network [11] (‘‘Yhigh’’); (B) the human PPI network from BioGRID (version 2.0.35) [13] (‘‘HumanBG’’). The x{axis represents the
values of the Euclidean distances between pairs of nodes in the embedding; the y{axis represents the values of probability density functions
p(distjedge) and p(distjnonedge).
doi:10.1371/journal.pcbi.1000454.g001

Geometric De-noising of PPI Networks
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Results

Testing of Geometric De-noising
We use the PPI network described by Collins et al. [11] to test

our approach. This data set is described in the ‘‘Data’’ subsection

of ‘‘Methods’’.

In Figure 1A, we present probability density functions

p(distjedge) and p(distjnonedge) learned from the data given by

embedding of ‘‘Yhigh’’ into 5 dimensional Euclidean space. This

figure shows that a huge fraction of edges correspond to very close

pairs of points in space (a peak very close 0) and most of the non-

edges correspond to pairs of nodes with distances about 0.7

between them. This difference between the functions p(distjedge)
and p(distjnonedge) justifies the procedures described in the

Methods section to classify pairs of nodes into edges and non-edges

based on the distances between them in the embedding.

Our experiments suggest that the choice of dimension is not

crucial here. The crucial fact we exploit is that PPI networks are

well modeled by low dimensional geometric graphs and the actual

value of dimensionality (e.g. 3 or 10) does not change the results

much.

To validate our basic approach, we first test the 2-class classifier

performance of Algorithm 1 (see Methods section) using a

standard ROC curve analysis. These ROC curves, which are

presented in Figure 2 for different embedding space dimensions,

were constructed by varying e from 0 to the maximum distance

between the points in the corresponding embedding space. ROC

curves depict relative trade-offs between benefits and costs. For

each e, we compute TP (true positives), FP (false positives), TN

(true negatives), FN (false negatives), where TP denotes the

intersection between the predicted and the low confidence edges,

FP denotes the predicted edges which are not in the set of low

confidence edges, TN denotes the edges that are neither in the set

of predicted edges nor in the set of low confidence edges, and FN

stands for the edges which are not predicted, but are present in the

set of low confidence edges. For the graph of the ROC curve, the

horizontal axis is defined as 1 - specificity (or false positive rate), that

is, 12TN/(TN+FP), and the vertical axis is defined as sensitivity

(true positive rate), TP/(TP+FN).

Furthermore, in Figure 3 we present precision versus recall

analysis, where precision = TP/(TP+FP) and recall = TP/

(TP+FN). Note that since we test for presence of interaction

amongst all possible pairs of proteins in the largest connected

component, the fraction of true positives (interactions) is orders of

magnitude lower than the fraction of true negatives (non-

interactions) [29]. Therefore, if we predicted interactions com-

pletely at random, we should expect less than 1 in 1000 of

interaction predictions to be correct, whereas the interaction

prediction value (precision) of our method can be about 0.15 at a

recall of about 0.35 (see Figure 3). Assuming the estimates of the

human PPI network having 154,000–369,000 interactions among

20,000–25,000 proteins [29] is correct, the recall of 0.35 would

give us at least 53,900 true interactions (compared to currently

available 23,543 human PPIs in BioGRID); in other words, our

method has the potential of predicting at least twice as many

interactions as there are currently available in BioGRID (at a

precision of about 15%).

For a given value of e, nothing prevents us from adding our

predictions to the PPI network we started from and repeating our

procedure. We have observed that this iterative procedure always

converges. For small values of e, it requires only few iterations

(about 10, depending on the network and the space dimension

used) to converge. In Figure 4, we present two ROC curves for the

cases where we stopped the procedure after the first iteration and

for the case where for each e, we iterated until convergence

(embedding into space of dimension 4 is presented). As can be seen

from this figure, the ROC curve for the iterative procedure is only

slightly worse than when we stopped the procedure after the first

Figure 2. ROC curves for ‘‘Yhigh’’ PPI network for embedding space dimensions of 2 to 7. ROC curves measuring the accuracy of de-
noising procedure when applied to ‘‘Yhigh’’ PPI network using embedding space dimensions of 2 to 7. x{axis is 1–specificity and y{axis is
sensitivity. Numbers in brackets correspond to the numbers of true positives and false positives for a given distance cutoff (TP,FP).
doi:10.1371/journal.pcbi.1000454.g002

Geometric De-noising of PPI Networks
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iteration. Therefore, the approach is stable not only in the sense

that it converges in few iterations, but also in the sense that the

accuracy loss is insignificant during iterations.

To further demonstrate the performance of our approach we

perform another experiment that models the incompleteness of

current PPI data sets. We take the ‘‘Yhigh’’ network and remove

Figure 3. Precision versus Recall curves. Precision versus Recall curves for ‘‘Yhigh’’ PPI network for embedding space dimensions of 2 to 7.
x{axis is recall and y{axis is precision.
doi:10.1371/journal.pcbi.1000454.g003

Figure 4. ROC curves for ‘‘Yhigh’’ PPI network with and without iterating embedding and de-noising procedures. The first (blue) ROC
curve shows the performance of the de-noising procedure applied to ‘‘Yhigh’’ PPI network using embedding space dimension of 4. The second (red)
ROC curve shows the performance after iterating the embedding and de-noising procedures until convergence. x{axis is 1–specificity and y{axis is
sensitivity.
doi:10.1371/journal.pcbi.1000454.g004

Geometric De-noising of PPI Networks
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500, 1000, 2000 and 3000 edges and try to recover these edges

using our procedure. The results, presented as ROC curves, are

shown in the Figure 5.

These results are encouraging. For example, for dimension 7 of the

embedding space (see Figure 2), the area under the ROC curve is 0.9

and we can achieve specificity of 85% and sensitivity of 90%. This

corresponds to the false positive rate að Þ~1{specificity~15% and

false negative rate b~1{sensitivity~10%. Since we are predicting

low-confidence interactions from [11], our true FP and FN rates

could be a little higher that measured in this experiments. However,

TAP and Y2H false positive and negative rates are believed to be at

about 64% and 50% correspondingly [12]. In the absence of further

information, it is reasonable to assume that these rates are

approximately the same on all parts of the network, including its

largest connected component. Hence, for the largest connected

component of the network our method has significantly better FP and

FN rates than these two experimental techniques.

Application to Human PPI Network
We apply our method to predict novel interactions in the

human PPI network ‘‘HumanBG’’ (see the ‘‘Data’’ subsection of

‘‘Methods’’).

Using Algorithm 2 presented in ‘‘Methods’’ section, we

compute confidence scores for all possible pairs of proteins with

Euclidean distance between the corresponding points in the

embedding being lower than 0.4. Figure 1B shows p(distjedge)
and p(distjnonedge) in the case of embedding into the 5-

dimensional space. Since the overlap between these two densities

is small and most of the interacting protein pairs have distances

between their corresponding points very close to 0, we can assign

confidence scores to the interactions (existing and potential) in this

PPI network. The value of 0.4 of d was chosen because, as

illustrated in Figure 1B, most node pairs with embedding points at

distance 0.4 or higher are non-edges. For other PPI datasets, a

realistic value for d may be different.

There are 2,838 edges (about 12% of all edges in the network)

that correspond to protein pairs with endpoints further away than

0.4 in the embedding. We refer to these edges as our candidates

for false positive PPIs. In the ‘‘HumanBG’’ network, about 72% of

interactions correspond protein pairs that share at least one

‘‘cellular localization’’ Gene Ontology (GO) term [32]. Proteins

with different cellular localizations are believed to be less likely to

interact. We confirm this by verifying that for our false positive

interaction candidates, this rate is about 66%, which is less than

that of the entire PPI network. Hence, we suggest that the

interactions predicted by our method not to interact that do not

share ‘‘cellular localization’’ GO terms are strong candidates for

false positives (Table S7).

Next, we examine all possible pairs of nodes that were assigned

confidence scores (CS) of 0.975 or higher. There are 1,685 such

pairs. Not surprisingly, most of them (1,434) are edges in the

‘‘HumanBG’’ network. We refer to these edges as high

confidence edges. The remaining 251 pairs of nodes with

CS§0:975 do not correspond to edges in the ‘‘HumanBG’’

network and therefore, we consider them as our high confidence

predictions (presented in Table S1). The human PPI network

from BioGRID is one of the most complete PPI datasets for

human. However, to validate some of our predictions, we also

examined human PPI interactions from Human Protein

Reference Database (HPRD) [33]. We validated 12 of our

predictions (that we predicted using BioGRID) by finding them

in HPRD. Given a huge amount of possible protein pairs in the

human PPI network (about 28 million) such overlap between our

predictions and HPRD is extremely unlikely to have happened at

random: our validation of 12 interactions is highly statistically

significant with the p-value of 761028 (see Text S1 for details).

When this paper was almost finished, a new release of BioGRID

(version 2.0.50) was made available for download and 5 of our

predictions appeared in it; 4 of these 5 interactions were present

before in HPRD and 1 was a new interaction. Therefore, in total,

13 of our predictions are validated by HPRD or the newest

version of BioGRID (version 2.0.50) or by both of these databases

(presented in Table S2). Furthermore, our method predicts that

proteins POP5 and POP1 interact, which is supported by the

HPRD database; moreover, Krogan et al. [10] detected a physical

interaction between proteins POP5 and POP1 in yeast. Also, we

Figure 5. ROC curves for recovering deleted edges. ROC curves for the experiments in which 500, 1000, 2000 and 3000 edges from ‘‘Yhigh’’
network were removed at random and then recovered using the de-noising procedure. x{axis is 1–specificity and y{axis is sensitivity.
doi:10.1371/journal.pcbi.1000454.g005
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predict that proteins CAR1 and MDH1 interact in human and

these two proteins were found to interact in yeast using Affinity

Capture-MS method [34].

Similar to the study by Yu and Finley [35], we investigate the

biological significance of our PPI predictions using regular (not

slim) GO terms and KEGG pathways; in addition, we use a

literature search and text mining tool. First, we examine how

many predicted interaction pairs share common Gene Ontology

(GO) terms [32]. Since proteins that are involved in the same

biological process and/or share the same cellular localization are

more likely to interact, this statistic can give us a better idea of the

quality of our predictions. Initially, we take into account only those

protein pairs in which both proteins are annotated with at least

one GO term, ignoring ‘‘root’’ GO terms (GO:0008150 for

biological process and GO:0005575 for cellular component).

Among our 251 predictions, 92 protein pairs had at least 1

unannotated protein, thus we had complete GO data only for 159

protein pairs. Out of these protein 159 pairs, 105 (66%) have at

least 1 common GO term that corresponds to ‘‘biological process,’’

or ‘‘cellular localization’’ (presented in Table S3). The statistical

significance, measured as a p-value, of this result is 7.26*1028 (see

Text S1 for details).

GO terms that correspond to ‘‘cellular localization’’ could be

very general; many proteins may share the same ‘‘cellular

localization,’’ without interacting. Thus, to further investigate

the biological significance of our predictions we disregard from our

analysis GO terms related to ‘‘cellular localization’’ and consider

only known GO terms related to ‘‘biological process.’’ Out of our

251 high confidence predictions, this restriction results in 129

protein pairs having both interactors in the GO ‘‘biological

process’’ category. Out of these 129 pairs, 55 pairs have at least

one such GO term in common (presented in Table S4). The

statistical significance of this result (p-value) is 1.4*1028 (see Text

S1 for details).

To further investigate the biological significance of our

predictions, we count how many of our 251 predictions consist

of proteins involved in the same KEGG pathway [36]. As of

March 2009, there were 205 pathways for human in the KEGG

database. The number of genes involved in the same pathway

varies greatly from 1 to 467, with the average number of genes in

the same pathway being 67 genes. Yu and Finley [35] found that

for their high confidence scored dataset of human protein

interactions (that they termed ‘‘HCS’’), about 10% of the

interactions belong to the same KEGG pathway. We found that

out of our 251 high confidence predictions, 26 (i.e., about 10%)

correspond to pairs of proteins where both proteins participate in

some of the KEGG pathways. Out of these 26 predicted

interactions, 12 (i.e., about 46%) correspond to protein pairs

participating in the same pathway (Table S5). Note however, that

pathways have a ‘‘linear’’ structure in a PPI network, i.e., they are

‘‘stretched’’ along long paths of proteins between receptors and

transcription factors. Thus, the ‘‘end-nodes’’ of pathways (i.e.,

receptors at one end and transcription factors at the other) can be

far away in a PPI network [37]. Since our method for predicting

PPIs is based on the PPI network’s spatial embedding that relies on

the proximity of proteins along shortest paths in a PPI network,

the ‘‘linearity’’ of pathways in PPI networks implies that our

method is not geared towards predicting interactions belonging to

the same pathway. Nevertheless, our success rate for predicting

such interactions is about 5%, which is particularly encouraging

given the fact that only about 10% of all PPIs in a PPI network

belong to the same pathway [35].

Finally, we use literature search and text mining service

CiteXplorer [38] to find out how often protein pairs that

correspond to our high confidence predictions are mentioned in

the abstract of the same paper in PubMed. For 32 of our 251

predictions, CiteXplorer found at least one article mentioning

both proteins simultaneously.

Discussion

High levels of inherent noise in experimental techniques for

detecting protein-protein interactions has stimulated the develop-

ment of computational techniques for assessing their confidence

levels and prediction of new interactions. In the realm of

interaction prediction, some approaches use only primary

structure of proteins, or protein domains [39–43]. Others exploit

features such as messenger RNA co-expression, co-essentiality,

and co-localization of proteins [44]. There exist approaches that

use protein structure, functional annotation, co-localization

information, etc. [45]. These computational techniques usually

have better accuracy than high-throughput experiments. For

example, PIPE [40] has sensitivity of 61% for detecting any yeast

protein-protein interaction with 89% specificity. However, com-

putational requirements for this algorithm do not allow for large-

scale computational experiments (evaluating the reliability of every

possible link). Other approaches, such as PreSPI [39], also have

good specificity of 73.20% and sensitivity of 96.77%. Table 1

presents commonly used methods for predicting protein interac-

tions [39–43]. Note that most of them are sequence-based, or

utilize information such as functional annotation. As Table 1

shows, our method has higher sensitivity than methods which

utilize only sequences [39,40,43]. When additional information

(such as functional annotation, biochemical properties of proteins,

etc.) is available other methods might outperform our approach.

However, this additional information is available only for a limited

set of proteins which significantly limits application of these

methods. It is important to note that our method does not need

any particular knowladge about individual proteins (even sequenc-

es) and therefore is a novel and independent source of information

about PPI interactions.

There exist techniques that can be utilized to remove false

positives from the existing data without predicting novel

interactions [23,35]. Sometimes such approaches are based on

logistic regression and require several PPI data sets originating

from different experiments; they are able to detect parts of PPI

networks of the highest quality by using overlaps of the data sets.

Although these techniques can be used to propose high quality

PPIs, the completeness of the data still remains an issue and can be

resolved only by combining multiple experimental datasets, or by

additional wet-lab experiments. Since there does not exist a gold

standard PPI network for any organism, it is hard to judge which

of the interactions from those reported by these methods to be of

low-confidence are true interactions and which are false-positives.

The same, is true for our method. Hence, we believe that all

computationally predicted false positives should be re-tested

experimentally.

Similar to our method, there exists a technique for predicting

novel PPIs based on the topology of a PPI network [46]. However,

that approach is based on a ‘‘maximal clique’’ that potentially can

lead to a higher rate of false positives than that of the ‘‘spoke

model’’ [23]. Finally, Chen et al. [47] devised a topology-based

algorithm called IRAP to detect false positives and false negatives

in yeast, fly and worm. In their work Chen et al. [47] focused only

on Y2H-derived experimental datasets, whereas the ‘‘HumanBG’’

network in the focus of our study contains PPIs derived from all

possible techniques (available in BioGRID) used to detect physical

interactions (see Table S7). Also, unlike IRAP our method actually
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evaluates the reliability of every possible link. For a review of the

methods used for PPI networks de-noising see [48].

Our method uses only PPI network topology for detecting both

false positives and false negatives (predicting novel interactions).

Unlike most of the methods for detecting false positives, our

algorithm does not require several PPI datasets. Also, unlike most

methods for predicting novel interactions, it does not need any a

priori information about individual proteins, such as binding

domains, structure, function, chemical properties, or sequence. On

our testing set, we can achieve specificity of 85% and sensitivity of

90% (see ROC curves in Figure 2) and our method can be applied

to large-scale network experiments. This overall performance is

better than that of biological experimental techniques and is

comparable to that of Yu and Finley [35]. However, while Yu and

Finley only assess confidence of the existing interactions, our

method is also capable of predicting novel ones (Table S1).

It is important to note that the coordinates of the nodes that we

get from the embedding do not represent proteins’ relative

locations in 3-dimensional space in the cell in any way. Instead,

the dimensions of the target space might correspond to various

bio-chemical properties. Our approach does not need information

about what the target space’s dimensions represent, nor any

knowledge of space dimensionality. Finding optimal dimensional-

ity of this space and the bio-chemical meaning for the dimension is

an open research question.

Supporting Information

Text S1 Supplementary Information for: Geometric de-noising

of protein-protein interaction networks

Found at: doi:10.1371/journal.pcbi.1000454.s001 (0.05 MB PDF)

Table S1 All 251 high confidence predictions.

Found at: doi:10.1371/journal.pcbi.1000454.s002 (0.21 MB

DOC)

Table S2 Protein-protein interaction predictions validated in

HPRD, newest version of BioGRID (2.0.50) or in both databases.

Found at: doi:10.1371/journal.pcbi.1000454.s003 (0.03 MB

DOC)

Table S3 Protein-protein interaction predictions where both

proteins in the pair share at least one GO term corresponding to

the ‘‘biological process’’ or ‘‘cellular component’’.

Found at: doi:10.1371/journal.pcbi.1000454.s004 (0.14 MB

DOC)

Table S4 Protein-protein interaction predictions where both

proteins in the pair share at least one GO term corresponding to

the ‘‘biological process’’.

Found at: doi:10.1371/journal.pcbi.1000454.s005 (0.07 MB

DOC)

Table S5 Protein-protein interaction predictions where both

proteins participate in the same KEGG pathway.

Found at: doi:10.1371/journal.pcbi.1000454.s006 (0.04 MB

DOC)

Table S6 Predicted false positives.

Found at: doi:10.1371/journal.pcbi.1000454.s007 (1.10 MB

DOC)

Table S7 Experimental techniques from BIOGRID capable of

detecting physical interactions between proteins.

Found at: doi:10.1371/journal.pcbi.1000454.s008 (0.04 MB

DOC)

Table 1. Computational methods for predicting protein-protein interactions.

Method Sensitivity Specificity Input Comments

PreSPI [39] 77% 95% Learning set of protein sequence pairs known
to be interacting or non-interacting. Protein
sequences for interaction prediction.

Requires a learning set with interacting and non-
interacting protein pairs containing different domains.
Once the classifier is trained, then it requires as input
only protein sequences of protein pairs for which
interaction is being predicted. Applied to yeast.

Ma et al. [41] 91% 86% Training (i.e., learning) set of protein sequence
pairs known to be interacting or non-interacting.
Protein sequences for interaction prediction.

Requires a training set with interacting and non-
interacting protein pairs. Requires Matlab seqtool for
getting protein biochemical properties. Once the
classifier is trained, then it requires as input only
protein sequences of protein pairs for which
interaction is being predicted. Applied to yeast.

Lee et al. [42] 94% 97% For both proteins that we are checking for
interaction: 1) Functional category; 2)
Co-localization; 3) Topology within PPI network.

Application is limited only to protein pairs with known
functional and localization annotations. Applied to
yeast.

PIPE [40] 61% 89% Protein sequences. Reported to be weak for detecting novel interactions
among genome wide large-scale data sets [40]. Applied to
yeast.

Chen and Liu [43] 78%, 77%, 79% 37%, 65%, 62% Training (i.e., learning) set of protein sequence
pairs known to be interacting or non-interacting.
Protein sequences for interaction prediction.

Requires a training set with interacting and non-
interacting protein pairs. It is a protein domain-based
approach. It uses one of the following three types of
classifiers: a) Decision tree, b) Neural network c) MLE.
This is why three values are reported for sensitivity and
specificity, respectively. Applied to yeast.

Our Method 90% 85% Protein-protein interaction network. Based solely on PPI network topology. Does not
require any knowledge about particular proteins. Is it
generally applicable to any organism.

The field ‘‘Method’’ refers to a particular method either by the method name or by the last names of its authors. Fields ‘‘Sensitivity’’ and ‘‘Specificity’’ contain values as
reported by the authors of particular methods. ‘‘Input’’ field describes what kind of input is expected by the algorithm and ‘‘Comments’’ field contains general
comments about usage of the algorithm.
doi:10.1371/journal.pcbi.1000454.t001

Geometric De-noising of PPI Networks

PLoS Computational Biology | www.ploscompbiol.org 9 August 2009 | Volume 5 | Issue 8 | e1000454



Figure S1 Probabilistic density p(edge|dist). x axis corresponds

to distances between pairs of nodes, y value of the density. Note,

that in this plot normalization constant from formula (7) in the

main paper is not taken into account.

Found at: doi:10.1371/journal.pcbi.1000454.s009 (0.02 MB TIF)

Figure S2 Probabilistic density p(nonedge|dist). x axis corre-

sponds to distances between pairs of nodes, y value of the density.

Note, that in this plot normalization constant from formula (8) in

the main paper is not taken into account.

Found at: doi:10.1371/journal.pcbi.1000454.s010 (0.02 MB TIF)

Figure S3 Confidence scores for ‘‘HumanBG network’’. x axis

corresponds to distances between pairs od nodes, y axis

corresponds to the assigned confidence scores.

Found at: doi:10.1371/journal.pcbi.1000454.s011 (0.02 MB TIF)
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