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Abstract

A fundamental question in understanding neuronal computations is how dendritic events influence the output of the
neuron. Different forms of integration of neighbouring and distributed synaptic inputs, isolated dendritic spikes and local
regulation of synaptic efficacy suggest that individual dendritic branches may function as independent computational
subunits. In the present paper, we study how these local computations influence the output of the neuron. Using a simple
cascade model, we demonstrate that triggering somatic firing by a relatively small dendritic branch requires the
amplification of local events by dendritic spiking and synaptic plasticity. The moderately branching dendritic tree of granule
cells seems optimal for this computation since larger dendritic trees favor local plasticity by isolating dendritic
compartments, while reliable detection of individual dendritic spikes in the soma requires a low branch number. Finally, we
demonstrate that these parallel dendritic computations could contribute to the generation of multiple independent place
fields of hippocampal granule cells.
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Introduction

Neurons possess highly branched, complex dendritic trees, but

the relationship between the structure of the dendritic arbor and

underlying neural function is poorly understood [1]. Recent

studies suggest that dendritic branches form independent compu-

tational subunits: Individual branches function as single integrative

compartments [2,3], generate isolated dendritic spikes [4,5] linking

together neighbouring groups of synapses by local plasticity rules

[6–8]. Coupling between dendritic branches and the soma is

regulated in a branch-specific manner through local mechanisms

[9], and the homeostatic scaling of the neurotransmitter release

probability is also regulated by the local dendritic activation [10].

The computational power of active dendrites had already been

demonstrated by several computational studies [11–16], but how

local events influence the output of the neuron remained an open

question. Using the cable equation [17] or compartmental

modelling tools one can calculate the current or voltage

attenuation between arbitrary points in a dendritic tree [14],

which is in good agreement with in vitro recordings. However,

cortical networks in vivo are believed to operate in a balanced state

[18,19], where the inhibitory drive is continuously adjusted such

that the mean activity of the population is nearly constant [20,21].

In this case, the firing of an individual neuron is determined,

beyond its own input, by the activity distribution of the population.

A simple cascade model [22] incorporating numerous dendritic

compartments allowed us the statistical estimation of the activity

distribution of neurons within the population. We used this model

to study how localized dendritic computations influence the output

of the neuron.

The present study focuses on hippocampal granule cells.

Compared to pyramidal neurons granule cells have relatively

simpler dendritic arborization: They lack the apical trunk and the

basal dendrites, but are characterized by several, equivalent

dendritic branches, extended into the molecular layer [23]

(Figure 1A). Recordings from freely moving rats revealed that

like pyramidal neurons, granule cells exhibit clear spatially

selective discharge [24,25]. However, granule cells had smaller

place fields than pyramidal cells, and had multiple distinct

subfields [24,26]. It has also been recently shown that these

subfields are independent, i.e., their distribution was irregular and

the transformation of the environment resulted in incoherent rate

change in the subfields [26]. The dendritic morphology of granule

cells suggest that parallel dendritic computations could contribute

to the generation of multiple, distinct subfields of these neurons.

In the present study we analyzed how synaptic input arriving to

dendritic subunits influence the neuronal output. First, we introduce

the model used in this study and we define statistical criteria to

measure if a dendritic branch alone is able to trigger somatic

spiking. We show, that generally neurons perform input strength

encoding i.e., input to the whole dendritic tree but not activation of

a single branch is encoded in the somatic firing. Next we

demonstrate that if the local response is enhanced by active

mechanisms (dendritic spiking and synaptic plasticity) then neurons

switch to feature detection mode during which the firing of the

neuron is usually triggered by the activation of a single dendritic

branch. Furthermore we show that moderately branched dendritic

tree of granule cells is optimal for this computation as large number

of branches favor local plasticity by isolating dendritic compart-

ments, while reliable detection of individual dendritic spikes in the
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soma requires low branch number. Dendritic branches of dentate

granule cells could therefore learn different inputs; and the cell,

activated through different dendritic branches, could selectively

respond to distinct features (locations), participating in different

memories. Finally using spatially organized input we illustrate that

our model explains the multiple independent place fields of granule

cells and these dendritic computations increase the pattern

separation capacity of the dentate gyrus.

Model

We set up a cascade model [22] to study the somato-dendritic

interactions in neurons, that is simple enough for mathematical

analysis but can be adequately fitted to experimental data. The

long, parallel branches of dentate granule cells are represented by

distinct compartments connected to the somatic compartment of

the model (Figure 1B). The activation of the somatic (as) and

dendritic (ai) compartments are described by the following

equations:

Cm
dai

dt
~{

ai

Rm

zf
XM
j~1

wijuj

 !
z
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, ð1Þ
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ai{as
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where Cm is the membrane capacitance, Rd
m and Rs

m are the total

dendritic and somatic membrane resistances, respectively, and Ra

is the axial resistance between the dendritic and the somatic

compartments. Each of the N dendritic branches are contacted by

M presynaptic axons, uj is the firing rate of axon j, and wij is the

synaptic strength between the dendritic branch i and presynaptic

axon j (see Methods for parameters specific to hippocampal

granule cells). f(U) is the dendritic integration function that

specifies the form of the local integration of synaptic inputs, and

Ui =Sjwijuj is the total synaptic input to a given branch. Because

Figure 1. The structure of the model. (A) Anatomical reconstruction of the dendritic tree of a mature granule cell from mice. The dendritic tree is
dominated by the long parallel dendritic branches in the outer two third of the molecular layer. Note the lack of basal dendrites and the apical trunk
compared to a pyramidal neuron. Image courtesy of Dr. Josef Bischofberger. (B) Model for the somato-dendritic interactions in dentate granule cells.
Distal dendritic compartments are represented by circles, and the soma by a square. Further details are in the text. (C) The different dendritic
integration functions used in this study. Black: linear, blue: quadratic, green: sigmoid function. Red, square symbols indicate the nonlinearity of
dendritic integration in a conductance based model of hippocampal granule cell (see Text S1). Dashed and dotted lines show different degrees of
nonlinearity. The distribution of the total dendritic input with uniform synapses is shown in the background.
doi:10.1371/journal.pcbi.1000500.g001

Author Summary

Neurons were originally divided into three morphologically
distinct compartments: the dendrites receive the synaptic
input, the soma integrates it and communicates the
output of the cell to other neurons via the axon. Although
several lines of evidence challenged this oversimplified
view, neurons are still considered to be the basic
information processing units of the nervous system as
their output reflects the computations performed by the
entire dendritic tree. In the present study, the authors
build a simplified computational model and calculate that,
in certain neurons, relatively small dendritic branches are
able to independently trigger somatic firing. Therefore, in
these cells, an action potential mirrors the activity of a
small dendritic subunit rather than the input arriving to
the whole dendritic tree. These neurons can be regarded
as a network of a few independent integrator units
connected to a common output unit. The authors
demonstrate that a moderately branched dendritic tree
of hippocampal granule cells may be optimized for these
parallel computations. Finally the authors show that these
parallel dendritic computations could explain some
aspects of the location dependent activity of hippocampal
granule cells.

Parallel Computations in Dendritic Branches
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the firing rate of the presynaptic entorhinal neurons depend mostly

on the location of the animal [27] we assume, that input varies

slowly compared to the membrane’s time constant in dentate

granule cells (tm<37 ms, [28]). Therefore, we rewrite Equations

1–2 to their steady-state form:

ai~Rmf Uið Þz as{aið ÞR
d
m

Ra

~F Uið Þz
as{ai

Rd
ð3Þ

as~
Rs

m

Ra

X
i

ai{asð Þ~ 1

Rs

X
i

ai{asð Þ~
PN

i~1 ai

RszN
, ð4Þ

where F Uð Þ~Rd
mf Uð Þ and Rx~Ra

�
Rx

m is the proportion of the

axial and the membrane resistivity. In granule cells the area and

the electrical resistance of the somatic membrane is similar to

the membrane area and resistance of a single dendritic branch

[28] (see Methods). Therefore, in the following calculations we use

R = Rs = Rd to denote the electrical isolation between somatic

and dendritic compartments. Three different functions were used

in this study to approximate the local integration of synaptic

inputs within the dendritic branches of hippocampal granule

cells (Text S1, Figure 1C): a linear (FL(U) = 0.26U) and a

quadratic (FQ(U) = 0.13U2) function were used in the analytical

calculations; and the results were also tested with a sigmoid

(FS Uð Þ~ 3:4

1zexp 4:5{U
0:3

� �zU=4:7) function in the Supporting

Information (Text S2). We also performed some of the analytical

calculations by decreasing the degree of nonlinearity, where we

used FC = 0.07U2+0.12U or FC = 0.02U2+0.22U. Note, that the

action potential generation is not incorporated in the model, and

all active properties of the dendrites are modeled by the

integration function F(U).

Distribution of the Somatic Activation
Supposing that firing rates of presynaptic neurons (uj) are

independent and identically distributed we assume that the total

input of the dendritic branches Ui =Sjwijuj is drawn randomly

from a Gaussian distribution with mean m and variance s2:

p Ui½ �~G Ui m,s2
��� �

ð5Þ

where p[U] indicates a probability distribution over U (Figure 1C;

see Eq. 17 in Methods for parameters specific to hippocampal

granule cells). More specifically, G Ui m,s2
��� �

indicates the

distribution of the magnitude of possible total inputs to a single

dendrite over many different instances. Based on the distribution

of the total input, we can compute the distribution of the somatic

activation as, and determine the firing threshold (b) according to

the proportion of simultaneously active cells (the sparseness of the

representation, spDG) in the DG [24]. First, we rearrange Eq. 3

using the input distribution to express the distribution of ai:

ai~
RF GUi

� �
zas

Rz1
, ð6Þ

where GU indicates that the inputs of the dendritic branches are

randomly sampled from a Gaussian distribution. We substitute Eq.

6 into Eq. 4, and we get

as~

PN
i~1 F GUi

� �
RzNz1

: ð7Þ

We can assume again, that the inputs (Ui) of the dendritic branches

are independent and identically distributed variables. (Note, that

while the activations ais are not independent because of the back-

propagation of currents from the soma, the inputs are.) If N is high

enough, we can approximate the sum in Eq. 7 with a Gaussian

distribution, and rewrite the equation:

p as½ �~G as
NmF

RzNz1
,

Ns2
F

RzNz1ð Þ2

�����
 !

ð8Þ

where p[as] indicates a probability distribution over as, while mF

and s2
F are the expected value and the variance of the dendritic

integration function F(U) given the input distribution GU :

mF ~

ð?
{?

p U½ �F Uð ÞdU~

ð?
{?

G U m,s2
��� �

F Uð ÞdU , ð9Þ

s2
F ~

ð?
{?

G U m,s2
��� �

F Uð Þ{mFð Þ2dU : ð10Þ

We calculated the integrals 9–10 with two different forms of

dendritic integration of synaptic inputs: a linear and a quadratic

function (Figure 1C). The details of these calculations are in the

Supporting Information (Text S4).

In this paper we do not model inhibitory neurons in the dentate

gyrus, however, we assume, that they play a substantial role in

continuously adjusting the firing threshold of principal neurons

and regulating the activity of the network [20,21]. As a result of

this regulation always the most depolarized neurons are able to

fire, and the proportion of simultaneously active neurons is

characteristic for different hippocampal areas [24,29]. Given that

all neurons share a common input statistics and have similar

internal dynamics, equation 8 also describes the distribution of as

across the granule cell population at a given time. If only the most

depolarized 1–5% of the population are able to fire [29], this also

means that only those neurons exceed their firing threshold whose

activation is within the uppermost 1–5% of the distribution

described by Eq. 8. Therefore, the proportion of simultaneously

active neurons within the dentate gyrus spDG [24,29] also

determine the firing threshold b for granule cells.

Criteria for Independence in the Output
We approach the dendritic independence by focusing on the

statistical distributions of the input to dendritic branches, as these

branches form the basic computational subunits in our model. We

ask whether the input of a single branch could be sufficiently large

to significantly depolarize not only the given branch but also the

soma of the neuron. We defined two conditions to study whether

the spiking of the neuron is caused by the activation of a single

dendritic branch or by the simultaneous depolarization of multiple

branches.

First, the conditional probability H(Uk) = p[as.b|Uk] is the

probability of firing given that any branch k has total input

Uk =Sjwkjuj, while inputs to all other branches are random and

independent samples from the distribution of G Ui m,s2
��� �

(Figure 2A). At those Uk values where this probability is close to

1 the cell tends to fire when any of the dendritic branches gets that

Parallel Computations in Dendritic Branches
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input. Second, the conditional distribution K(U*) = p[U*|as.b] is

the distribution of the synaptic input of the most active branch at

the time the depolarization of the soma exceeds the firing

threshold (b), where U* is the total synaptic input arriving to the

most active branch (Figure 2A). K(U*) can be regarded as the

marginal distribution of p[as, U*] above the firing threshold

(Figure 2B). The probability mass of this function shows the typical

maximal input (U*) values when the neuron fires.

These two conditions together determine whether a single

branch can be sufficiently depolarized to trigger somatic spike or

not. If the probability of firing is high (H(U)<1) at typical input

values (K(U*)) then the firing of the cell is caused by a single branch.

With the definition of Gasparini and Magee [30] we call this form

of information processing as independent feature detection. On the other

hand, if the firing probability is low (H(U)%1) even if one of the

branches receive extremely large input (U* is high) then the cell

mostly fires when the overall dendritic activation is high, and even

the most depolarized branch usually fails to make the neuron fire.

We use the expression input strength encoding [30] to denote this

second type of computation. The calculation of the two functions

H(U) and K(U*) is described in the Methods section.

Results

Constant Synaptic Weights: Input Strength Encoding
First we chose unstructured synaptic input, i.e., the firing of

entorhinal neurons were independent and the strength of all

synapses were equal. In this case we approximated the total

synaptic input U to a branch with a Gaussian distribution (Eq. 5,

Figure 1C). Given the input distribution we asked whether the

excitation of single branches can be sufficiently large to cause

significant depolarization in the soma.

The typical largest input values, indicated by the probability

mass of K(U*) (Figure 2C–D) are unable to sufficiently depolarize

the soma and determine the neuronal output (indicated by the low

H(U) values) in the case of both the linear (Figure 2C) and the

quadratic (Figure 2D) integration functions. Wherever K(U*) has

high values, H(U) is low in both cases, which indicate, that these

branches are not able to independently influence the output of the

neuron. Only coactivation of several branches could make the

neuron fire in this case, and the output of the neuron encodes the

strength of all dendritic inputs. As H(U) converges to 1 for high

input values extremely high inputs to a single dendrite could

Figure 2. Input strength encoding with uniform synapses. (A) The figure shows two neurons (or the same neuron with two different input
sets). We calculated the probability of firing (H(U)) given that one of the branches has exactly U synaptic input (e.g., U1 = U) while inputs of other
branches (U2, U3, …, UN) are drawn independently from the input distribution. Second, we calculated the distribution of the maximal input (K(U*))
given the depolarization of the soma exceeds the firing threshold. (B) Color coded joint probability distribution of the somatic activation and the
maximal dendritic input, p[as, U*] with the linear integration function. Red is maximum, dark blue is zero. The color-code emphasizes low probability
events and it is not linear. The horizontal line is the firing threshold; the yellow line shows the conditional expectation of as given U*. If dendrites were
independent high and low U* values could be separated by a somatic threshold of action potential generation. (C–D) Dendritic independence with
linear (C) and quadratic (D) integration functions. Left axis, red: K(U*), the distribution of the maximal dendritic inputs during firing. Right axis, blue:
the H(U) function, which is the probability of firing given that one of the dendrites has U total input. The probability of triggering output by a single
branch is low (H(U),0.25) even with reasonably large input (as revealed by the low H(U) values at the probability mass of K(U*)). This indicates that a
single dendritic subunit is unable to reliably activate the neuron with these integration functions. Background light gray is the distribution of U while
dark grey shows the distribution of U*. Parameters: R = 0.01, N = 30.
doi:10.1371/journal.pcbi.1000500.g002

Parallel Computations in Dendritic Branches
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reliably trigger somatic firing. In the next sections, however, we

study how synaptic plasticity selectively modifies individual

synapses and contributes to the sparse occurrence of extraordi-

narily high input values.

Hebbian Synapses: Feature Detection
During Hebbian learning synapses contributing to postsynaptic

activation are potentiated while other synapses may experience

compensatory depression [31,32]. We simulated the learning

process by showing a finite number of uncorrelated samples from

the input distribution (see Methods) to the model neuron initiated

with uniform synaptic weights. The synaptic weights of those

dendritic branches where the activation exceeded a threshold, bd

were modified according to the following Hebbian plasticity rule

[33] that incorporates heterosynaptic depression [31]:

Dwij~cH ai{bdð Þ uj{wij

� �
ð11Þ

where ai is the local dendritic activation, uj is the presynaptic firing

rate and wij is the synaptic strength. HðÞ is the Heaviside function

and c,1 is a constant learning parameter. Note, that the learning

rule is local to the dendritic branches: the synaptic change depends

on the local activation but not on the somatic firing.

Next, we calculated the total input to the branches Ui =Sjwijuj

after modification of synapses (Figure 3A), and recalculated the two

functions H(U) and K(U*) defined previously with the new input

distribution (Eq. 18). As shown on Figure 3A the total synaptic input

in response to a learned pattern increases significantly after learning

(compare blue and grey curves on Figure 3A), while untrained

patterns generate smaller synaptic inputs (compare grey and black

curves on Figure 3A). The main consequence of synaptic plasticity is

that the trained patterns generate much larger local response than

untrained patterns, which raise the possibility of their detection in

the soma. Note, that an unspecific increase of synaptic weights

would result in an upward shift of both the input distribution (Eq. 5)

and the firing threshold, but would not affect the somatic detection

of individual dendritic events.

The neuron is able to selectively respond to the dendritically

learned patterns if a single branch, when facing with its preferred

input, is able to induce significantly more depolarization at the site

of the action potential initiation compared with the case when all

of the branches get random, not learned input. Figure 3B–E shows

the dendritic input and the activation of the soma after learning. If

the maximal input U* is small (left bumps on Figure 3B,D) and

none of the branches got its preferred input then the somatic

activation is usually small. If U* is high (Figure 3B,D; right bumps),

which means that one of the branches receives its preferred input

pattern, then the somatic activation is increased. The increase of

the somatic activation with learned input is only moderate in the

linear case (Figure 3B,C) resulting in an incomplete separation of

learned and not learned inputs by the somatic firing threshold.

However, if synaptic inputs are supra-linearly (quadratically)

integrated within the dendritic branches, efficient separation is

Figure 3. Independent feature detection with Habbian synapses. (A) Synaptic plasticity separates the inputs. Before learning the total synaptic
input to a dendritic subunit come from a Gaussian distribution (600 samples are shown with grey circles) with the calculated density function shown on
the right (Eq. 5). During the learning process each branch learns its largest input and the response increases to the learned input (blue circle), while it
decreases to all other inputs (black circles). The black and blue Gaussian curves show the density functions for the non-learned and learned inputs,
respectively (Eq. 19). (B), (D): Color-coded joint distribution of the somatic activation and the maximal dendritic input (p[as, U*]) in the linear (B) and
quadratic (D) case. The horizontal lines indicate the firing threshold. (C), (E): The distribution of the maximal dendritic input when the cell fires (K(U*) in
red) and the probability of firing with a given input (H(U) in blue). The distribution of U* is shown in the background. In the linear case, 50% of firing
occurs when one of the branches receives its preferred input, while with quadratic integration function more than 95%. Parameters: R = 0.01, N = 30.
doi:10.1371/journal.pcbi.1000500.g003
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possible: the probability that the presentation of a learned pattern

elicits subthreshold somatic response, called dendritic spike detection

probability was over 95% (Figure 3D,E). In this case the output of

the neuron encodes whether or not one of the stored features was

present in the neuron’s input and not simply the strength of the

total input arriving to the whole dendritic tree. In other words, if

dendritic nonlinearity enhance the response of a given branch to

its preferred input, then this branch alone is able to trigger somatic

spiking. In the following sections we use the term dendritic spiking to

refer to these supra-linear dendritic events. Although there is no

data available on the synaptic induction of local dendritic spiking

in hippocampal granule cells, voltage dependent Ca2+ currents are

present in the membrane of granule cells [34,35] and whole-cell

recordings from these neurons suggest that T-type Ca2+ channels

can generate dendritic action potentials at least in young neurons

[36] or under hyper-excitable conditions [34,37].

Independent Learning in Isolated Branches
Next, we explored how the independent feature detection ability

of the model depends on the resistance between the somatic and

dendritic compartments with nonlinear dendritic integration. In the

passive cable model of dendritic trees the space constant of the

membrane lm<(Rm/Ri)
1/2 plays a substantial role in determining

the voltage attenuation among two sites. Consequently, an increase

in the intracellular resistivity Ri or a similar decrease in the

membrane resistance Rm will contribute to the separation of

dendritic subunits by decreasing the membrane’s space constant lm.

In the present study we used the inverse of the space constant

R<Ri/Rm to characterize the degree of electrical resistivity between

the somatic and dendritic compartments. Indeed, an increased

resistivity (R) between the compartments (smaller space constant)

induced larger degree of electrical isolation as the somatic response

to the same amount of dendritically applied current decreased

(compare Figure 4A left and right panels). However, this isolation

did not modify the dendritic spike detection probability in the soma:

Large dendritic spikes localized to a single compartment could be

reliably separated from subthreshold events with a somatic firing

threshold at a large range of resistances R (Figure 4A–B). This was

also true for the selective alternation of the somatic or the dendritic

membrane resistance (Figure 4B).

Figure 4. Changing the resistance influence the isolation of compartments, but not the detection of dendritic spikes. (A) The joint
distribution of the somatic activation as and the maximal dendritic input U* with different resistances. (B) The probability of detecting a dendritic
spike remains constant even if the resistance changes 2–3 order of magnitude. Black circles: both somatic and dendritic resistances are altered; green
diamonds: only resistance of the dendritic membrane (Rd

m) is changed while Rs
m~0:01; red squares: somatic membrane resistance (Rs

m) is changed,
Rd

m~0:01. Although the distribution of the somatic activation scales with the resistance (see panel A and Eq. 7), the detection probability of a single
dendritic event remains relatively constant. (C) The joint distribution of the activation of a dendritic branch ai and its own input Ui. When the
resistance is low (left), the local activation depends only slightly on the input. Conversely, if the resistance is higher (right) the local input has
substantial impact on the activation of the branch. (D) The external influence decreases as the resistance increases. Symbols are the same as on panel
B. Note, that decreasing the resistance of the perisomatic membrane (red squares) is the most efficient in separating the dendritic compartments
(recall, that Rs~Ra

�
Rs

m). N = 30.
doi:10.1371/journal.pcbi.1000500.g004

Parallel Computations in Dendritic Branches
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On the other hand, the resistance parameter had a substantial

impact on the isolation of different dendritic compartments which

might be necessary for the independence of synaptic plasticity. To

measure the isolation of the dendritic subunits we calculated the

influence of other compartments on the activation of a given

branch (external influence) quantified by the standard deviation of

p[ai|Ui]. Figure 4C shows the activation of a dendritic branch in

the function of its input at different R values. If the resistance is

small (R = Ra/Rm = 0.01, Figure 4C, left), then the local activation

depends only slightly on the local input and the external influence

is high (Figure 4D). In this case the local input spread out to the

entire dendritic tree and activates similarly all branches. On the

other hand, if the resistance is high (R = 1, Figure 4C, right) then

the external influence is small, and the depolarization of a

dendritic branch depends mostly on the local input. Interestingly,

decreasing the resistance of the perisomatic membrane (Rs
m) alone

was more efficient in separating the dendritic subunits than

decreasing the resistance of the dendritic membrane or both

(Figure 4D). The extensive GABAergic [38,39] and glutamatergic

[40] innervation of the proximal dendritic and perisomatic region

of granule cells may therefore contribute significantly to the

isolation of the dendritic compartments.

The impact of a single branch on the somatic activation, and

also the coupling between dendritic branches may depend highly

on the structure of the dendritic tree. Therefore we varied the

number of dendritic subunits, N, and calculated the probability of

detecting dendritic spikes in the soma and the external influence

on the dendritic subunits (Figure 5). The probability of detecting a

dendritic spike in the soma decreased gradually after a few (N<30)

number of branches from 1 to 0.3 (N<1000, Figure 5A–B). If the

number of branches was low, then the effect of a single branch on

the soma was relatively high, and the somatic detection of single

dendritic events was reliable. Conversely, one out of hundreds of

branches had relatively low impact on the neuron’s output even if

the local depolarization was significant.

The electrical coupling between the dendritic subunits charac-

terized by the external influence on the local activation also

decreased with the number of branches, (Figure 5C–D). In the

model the branches are connected through the somatic compart-

ment, and because the variance of the somatic activation decreases

if N increases (Eq. 8), the external influence will also decrease.

However, in a complex dendritic tree containing higher number of

subunits the branches are electronically more isolated which is

required for local plasticity. To keep the probability of dendritic

spike detection high and the dendritic coupling low at the same

time, the number of branches should therefore be as high as

possible, but not higher than N<60.

As we showed on Figure 4, the dendritic coupling depends on

the resistance R, as high resistance separates better the subunits.

Therefore we conclude, that a medium number of branches with

relatively high resistance is ideal for parallel dendritic computa-

tions. The optimal number of dendritic subunits, however,

depends on the size of the dendritic event determined by the

local integration of the synaptic inputs (Figure 5B). Appropriate

Figure 5. Moderate number of branches allows the isolation of subunits and the detection of dendritic spikes. (A) The joint
distribution of the somatic activation as and the maximal dendritic input U*. As the number of branches grow (from left to right), the somatic
depolarization caused by a dendritic spike in a single compartment decreases gradually. Consequently, if N is high, than the somatic threshold
(horizontal line) can not separate small and large dendritic events. (B) The probability of detecting a dendritic spike decreases as the number of
dendritic subunits increases. Different colors indicate different degrees of nonlinearity (blue circles: quadratic; black triangles: linear integration
function). (C) The joint distribution of the activation of a dendritic branch ai and its own input Ui. Increasing the number of compartments decrease
the variance of the distribution and the impact of other branches. (D) The external influence decreases with the number of branches both with linear
(triangles) and quadratic (circles) integration function. R = 0.3.
doi:10.1371/journal.pcbi.1000500.g005
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detection of dendritic responses to learned patterns with linear

integration is possible only in very small dendritic trees, whereas

supra-linear integration allows the detection of individual dendritic

events also in a larger dendritic arbor. Nonlinear integration by

dendritic spiking therefore permits the neuron to selectively

respond to a larger number of distinct input pattern.

Verification of the Model with Location Dependent Input
During the calculation above we assumed, that the activity of the

presynaptic neurons are independent and that the samples from the

distribution are uncorrelated. It is known, however, that the firing of

entorhinal neurons are not independent: At least half of layer II cells

in the medial entorhinal cortex (EC) are grid cells, whose firing

depend mostly on the position of the animal [27]. Moreover, in

reality animals do not face with discrete uncorrelated samples, but

they experience the continuous change of their environment which

is mirrored by the activity of the entorhinal neurons. In order to test

our model under more realistic conditions, we simulated the activity

of the rodent’s EC during exploratory behavior as input to our

modeled granule cell. The EC consisted of two neuron population:

A population of grid cells (1000 neurons, 5 spacing, 5 orientations)

representing a path integrator system [41] and a population of visual

cells (1200 units), representing highly processed sensory information

available in the EC [42]. In these simulations we used the Webots

mobile robot simulator [43].

The firing statistics of the entorhinal neurons was the same as

used in the analytical calculation except that the activity of the

neurons was location dependent. Moreover, as we simulated the

trajectory of the rat during continuous foraging for randomly

tossed food pellets [26] the subsequent input patterns were highly

correlated. We simulated a single granule cell with N = 20

dendritic branches each of them receiving a total number of

M = 100 synaptic contacts from entorhinal neurons. The resistance

was R = 1, we used the quadratic integration function and the

neuron was tested in 5 different environments. During the 5 min.

learning period (while 2000 spatial locations was sampled with an

average running speed of 0.22 m/s) 0–8 branches learned usually

at different spatial locations in each of the 5 environments. In most

of the time synaptic plasticity in different branches occurred at

different places, therefore the subunits were able to learn

independently. Moreover, learning occurred only in naive

branches, i.e., each branch learned only in one environment at

a specific location and synapses of trained branches did not engage

in learning at a different location. After the training period the

synaptic weights of those branches that were subthreshold for

synaptic plasticity (bd = 1.11) in all environments were scaled down

manually.

Next we studied the spatial activity pattern of the somatic and

dendritic compartments while the robot was moving on a different

track in the same environments. The dendritic branches

responded with high activation (‘‘dendritic spikes’’) to subsequent

visit of places close to their preferred locations leading to the

formation of dendritic place fields (Figure 6). Moreover, since the

activation of the soma was substantially increased in each of these

dendritic place fields, the neuron had a multi-peaked activity map

in several environments (Figure 6).

Finally we explored the effect of the size of the dendritic tree on

the spatial firing pattern of the neuron (Figure 7). If there were

only a few functional dendritic subunit than the neuron obviously

had a small number of dendritic place fields (Figure 7A), but the

individual branches had strong influence on the somatic activity.

Therefore the correlation between the somatic activation as and

the maximal dendritic input U* was high (Figure 7B,C), as

predicted by the analytical calculations. On the other hand, in

neurons with large number of dendritic subunits there were more

dendritic place fields (Figure 7A), but a single branch had only a

little impact on the activity of the neuron (Figure 7D). Accordingly,

the correlation between the maximal dendritic input and somatic

activation was reduced (Figure 7B). In these cases the cell fired

when the overall excitation was high or when more than one

branch were simultaneously excited. Therefore, the moderately

branching dendritic tree of granule cells seems optimal for parallel

dendritic computations since extensive branching inhibits the

detection of individual dendritic events.

Figure 6. Location dependent input and parallel dendritic computations generate multiple place fields. The behavior of the same
granule cell in five different environments (columns). Upper row: color-coded maps (‘‘ratemaps’’) show the somatic activation on the 161 meter large
maze. Red: high activation (spiking), blue: silent. The highest and the lowest value of the somatic activation is indicated on each ratemap. The places
where the activation exceed the threshold (‘‘place fields’’) are surrounded by black lines. We used the same, linear color-code in all panels. Lower row:
the track of the robot and the location of the dendritic spikes. Dendritic place fields of different branches of the same neuron are marked by different
colors. Somatic firing usually coincide with the activation of single dendritic branches.
doi:10.1371/journal.pcbi.1000500.g006
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We conclude, that clustered plasticity together with dendritic

spiking may be an adequate cellular mechanism to explain the

generation of multiple place fields in the DG [24,26].

Discussion

In the present paper we set up a statistical criteria to determine

the effect of single dendritic events on the output of the neuron.

Using this criteria we have shown that by supra-linear dendritic

integration, given that branches have learned different input

patterns, individual dendritic branches are able to trigger somatic

firing. Next we have shown that high resistivity and large number of

branches supports the segregation of dendritic subunits required for

local plasticity. On the other hand, a single branch has a substantial

effect on the output of the neuron only if the number of branches is

sufficiently low. Finally using spatially organized input we have

demonstrated that parallel computational subunits explain multiple,

independent place fields of hippocampal granule cells.

Dendritic Spiking
Dendritically generated spikes mediated by voltage-gated Na+

[3] and/or Ca2+ channels [44] as well as glutamate-activated N-

methyl-D-aspartate (NMDA) channels [45] have been described in

a variety of neurons (for a review see [46] or [47]) including

hippocampal granule cells [34–37]. We used a quadratic

integration function in order to analytically model supra-linear

dendritic integration [15] which differs from the sigmoid form of

nonlinearity realized by dendritic spiking (Text S1, [3,4,45]). We

believe, however, that at this level of abstraction the exact form of

nonlinearity does not affect our results: As that is the difference

between the dendritic responses to learned and not learned

patterns that influence the somatic detection of dendritic events, a

sigmoid integration function give qualitatively similar results (Text

S2). Moreover, we studied only passive interactions between

individual dendritic events as the effect of voltage and calcium

dependent currents (including A-type and Ca2+-dependent

potassium [48] and the H-current [49]) regulating the propagation

Figure 7. Spatial firing patterns with different number of dendritic subunits. (A) The number of dendritic place fields increases with the
number of subunits although the probability of learning were kept constant. (B) The correlation between the somatic activity (as) and the maximal
input (U*) decreases if the number of dendritic subunits increases. Open circles: correlation in the absence of dendritic spikes. Error bars on A and B
show the standard deviation of 50 trials in 5 different environment. (C–D) Spatial firing patterns with N = 4 (C) and N = 100 (D) dendritic subunits.
Upper and middle row is the same as on Figure 6. Lower row: scatter plot showing the joint distribution of the somatic activation as and the maximal
dendritic input U*. Threshold for synaptic plasticity in the branches (horizontal line) and somatic firing (vertical line) are indicated. The correlation
between the two variables is shown above the panels. If the neuron has a small number of dendritic subunits than the number of dendritic fields is
small (A, C) but they propagate efficiently to the soma. Conversely, a neuron with a large number of dendritic subunits might have numerous
dendritic fields, but the individual dendritic spikes have a little impact on the somatic activation.
doi:10.1371/journal.pcbi.1000500.g007
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of dendritic spikes were not included in the model. Future studies

using a compartmental model equipped with dendritic spiking

could support our results and clarify further details.

Our analysis has revealed that a moderately branched dendritic

tree is optimal for the independent branches model, and we have

shown that this mechanism could contribute to the spatial firing

properties of granule cells in the DG. The dendritic tree of

cerebellar Purkinje cells as well as the apical dendrites of

hippocampal and neocortical pyramidal cells is typically larger,

and more ramifying [50]. Their morphology is suitable for local

plasticity within single branches [6,8], and although it seems that

individual branches may function as single integrative compart-

ments [3,4,51,52], dendritic spikes localized to these compart-

ments fail to propagate to the soma and directly influence the

neuron’s output [53]. Larger dendritic events, active spread of

dendritic spikes towards the soma or interactions among dendritic

subunits could contribute to the generation of somatic action

potentials in this case. The dendritic tree of pyramidal neurons is,

however, far more complex than that of granule cells: it has several

morphological and functional subregions with different afferent

inputs and membrane excitability [50]. Understanding how their

spatial firing characteristics arise from their cellular properties

would require at least a different model structure and is beyond

the scope of this paper.

Whether individual dendritic events influence the output of the

neuron depends - beyond the structure of the dendritic tree - on

the size and the frequency of the large dendritic events and the

output sparsity. The size of the events depends on the exact form

of the dendritic integration function and the plasticity rule while

the input statistics determine the frequency of such events. We

have shown that given the sparseness of the output, sufficiently

large, localized dendritic events arriving with appropriate

frequency are able to separately determine the output of the

neuron. Whether a local event is sufficiently large depends on the

geometry of the dendritic tree: A smaller event may be sufficient if

there are only a few subunits, or if the events actively propagate to

a large part of the entire dendritic tree (e.g, the apical tuft in

pyramidal neurons, [54]). Conversely, in neurons such as

cerebellar Purkinje cells with large, ramifying dendritic tree,

where individual events are localized to small branches, very large

dendritic spikes would be required to influence the output. Indeed,

detailed compartmental modelling of dendritic morphology

revealed that the forward propagation of the action potential

initiated in the apical trunk of pyramidal neurons was very

effective, while in Purkinje cells dendritic action potentials were

rapidly attenuated [53].

Isolation of Branches
Clustered plasticity allows the neuron to simultaneously learn

several different patterns but requires the electrical and/or

biochemical isolation of the dendritic compartments [47,55].

However, the intracellular resistance (Ra) in dentate granule cells is

relatively low and granule cells are usually regarded as electrically

compact neurons [28]. Indeed, signal propagation from somata

into dendrites in vitro is more efficient in granule cells compared

with CA1 pyramidal cells and distal synaptic inputs from

entorhinal fibers can efficiently depolarize the somatic membrane

of granule cells [28]. However, in vitro studies do not take into

account that neurons are embedded in a network of spontaneously

active cells. As thousands of synapses bombard the dendritic tree in

vivo, the dendritic membrane becomes ‘‘leakier’’ and, consequent-

ly, the membrane’s space constant decreases significantly [56].

Moreover perisomatic inhibition [57] and feed-back excitation (via

hilar mossy cells [40]) further decrease the resistance of the

proximal membrane contributing to the separation of the somatic

and dendritic compartments [54,58]. More specifically, we

predict, that the membrane resistance of granule cells is

considerably smaller at the perisomatic region than in the distal

dendrites. Indeed, computational studies predict a 7–30 fold

increase in the somatic leak conductance due to the synaptic

background activity [59]. On the other hand, large space constant

at long terminal branches facilitate interactions among synapses

distributed on the same branch. Therefore the long dendritic

branches of dentate granule cells may act as single integrative

computational subunits, separated from each other by the

perisomatic region of the cell. Furthermore, in the present paper

we used steady-state approximations and we neglected temporal

characteristics of the input and the integration. For rapidly varying

inputs the coupling between dendritic sites and the soma is much

smaller than for slowly varying currents since the distributed

capacitance throughout the tree will absorb the charge before it

reaches the soma [14]. Therefore dendritic compartments in a

passive tree are more isolated for transient events such as dendritic

spikes than for steady-state current. Finally, biochemical compart-

mentalization is likely to play a substantial role in the cooperative

induction of LTP in both hippocampal [60] and neocortical

neurons [7].

If, on the other hand, dendritic branches are not isolated during

the learning process and synapses across the whole dendritic tree

are modified simultaneously then different dendritic branches will

be sensitive for different component (modalities) of the same

episode. A new episode with partial overlap with the previously

learned one may trigger dendritic spiking in the corresponding

dendritic branch. As the somatic detection probability of dendritic

spikes does not depend on the degree of electrical isolation

(Figure 4), individual branches trigger somatic spiking, and, in this

way the dentate gyrus contributes to the associative recall of the

previously encoded episode in the hippocampus.

Synaptic Plasticity
Since the first description of LTP at perforant path - granule cell

synapses [61] synaptic plasticity has become widely accepted as the

physiological basis of memory [62]. As Hebbian plasticity is

intrinsically unstable, simply because it is a positive feed-back

mechanism multiple stability-promoting mechanisms have been

proposed, including heterosynaptic depression [31,63]. Indeed, in

the present model synaptic plasticity results in an average decrease

of synaptic strengths (Figure 3A), which have several functional

consequences: First, as the dendritic response to untrained patterns

and likewise the baseline activation of the cell decreases during

training, the somatic detection of individual, large dendritic events

becomes easier. Consequently, feature detection is less efficient in

semi-trained neurons where synaptic weights at only a part of the

dendritic tree has already been modified due to the learning

precess. Therefore, in this model, appropriate training of each

dendritic branch is required for proper functioning. Second,

increased excitability stimulates learning in naive branches, while

decreased responsiveness of previously trained branches prevents

overlearning. Indeed, newly generated granule cells are more

excitable than the neighboring old neurons [36], and they are

preferentially incorporated into functional networks in the dentate

gyrus during acquisition of new memories [64].

One of the most interesting prediction of the present model is

how the number of presynaptic spikes required for the postsyn-

aptic induction of dendritic spiking changes during the course of

learning. We can calculate this by dividing the total input U

needed for dendritic spiking with the mean synaptic weight

parameter (mw) before and after learning. Our model predicts, that
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while in young neurons the simultaneous occurrence of <70–80

presynaptic spikes (randomly distributed across the presynaptic

neurons) would trigger a postsynaptic dendritic spike, after

learning (i.e., in matured neurons)<130–160 would be required.

A recent study showed that the homeostatic regulation of the

neurotransmitter release probability at neighbouring synapses

depends on the local dendritic activity [10]: Increased dendritic

depolarization elicits a local homeostatic decrease in the release

probability and vice versa. This mechanism may also prevent

overlearning in trained branches where dendritic spikes has

sufficiently high rate by reducing the excitability of that branch.

On the other hand the same mechanism may stimulate learning

new patterns in naive or disused branches where dendritic spikes

are not present. One of the key elements of our model was the

local nature of the synaptic plasticity, i.e., the change of the

synaptic weights was controlled by the local dendritic but not the

somatic activity [6–8]. Specifically, in hippocampal granule cells

the induction of LTP was shown to be independent of the

discharge of the neurons during the high-frequency stimulation

[65]. Our model predicts that, if the postsynaptic signal for

synaptic plasticity is localized to individual dendritic branches

than, due to the associative nature of the LTP, the synapses from

entorhinal cells with overlapping firing become potentiated. If

LTP is accompanied by structural remodeling, than the entorhinal

neurons with overlapping place fields project to the same dendritic

branches of granule cells as also proposed by Hayman and Jeffery

(2008) [66].

The variation in the strength of perforant path-granule cell

synapses was found to be critical in the generation of multiple

place fields in a recent modelling study [67]. This heterogeneity

caused a greater average synaptic excitation in a fraction of

granule cells. This extra excitation therefore selects the subpop-

ulation of neurons active within a given environment similar to the

proposed role of contextual inputs in the model of Si and Treves

[68]. One possible source of synaptic heterogeneity is synaptic

plasticity [69] which was also crucial in the present model to

amplify the local responses to learned patterns.

Hippocampal Circuitry
Hippocampal granule cells receive afferent fibers from the

medial and the lateral portion of the entorhinal cortex, and these

two pathways differ both in their pattern of termination [70,71]

and information content [72]. Fibers originating in the lateral EC

display weak spatial selectivity and terminate on the most distal

branches of granule cells, while medial entorhinal neurons

innervate the middle third of their dendritic tree and show strong

spatial selectivity [72,73]. It has been recently suggested by

modelling studies [66,68] that inputs originating from the lateral

EC conveys contextual information to granule cells. In these

models the contextual input select a subpopulation of neurons (or

dendritic branches in [66]) that can be activated within the given

context (environment) while medial entorhinal fibers determine

the exact location of the place fields. The selection of a

subpopulation by contextual inputs can also contribute to the

multiple firing fields of granule cells by reducing the number of

available neurons within the given environment [67,68]. However,

the spatial distribution of the individual place fields become

regular (grid-like) if the multiple firing peaks are the consequence

of an incomplete competition between neurons, especially if the

input grid cells are organized into a finite number of ensembles

[74,75].

In the present paper we have shown that synapses, irrespective

of their origin, arriving at different branches of hippocampal

granule cells can be modified at different spatial locations. We

have also shown, that in granule cells each dendritic branch is able

to activate the neuron, therefore each subfield on the cell’s multi-

peaked activity map corresponds to a dendritic place field. The

segregation of contextual and positional information could explain

the sensitivity of the subfields to contextual manipulations [26,66]

and is consistent with the role of DG in context discrimination

[76].

Along with the laminar organization of excitatory input,

different interneurons innervate different dendritic domains of

granule cells [39,77]. It appears, that distinct types of interneurons

have evolved to selectively and locally modulate the computations

performed by the postsynaptic membrane [57,78]. According to

our model, basket and axo-axonic cells may continually adjust the

inhibitory drive such that the mean activity of the population

remains nearly constant; HICAP cells, targeting the proximal

dendritic domain of granule cells together with the excitatory

mossy cells [40] may increase electrical isolation of distal dendritic

regions by raising the conductance of the proximal membrane;

whereas MOPP and HIPP cells associated with the entorhinal

afferents may contribute to the de-inactivation of calcium channels

required to dendritic spiking by providing rhythmic hyperpolar-

ization to distal dendritic branches.

Hippocampal interneurons have also a substantial role in

shaping the temporal dynamics of the network [78]. The firing of

neurons in the hippocampal formation is strongly modulated by

the theta rhythm [25,79,80] which is a prominent, large amplitude

field potential oscillation in the rodent hippocampus during

exploratory behavior [81]. The relative synchronization of

presynaptic spikes by the theta rhythm allows the temporal

integration of their postsynaptic potentials despite the relatively

small time constant of granule cells’ membrane [28]. Moreover,

the synchronization of synaptic inputs can also influence the form

of dendritic integration by switching from linear to nonlinear

integration [30]. Extending the present model with temporal

dynamics could be an exciting direction for future research.

Functional Consequences
What is the additional computational power gained from the

present model? We argue, that smaller and uncorrelated place

fields may help pattern separation in the dentate gyrus.

Theoretical considerations suggest that the DG helps the

hippocampal storage of new episodes by producing sparse

representations via competitive learning [82,83]. It was demon-

strated by modelling studies that competitive learning on spatially

organized input results in the formation of place fields

[68,74,84,85] that is a sparse and orthogonal representation of

the input space. In the present paper we proposed that parallel

dendritic computations explain the formation of multiple,

independent place fields of hippocampal granule cells even within

a relatively small environment [24,26].

Pattern separation by the DG can be more efficient if granule

cells have multiple, irregularly placed fields and the individual

fields are smaller. The neural representation of neighbouring

locations is more similar if neurons have one, larger field than if

they have several but smaller fields (Text S3). In our model the

place fields of a dendritic branches are analogous to the to the

single place field of an electrically compact neuron. The multi-

peaked somatic firing of the granule cells mirrors the several

dendritic fields of the same neuron. We argue, that if the size of the

somatic firing fields is limited by competition between simulta-

neously active neurons [86], then the place fields of granule cells

could be smaller than the corresponding dendritic fields. If the

individual place fields of granule cells become smaller, than the

neural representation of adjacent places becomes less correlated

Parallel Computations in Dendritic Branches

PLoS Computational Biology | www.ploscompbiol.org 11 September 2009 | Volume 5 | Issue 9 | e1000500



which further increase the pattern separation ability of the DG.

Therefore independent dendritic subunits increase the computa-

tional power of the DG while keeping the number of cells and their

sparsity constant. Moreover, clustering of different inputs into

different dendritic domains could explain the remapping of

hippocampal place cells under several experimental conditions

[26,66].

The impact of both dendritic nonlinearity and clustered

plasticity on the computational power of neurons was rarely

addressed by modeling studies. Poirazi and Mel [16] predicted,

that nonlinear dendritic integration with local (structural) plasticity

rule increase the representational capacity of neural tissue. They

showed on binary input, that the number of attainable input-

output functions (representational capacity) is maximal if the

neuron has many, relatively short branches, and the performance

of the model in a linear classification task correlates remarkably

well with the logarithm of representational capacity. However, in

order to approach the combinatorial bound of the representational

capacity in a neural tissue and to amplify slight differences in the

input extremely large subunit nonlinearity was required (they used

F(U) = U10). In the present study we showed that a moderate

increase in the memory-capacity can be achieved with local,

Hebbian learning rule and slightly supra-linear dendritic integra-

tion. We emphasized that under certain conditions a single branch

is able to evoke somatic output. However, if the amplitude of the

individual events is smaller, a larger spatial extent involving the

depolarization of additional branches will be required to trigger

output spiking. This mechanism could induce a combinatorial

increase in the representational capacity as shown by [16].

According to our model hippocampal granule cells can be

regarded as a two layer neural network of abstract integrate and

fire elements: In the first layer corresponding to the terminal

branches the units integrate separately their inputs and they

innervate a common output unit (second layer, the somatic

compartment) that implements a logical OR computation. The

idea that a dendritic tree may perform logical computations was

originally proposed by [87] to explain directional selectivity of

retinal ganglion cells. Shepherd and Brayton [88] further

elaborated this approach but instead of branches they used

dendritic spines as basic computational subunits. Our approach is

more similar to how Poirazi et al. [89] describe hippocampal

pyramidal cells, however, in that model the output unit performs

(nonlinear) summation prior to final thresholding. Another similar

model was proposed by Gasparini and Magee [30], in a paper

where they showed that the apical trunk of hippocampal

pyramidal neurons integrate spatially clustered and synchronously

arriving synaptic inputs nonlinearly, whereas distributed or

asynchronous inputs are linearly integrated. They suggest that

processing in the nonlinear mode could functionally separate the

dendritic arbor into a large number of independent nonlinear

computational units, each sending its own output to the soma. In

the present paper, we showed that a single computational units is

powerful enough to determine the output of the neuron only if

there are not too much similar units (N,100) and if the local

integration is sufficiently nonlinear.

A similar picture emerged form a recent series of in vitro

experiments performed on the basal dendrites of neocortical

pyramidal neurons: These branches behave as independent

computational subunits as nearby inputs on the same branch

summed sigmoidally due to the presence of local NMDA spikes

[2,45,90] and synaptic plasticity required the pairing of local

NMDA spikes with biochemical signals [7]. Moreover, an NMDA-

spike localized to a single basal dendrite could efficiently induce

somatic UP-state like depolarization accompanied by bursts of

action potentials [5]. These results suggest that our model

describes remarkably well the neuronal computations performed

by the basal dendritic tree of pyramidal neurons.

Experimental Predictions
Although we tried to fit our model to the available experimental

data we had to make some assumptions regarding the integration

of neighbouring inputs in dentate granule cells. Moreover, based

on the model described in the present paper we make some

explicit predictions. Both the assumptions and the predictions of

our model should be tested experimentally.

1. Large synaptic inputs induce a nonlinear increase in the

activation of the terminal branches of dentate granule cells.

The form of the dendritic integration function in granule cells,

like in pyramidal neurons [3,44,45], could be determined by

patch-clamp recordings from hippocampal slices.

2. Dendritic spiking in individual branches of young versus old

granule cells can be triggered by at least 70–80 versus 130–160

simultaneous presynaptic spikes, respectively. The unitary

EPSCs and the failure rates [91] at the perforant path synapses

should be determined and compared with the current required

for the initiation of dendritic spiking in young and old granule

cells.

3. Individual dendritic branches of dentate granule cells function

as a single integrative compartment. In vitro experiments using

two-photon imaging and glutamate uncaging [2,3,5] could be

used to test this prediction.

4. The dendritic branches of dentate granule cells are isolated

from each other - at least during training - by the low input

resistance of the perisomatic region. Simultaneous recording

from the soma and different branches [5] together with

perisomatic conductance injection [54] or detailed compart-

mental model paying attention to interneuronal firing rates and

anatomical connectivity could determine the degree of isolation

between the individual branches.

5. As the result of the local Hebbian learning rule, we predict that

the presynaptic entorhinal cells with overlapping firing project

to the same dendritic branches of the granule cells.

6. Different place fields of dentate granule cells are caused by

excitation through different dendritic branches. This prediction

could be tested in vivo using high resolution electrode arrays and

single-cell current source density analysis [86,92] or fiberoptic

system combined with fluorescent dyes [93].

Methods

Estimation of the Membrane Parameters for
Hippocampal Granule Cells

We used the data from [28] to estimate the passive membrane

parameters of the granule cells the DG (Table 1). First we

computed the membrane area of a single branch (Adend) falling into

the perforant path termination zone (the outer two third of the

dendritic tree):

Adend~
2

3

alddbp

N
~310 mm2, ð12Þ

where ld is the total length of the dendritic tree, db = 1.1 mm is the

average diameter of a single branch, N is the number of branches

and a = 1.9 is a correction factor for the membrane area of

dendritic spines.
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Similarly, the area of the somatic compartment (Asoma), assuming

a sphere with diameter ds:

Asoma~d2
s p~315 mm2: ð13Þ

The area of the cross section of a single branch is Ab~d2
b p
�

4, and

the length of the proximal third of the branches, that do not

receive input from the entorhinal cortex is lds = 50 mm. Finally, we

estimate the parameters in Eqs. 1–2:

Rs
m~Rm=Asoma~12:1 GV ð14Þ

Rd
m~Rm=Adend~12:3 GV ð15Þ

Ra~Rilds=Ab~102 MV ð16Þ

where Rm and Ri are the membrane resistance and the intracellular

resistivity, respectively. As the somatic and the dendritic

membrane area (and hence the resistance) were similar, we used

that Rm~Rs
m~Rd

m. The parameter R used in our calculations was

R = Ra/Rm0.01 for a passive granule cell in the DG. Note that due

to the synaptic conductances activated in vivo the membrane

resistances of functioning granule cells are certainly lower than its

in vitro estimates [59].

Estimation of the Synaptic Input
A single dentate granule cell receive synaptic input from nEC–

DG<2500–4000 entorhinal layer II cells distributed on N<25–40

branches, whereas a single branch receives M<100 synapses in the

rat’s hippocampus [28]. According to Amaral and Lavenex [71],

there are nDG<1.2 ? 106 granule cells in the rat’s DG, and

nEC<0.11 ? 106 projection cells in the layer II of the entorhinal

cortex. It is known, that a given location in the hippocampus may

receive inputs from more than 25% of the dorsomedial-to-

ventrolateral axis of the medial entorhinal cortex [94,95].

Therefore, while a single dendritic branch get its M<100 synaptic

inputs randomly from nearly 25000 entorhinal cortical neuron, we

assume that each synapse on a dendritic branch comes from

different entorhinal neurons.

By electrical recordings from different hippocampal regions one

can estimate the proportion of simultaneously active cells within a

reasonable time window. We call this number the sparseness of the

representation in the given area. Specifically, 1–5% of the granule

cells are active simultaneously in the DG [24,29], therefore we

used spDG = 0.05. The sparseness of the entorhinal input is

somewhat larger, spEC = 0.2 [27,80,96].

Experimental data provide a good estimate for the mean firing

rate of these neurons, however, they give the variance of the mean

across neurons, but not the variance in the firing rate of individual

cells. To estimate the variance in the firing rate of an individual

cell, we generated random spike trains based on the ISI histogram

on Figure 5 of [80]. The expected value and the variance of the

number of spikes in a 100 ms time bin (corresponding to one

period of the hippocampal theta rhythm) was mEC9 = 0.32 and

s2
EC’~0:4 and there was at most 4 spikes during 100 ms in the

case of an entorhinal excitatory cell. We scaled these values

relative to the maximal firing rate, so we had mEC = mEC9/4 = 0.08

and s2
EC~s2

EC’

�
16~0:025 characterizing the distribution of the

presynaptic firing uj. Possible differences in firing statistics across

different (medial-lateral or dorsal-ventral) regions in the EC and

across individual neurons are neglected here.

Next, we start with originally equal synaptic weights,

Vwij = w = 3 ? mEC. In this case, if we assume that the firing of

entorhinal neurons are independent and identically distributed, we

can approximate the total input to a branch with a Gaussian

distribution:

U~
XM
j~1

wuj~w
XM
j~1

uj~3mEC

XM
j~1

uj ,

p U½ �~G U j3Mm2
EC ,32m2

ECMs2
EC

� �
~G U jm,s2

� �
,

ð17Þ

where m~3Mm2
EC~1:92 and s~3mECsEC

ffiffiffiffiffiffi
M
p

~0:38. The

distribution of the total input U is shown on Figure 1C.

Synaptic Input after Learning
Learning alters the distribution of the total input Ui =Sjwijuj of

dendritic branches (Eq. 17) by modifying synaptic weights. From

Eq. 11 used to describe synaptic plasticity, we can see that synaptic

weights converge to a fixed point wij = uj whenever the activity of

the postsynaptic branch i is above threshold bd. In the stationary

state, the weight vector wj reflects a presynaptic firing pattern u. In

other words, the learned presynaptic firing pattern is stored in the

corresponding synaptic weights.

In order to stimulate initial plasticity in naive branches and

prevent learning in those branches that have already learned a

pattern, we initialized the synaptic weights to wij = w = 3mEC, which

is higher than their expected value at the fixed point (mEC). This

initialization ensured that the response (U) to unlearned inputs

decrease during the process of learning, and prevented interfer-

ence in branches that already have learned a specific pattern.

Indeed, synaptic plasticity is enhanced in newly generated granule

cells of the hippocampus compared with mature neurons already

integrated into functional circuits [36,64,97].

After learning we can approximate the distribution of the total

synaptic input U to a branch by the sum of two Gaussians

representing the total input in the case of learned (Gl ) and not

learned patterns (Gn), respectively:

p U½ �~plGl U jml ,s
2
l

� �
zpnGn U jmn,s2

n

� �
, ð18Þ

where pl (pn) is the probability that one of the branches receive a

Table 1. Membrane parameters of hippocampal granule
cells.

Parameter Description Value

N Number of branches 3263

M Num. of presynaptic terminals/branches 100

Rm Membrane resistance (kVcm2) 3862.3

Ri Intracellular resistivity (Vcm) 194624

ld Total length of dendritic tree (mm) 22646133

db diameter of branches: proximal, distal (mm) 1.5160.11,
0.7360.04

ds diameter of the soma (mm) 10

a Surface area (1000 mm2) 13.360.9

a The increase of the surface area by dendritic spines (%) 190

Electrophysiological data from Schmidt-Hieber et al. (2007) used to estimate the
parameters of the model.
doi:10.1371/journal.pcbi.1000500.t001
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learned (not learned) input, and ml and s2
l (mn and s2

n) are the mean

and the variance of the response to learned (not learned) inputs. If

we have a finite number (NS) of different inputs, and each branch

learns one of them, then

pn~
NS{1

NS

pl~
1

NS

: ð19Þ

Distribution of the total input to the dendritic branches before and

after learning is shown on Figure 3A. Parameters mn = 1, sn = 0.39,

ml = 5.6 and sl = 0.58 were estimated numerically based on the

reconstructed firing characteristics of entorhinal neurons. We

assumed that each branches learned one of the samples and the

probability that one of the branches receive its learned input (N/

NS) was the sparseness in the DG (spDG<0.05. Note, that the

distribution of Gl Uð Þ is the theoretical distribution of the

responses to learned inputs, from which each branch draw only

a few (perhaps one) sample because learning is very sparse.

We recalculated the two functions H(U) and K(U*) with the new

input distributions by replacing m and s with mn and sn in

Equations 9–10 and 27–28, and by changing the distribution of U

in Eq. 29 from Eq. 17 to Eq. 18. In these calculations, we

neglected the possibility that two (or more) branches may both get

their learned input at the same time. Finally, we determined the

firing threshold by solving the following integral to b (see Eq.

24–25):

p aswb½ �~
ð?

b

ð
p as,U

�½ �dU�das~spDG: ð20Þ

Criteria for Independent Firing
In the case of continuous variables we can write that

H(Ui) = H(U). The function H(U) has the form:

H Uð Þ~p aswbjU½ �~
ð?

b

p asjU½ �das: ð21Þ

The conditional probability p[as|U] has a form similar to Eq. 8,

except that we have only N21 random variables from the

Gaussian distribution of U (Eq. 17) with parameters mF and s2
F ,

therefore we can write that:

p as Uj½ �~G asj
N{1ð ÞmF zF Uð Þ

RzNz1
,

N{1ð Þs2
F

RzNz1ð Þ2

 !
: ð22Þ

We can compute the second function K(U*) as follows:

K U�ð Þ~p U�jaswb½ �~ p U�,aswb½ �
p aswb½ � ð23Þ

p aswb,U�½ �~p aswbjU�½ �p U�½ � ð24Þ

p aswbjU�½ �~
ð?

b

p asjU�½ �das, ð25Þ

where p[as|U*] is the conditional distribution of the somatic

activation as and the maximal dendritic input U*. The distribution

p[as|U*] is similar to the distribution of p[as] in Eq. 8 with two

important differences: First, we have only N21 random variables.

Second, we know that VU,U*, therefore the distribution of the

inputs to other branches is different from the Gaussian in Eq. 17.

Hence we can write, that

p asjU�½ �~G asj
N{1ð Þm�F zF (U�)

RzNz1
,

N{1ð Þs�F 2

RzNz1ð Þ2

 !
, ð26Þ

where m�F and s�F
2 are the conditional expectation and variance of

the distribution p[F(U)|U,U*]. We calculate m�F and s�F
2 by

integrating Equations 9–10 from 2‘ to U*:

m�F ~l U�ð Þ
ðU�

{?
p U½ �F Uð ÞdU~l U�ð Þ

ðU�

{?
G U jm,s2
� �

F Uð ÞdU , ð27Þ

s�F 2~l U�ð Þ
ðU�

{?
G U jm,s2
� �

F Uð Þ{mFð Þ2dU , ð28Þ

where l U�ð Þ~1
.ÐU�

{? p Uð ÞdU is a normalization factor. Finally

we calculate the last term of Eq. 24, the distribution of U* as

follows:

p U�½ �~ P Uð Þð ÞN
h i’

~
1

2
z

1

2
erf

U{mffiffiffi
2
p

s

� �� 	N
" #’

ð29Þ

where P(U) is the cumulative distribution function (CDF) of U and

[X]9 marks derivation. The intuition behind Equation 29 is that:

First, P(U) is the probability that a given input is smaller than U.

Second, P(U)N is the probability that all inputs are smaller than U,

also the (CDF) of U*. Third, its derivative [P(U)N]9 gives us the

probability density function (PDF) of U*. The PDF of U is a

Gaussian function, its CDF can be expressed with the Gauss error

function (erf{}).

Coupling Between Dendritic Subunits
To calculate the dependence of the dendritic activation on the

inputs, we first repeat Eq. 6:

ai~
RF G Uijm,s2

� �� �
zas

Rz1
: ð30Þ

Next, we substitute as in Equation 30 with Eq. 7:

ai~
RF G Uijm,s2

� �� �
z

PN

j~1
F Ujð Þ

RzNz1

Rz1
~

~
R

Rz1
F Uið Þz

F Uið Þz
P

j=i F Uj

� �
Rz1ð Þ RzNz1ð Þ

~F Uið Þ
R

Rz1
z

1

RzNz1ð Þ Rz1ð Þ

� 	
z

P
j=i F Uj

� �
Rz1ð Þ RzNz1ð Þ :

ð31Þ

The two terms of the sum in Eq. 31 are independent, because Ui is

independent from Ujs, therefore we can calculate the distribution

of ai by the convolution of two distributions (corresponding to the

two terms in the sum). The second term in Eq. 31 is the sum of

independent random variables and we approximate it with a

Gaussian (similarly as we did it for as previously, Eq. 8). The
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distribution of Ui is a Gaussian (Eq. 17), that we can transform into

the first term of Eq. 31 by a Jacobian factor [98]:

pV Vð Þ~pU Uð Þ dU

dV

����
����, ð32Þ

where V = F(U). We get the distribution p(ai|Ui) by substituting the

first term of Eq. 31 by a Dirac delta distribution. Similarly, we can

calculate p(aj|Ui) by first computing a conditional sum in the

second term (Uj+Sk?{i,j} Uk) as described by Eq. 22 and then

performing the convolution.

The R software environment [99] was used to analyze the data

and to prepare the figures.
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