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Abstract

The role of sensory systems is to provide an organism with information about its environment. Because sensory information
is noisy and insufficient to uniquely determine the environment, natural perceptual systems have to cope with systematic
uncertainty. The extent of that uncertainty is often crucial to the organism: for instance, in judging the potential threat in a
stimulus. Inducing uncertainty by using visual noise, we had human observers perform a task where they could improve
their performance by choosing the less uncertain among pairs of visual stimuli. Results show that observers had access to a
reliable measure of visual uncertainty in their decision-making, showing that subjective uncertainty in this case is connected
to objective uncertainty. Based on a Bayesian model of the task, we discuss plausible computational schemes for that ability.
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Introduction

Every single human action happens in a context of uncertainty,

being based on incomplete knowledge and undertaken despite

unpredictable consequences. When faced with uncertainty,

humans employ heuristics [1,2] and show characteristic biases in

their decision [3]. The neural structures involved in some of these

decisions are now being identified [4–6]. Before one can make

decisions that depend on uncertain information, the degree of

uncertainty must be evaluated. The basic question of how well

humans do at evaluating their own uncertainty remains largely

understudied.

Uncertainty is a familiar concept in cognitive science, in

particular thanks to Signal Detection Theory (SDT; Green and

Swets 1966). In a typical psychophysical task, an observer has to

detect small contrast increments near threshold. The uncertainty

in this task comes mostly from internal variability: because of

fluctuations in her internal representation of contrast, the observer

makes mistakes and is uncertain about the correctness of her

decisions. Unfortunately for the experimenter, this source of the

uncertainty is internal to the observer and therefore only indirectly

controllable.

Now consider another difficult perceptual task: listening to a

speaker among cocktail-party chatter. Here the difficulty depends

not so much on variability in the brain, but rather on interactions

between the different voice signals: the one emitted by the speaker

you aim to listen to, and the sound of other voices. Even with the

volume of the other voices staying the same over time, difficulty

will depend on the languages spoken, the gender of the speakers,

and other sources of confusion. More generally, background

chatter plays the role of noise, and difficulty will vary based on

how much signal and noise covary.

An analogous visual task can be obtained by adding visual noise

to a signal –random perturbations to the stimuli shown to the

observer. Using visual noise, we are in a position to manipulate the

objective uncertainty: objective uncertainty is inversely related to the

amount of task-relevant information available in the stimulus.

Concurrently, we can measure the perceived uncertainty of the

observer, the level of confidence she actually reports. We introduce

three experiments where we manipulate objective uncertainty and

study its relationship with perceived uncertainty.

In the first two experiments, observers were presented with pairs

of images of oriented objects embedded in high levels of noise, and

had to report the orientation of the image of their choice. Even

though the two images contained the same level of noise, the

particular noise structure made one image orientation more

certain than the other. We found that observers reliably chose the

more certain of the two images, thereby providing evidence of a

capacity to accurately evaluate objective uncertainty. We con-

firmed this in another experiment, in which we held the objective

uncertainty of one of two stimuli fixed while varying the other, and

asked observers to pick the less uncertain one. The greater the

difference in uncertainty was, the greater the chance that observers

picked the less uncertain stimulus, showing that uncertainty

discrimination behaves similarly to normal psychophysical tasks.

In a third experiment, we extend our results to a letter

discrimination task. We discuss plausible computational mecha-

nisms for achieving these results.

Results

In the first two experiments, visual uncertainty was introduced

in an orientation discrimination task by manipulating the amount

of pixel noise added to a visual template. There were only two

templates, which were always visible to the observers. The

templates were left and right oriented Gabor patches that

presented alternating dark and bright lines under a blurry circular

aperture (Figure 1). We embedded the templates in noise by

adding a random perturbation to the luminance value of each

pixel of the image, independently of the other pixels: the higher

the variance of the random perturbation, the more noise. For high

noise levels, one template can be mistaken for the other.
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A decision must be reached by evaluating which of the two

templates is the more probable hypothesis given the noisy stimulus.

The orientation task can be understood as a classification task

under noise, where stimuli correspond to items and the two

templates determine the two categories: our two categories are

simply defined as ‘‘stimuli generated by the left-tilted template’’,

and ‘‘stimuli generated by the right-tilted template’’. An ideal

Bayesian observer can be derived for this task, and we therefore

defined the objective uncertainty of a stimulus as the entropy of the

ideal observer’s posterior distribution over the two classes.

Stimuli and templates can be represented as vectors in a space

where dimensions correspond to the contrast of each pixel

(difference to background luminance). Let s be the stimulus, u
and v the templates (we use boldface notation for vectors). We

assume that the characteristics of the noise are known and that the

prior probabilities of the templates are equal. The posterior

probability of template u is written:

p(ujs)~
P
k

i~1
p(si; ui,s)

P
k

i~1
p(si; ui,s)z P

k

i~1
p(si; vi,s)

ð1Þ

Here i indexes the pixels from 1 to the total number k, and

p(si; ui,s) is the probability of observing value si for a Gaussian of

mean ui and standard deviation s.

An ideal observer in the discrimination task will respond by

choosing the most probable template. That decision function can

be written using the log-likelihood ratio

Lu(s)~(2s2){1
Xk

i~1

(si{vi)
2{(si{ui)

2
� �

! s{vj j2{ s{uj j2~2(u{v)ts ð2Þ

The latter equality comes from the fact that uk k~ vk k, i.e., the

Figure 1. Layout of the experiment. The two templates appeared on the left- and right-hand sides of the screen. Two test stimuli were displayed
simultaneously: they were computed from one of the two templates, to which noise was added. The two test stimuli had equal contrast, as illustrated here.
Observers selected first which stimuli they felt more confident making an orientation judgment for (task 1). They were then asked to make that judgment (task 2).
doi:10.1371/journal.pcbi.1000504.g001

Author Summary

Most work in vision science focuses on the question of
why we perceive what we do, and we now have many
models explaining what physical properties of a stimulus
make us see depth, colour, etc. Here we ask instead what
makes us feel confident in our visual perception: in the
context of a visual task, what are the physical properties of
the stimulus that will make us think we are doing the task
well? The mathematical framework of Bayesian statistics
provides an elegant way to frame the problem, by
assuming that the visual system is trying to estimate
physical properties of the world from incomplete, some-
times unreliable visual information. Objective uncertainty
will therefore depend on the quality of the information
available in the stimulus. In our experiments we compare
objective uncertainty—as computed using the Bayesian
framework—with subjective uncertainty, the confidence
observers report about their visual percepts. To this end,
we use a visual task with well-defined statistical properties,
discrimination under noise. We report a surprising degree
of agreement between objective and subjective uncer-
tainty, and discuss possible computational models that
could explain this ability of the visual system.

Objective Uncertainty in the Visual System
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templates have equal energy. The decision function simplifies to

sign((u{v)ts).

What is uncertainty for our ideal observer? A very general

measure of uncertainty is given by the information entropy of a

probability distribution representing a state of knowledge [7]. Here

the posterior distribution is binomial so the entropy can be written as

H(p)~{p log (p){(1{p) log (1{p) ð3Þ

When the natural logarithm is used, the entropy is measured in

natural bits or nats [8] (since some of the entropy values in

experiment 1 were very small, we used the log-entropy for

computational convenience).We show in Text S1 that the entropy

is monotonically related to the magnitude of the decision variable

defined above, and that it corresponds geometrically to Euclidean

distance to the decision boundary. Discrimination in white noise

therefore provides a visual task in which objective uncertainty can be

easily measured and manipulated, and compared to perceived

uncertainty.

To measure perceived uncertainty we used comparative

judgements. On every trial, observers saw a pair of noisy stimuli,

one at the top of the screen, and one at the bottom. Of the two

stimuli presented, they only had to make a discrimination

judgement about one. In this setup, if observers want to maximize

their discrimination performance, the best strategy is to choose the

more certain of the two stimuli. This is precisely what observers

were instructed to do: the task consisted in choosing, first, the

stimulus for which they felt the more confident, and only then to

make a discrimination judgment on the chosen stimulus (Figure 1).

Note that choosing the better of two stimuli is independent of

determining their nature (what template they are generated from).

In the neurological condition of blindsight [9], patients are able to

discriminate the visual properties of stimuli in a forced choice task

but they largely underestimate their performance in this task.

Observers’ performance in the choice task will thus be a measure

of their ability to access the objective uncertainty of each stimulus

and to appropriately compare these uncertainties.

Experiment 1
To determine whether observers did effectively pick the less

uncertain stimuli, we contrasted two conditions. In the so-called

True Choice (TC) condition, the two stimuli presented resulted

from independent draws from the same noise distribution. Note

that two stimuli with the same average noise level, as is the case

here, can still vary in the objective uncertainty they induce,

because different realizations of the same noise distribution can

make the stimulus more or less ambiguous. In that case there is a

benefit to be had in choosing the less uncertain of the two: this

gives observers a higher chance of responding correctly than if

only one stimulus is available.

In the other condition, the False Choice (FC) condition, we

removed that benefit: the first stimulus was computed the normal

way, but the second was obtained by flipping the top one either

once or twice (Figure 2). We took advantage of the underlying

symmetry of our templates: flipping the first template left-to-right

yields the second, and flipping the second bottom-top yields back

the first. By applying these transformations to a noisy version of

our template, we were able to create two stimuli that differed pixel-

to-pixel, but were equivalent from the point of view of the

classification task and thus carried equal objective uncertainty in that

context. In the False Choice case, there is therefore nothing to be

gained by choosing one rather than the other.

At no point in the experiment were observers aware of the

existence of the two conditions. The two stimuli presented always

Figure 2. False Choice stimuli. The left-tilted can be flipped left-to-right to yield the right-tilted template. Another flip, this time up-down, yields
back the left-tilted template. In the False Choice condition, we generated one of the stimuli at random, and used a left/right flip or a left/right flip
followed by an up/down flip to produce a stimulus with equal uncertainty but different visual aspect. We superpose the shape of a R on the images
to illustrate the transformations.
doi:10.1371/journal.pcbi.1000504.g002

Objective Uncertainty in the Visual System
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had equal contrast, preventing observers from using a heuristic of

selecting the lower-contrast stimulus as the most certain. The False

Choice condition therefore provides the performance baseline that

will be used to determine whether or not observers are able to

successfully compare objective uncertainties.

We measured observers’ performance, defined as proportion of

correct classifications, in the two conditions across five different

signal-to-noise ratios, chosen to span a range of performance

between approximately 60 to 85%. Both the signal-to-noise ratio

and the condition each trial belonged to were randomized. If

observers are able to make accurate judgments of objective

uncertainty, then we expect that measured performance will be

higher in the TC than in the FC condition.

As expected given the nature of the task, mean performance for

all observers grew with increased signal-to-noise ratio. More

interestingly, however, mean performance is higher in the TC

condition than in the FC condition, which translates into lower

performance thresholds in the TC condition (Figure 3 a and b). To

establish that the effect is genuine we used a model comparison

technique. We used a likelihood-ratio test to evaluate the effect of

True Choice versus False Choice (details in Text S1). Using two

psychometric functions, one per condition, rather than one

psychometric function for both conditions provides a significantly

better fit to performance data (Nested hypotheses test [10]:

p = 0.0004, x2~54:6, d.f. = 24).

It appears then that observers were able to take advantage of the

True Choice condition, by choosing the less uncertain stimulus a

majority of the time. It seems reasonable that, should the ability to

pick the less uncertain stimulus be present, the probability of

choosing the correct stimulus ought to be an increasing function of

the magnitude of the difference: the more the two stimuli differ in

their uncertainty, the more likely observers are to choose the right

one. We evaluate that by regressing observers’ choices of stimuli

on the difference of log-entropies (Text S1). We found a highly

significant effect (details in Text S1) of the difference in uncertainty

on the probability of choosing the bottom stimulus: in other words,

the more uncertain the bottom stimulus compared to the top one,

the less likely observers were to choose the bottom one.

Experiment 2
This last result hints at a more general property: in all

psychophysical discrimination tasks, the larger the difference

between two stimuli, the more reliable discrimination is. For

example, when asked to compare the length of two lines, an

observer’s responses are likely to be better predictable when the

two lines differ by 20 cm rather than 1. In a second experiment,

we sought to confirm our findings by checking that discrimination

of uncertainty behaves in the same way. The task was identical to

that of experiment 1, but instead of introducing a False Choice

condition, we manipulated the stimuli such that one – the standard

– had always the same level of uncertainty and the other – the test

– had lower uncertainty.

We show in the supplementary material that generating random

stimuli with a controlled level of uncertainty can be achieved using

a simple orthogonal projection. Mathematically, the space of all

possible stimuli of the kind used here can be described in terms of

the contrast of individual pixels by having one dimension (one axis)

for each pixel. Then the two templates are two points u,v in that

space, and stimuli obtained by adding white noise to a template

are other points, forming Gaussian point clouds around the

templates. To decide whether a point is more likely to belong to

the left-tilted template rather than the right-tilted one, a simple

geometrical rule describes the ideal strategy.

Imagine drawing a line between u and v, as in figure 4, where

we illustrate the problem for stimuli with only 2 pixels. Now draw

the plane (in higher dimensions; the hyperplane) that is orthogonal

to the line and cuts through it at the mid-point. Then any stimuli

falling on the same side of the plane as u we will call ‘‘left-tilted’’

and any falling on the side of v we will call ‘‘right-tilted’’: the plane

represents the decision boundary. Stimuli falling right on the

hyperplane are completely ambiguous: both categories are equally

likely. In fact, it is possible to show that the uncertainty of a

Figure 3. Results - performance. (a). Results for one observer. Each point represents measured discrimination performance (probability correct)
for a given signal-to-noise ratio and condition. Two psychometric functions, one per condition, are fitted to measure performance. The psychometric
functions are distinct, indicating that performance was higher in the TC condition. (b). Aggregated results. 75% thresholds are estimated from
performance data separately for the two conditions. A higher threshold is indicative of lower performance. Error bars are standard errors obtained
from a parametric bootstrap [32].
doi:10.1371/journal.pcbi.1000504.g003

Objective Uncertainty in the Visual System
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stimulus is given by its (unsigned) distance to the decision

boundary. Then the set of stimuli of fixed uncertainty is the set

of points that are of the same distance to the decision boundary,

and that set is simply the union of two parallel planes.

We therefore generated our stimuli by constraining them to lie

on a plane of distance d to the decision boundary. Standard stimuli

were always on a plane of distance dstandard and test simuli were on a

plane of distance dtest. The difference between dstandard and dtest was

varied parametrically between 4 different levels: we expected the

observers to more reliably choose the test stimulus as the difference

increased.

The results appear in figure 5: the larger the difference in

uncertainty between standard and test, the more likely observers

were to choose the test stimulus. We adapted the noise level to

each observer’s performance, so the distances used varied between

observers. We normalise them with respect to the expected

distribution of the distance to the hyperplane for the noise level

chosen (see Text S1). The effect of the difference is significant for

every observer as modeled by logistic regression of stimulus choice

on difference in uncertainty (t-test for Generalised Linear Models

coefficients, all p-values at 1023 or below). This confirms that

uncertainty behaves in that respect just like other psychophysical

quantities: the more dissimilar two stimuli are on that scale, the

more predictable observers’ judgments are.

Experiment 3
In experiments 1 and 2, the underlying visual task is orientation

discrimination under noise, with templates identical in every way

except for one basic attribute – their orientation. To check that

our results were sufficiently general, we ran a variant of

experiment 2 using a letter discrimination task. Observers had to

discriminate between the letters ‘T’ and ‘X’ (shown on figure 5), a

pair chosen because the corresponding characters correlate very

little. Except for the nature of the templates, experiment 3 was

identical to experiment 2 and we replicated its results (figure 5):

observers were more likely to pick the less uncertain stimulus when

the difference in uncertainty was larger. Our results thus

generalize to more sophisticated visual tasks.

Computational models
Our results imply that observers had access to some estimate of

the uncertainty in the orientation task. How is that estimate

computed? Do observers have effective access to a probability

distribution over perceptual hypotheses, from which they can

estimate their own uncertainty? Or do they rely on more limited

information? To investigate that question we evaluated two

distinct families of models that compute uncertainties globally

over the full distribution for the first, and locally for the second.

We begin by defining the following quantities: let r and s be two

stimuli, represented as vectors of pixel luminances. Call u and v
the left-tilted and right-tilted templates. Then rtu and rtv are

measures of how ‘‘different’’ r is to u and v, respectively. If r is

more like u than v (i.e., rtuwrtv), then it is more likely to have

been generated from u, and hence the observer should respond

‘‘left-tilted’’ for stimulus r.

In comparing the uncertainty between two stimuli - choosing

between r and s - the following procedure is exactly equivalent to

the strategy of the ‘‘ideal observer’’ (i.e., the strategy that

maximizes performance, see Text S1). Compute dabs(r,s) as

dabs(r,s)~ rtu-rtv
�� ��{ stu-stv

�� �� ð4Þ

Figure 4. The orientation discrimination problem in stimulus space. The templates u and v are points in a space with dimensions
corresponding to pixel luminances. Here we depict the problem for two pixels only. The optimal decision boundary – a plane - is represented by the
blue line. Stimuli are obtained by starting from one of the two templates and adding a noise vector. They correspond to points in the space lying
around u and v. The response is determined by which side of the plane they fall on. The closer they are from the decision boundary, the higher the
chance that they could have been generated equally well from either template, and therefore the higher the uncertainty. Here, A,B and C are all
points of equal uncertainty, whereas D has higher uncertainty. The uncertainty is given by the entropy of the posterior distribution, see Methods.
doi:10.1371/journal.pcbi.1000504.g004

Objective Uncertainty in the Visual System
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and choose r if dabs(r,s)w0, r otherwise. This corresponds to

evaluating uncertainty based on the full posterior distribution (see

equation 1): uncertainty is low if one hypothesis corresponds to the

data much better than the other, and high otherwise. We call this

model the difference of responses model.

Another strategy, perhaps simpler for the observer, is to

evaluate uncertainty based only on how well the best hypothesis

fits the data. We call this the maximum response model. The same

measures of distances are computed as in the first model, but only

the maximum is retained for each stimulus. The observer then

compares the two maxima

dmax(r,s)~ max (rtu,rtv){ max (stu,stv) ð5Þ

Put into perceptual terms, this corresponds to a strategy of picking

the stimulus that seems to have a more salient dominant

orientation, when the templates were Gabor patches, or the

stimulus that was more ‘‘letter-like’’, when the templates were

characters. In statistical terms this is equivalent to evaluating

uncertainty based on the magnitude of the likelihood of the

maximum-likelihood hypothesis (Methods), a strategy that is sub-

optimal for our task but still gives an improvement over choosing

between the two stimuli at random.

Both hypotheses are realistic from a neural-computation point

of view. Computing stu and stv is nothing more than a linear

filtering of the neural input: although some important non-

linearities have been identified in visual orientation discrimination,

linear filtering remains the basic operation in all models [11,12].

Computing the decision variables, whether dabs and dmax, is a

simple non-linear step readily implementable in a neural system.

To test those models we make the same assumption we did for

regressing choice on difference in log-entropy: the higher dabs and

dmax, the more likely observers are to choose the bottom stimulus.

As above, we compute the decision variables for every trial and we

fit a linear binomial regression model to the responses (Text S1).

Our models give for each trial a choice probability. On figure 6

we plot the percentage prediction correct (i.e., the proportion of

trials where the model predicted with p..5 the choice the observer

actually made). The two models have the same number of degrees

of freedom, and can be directly compared. Both predict the data

significantly better than chance, but the maximum response has a

significant lead. Our data therefore point to a likelihood-based

evaluation of visual uncertainty, rather than one based on the full

posterior distribution.

Discussion

In summary, we demonstrate here that humans display second-

degree knowledge of a visual discrimination task: not only are they

able to detect what signal is in the noise (first-degree knowledge),

but also to estimate how uncertain that knowledge is, at least

comparatively. Why humans should be so well calibrated to what

is in essence a laboratory task rather than a natural one is a

question that deserves attention. It is possible that they learn the

statistical properties of the task over time, although we find no

conclusive evidence for that in our data (see Text S1).

Previous research lacked an objective standard to compare

subjective judgements to, and relied on ratings [13]. Various biases

have been reported in human confidence judgments, including

over- and under-confidence, global/local inconsistencies, as well as

inter-cultural differences [14–17]. The forced-choice method we

outlined here allows one to test human observers’ objective

capacity to detect differences in uncertainty contained in a task,

and to evaluate possible computational mechanisms much more

rigorously. It is a potentially important methodology in the study

of discrepancies between visual performance and confidence, a

topic many believe to be connected to the wider issue of awareness

[18,19], but potentially also in investigations of metacognition in

non-human species [20,21].

Our work is in tune with a variety of current research that tries

to understand visual function as a form of Bayesian inference [22–

25]. These theories posit that the visual system explicitly encodes

probability distributions over perceptual hypotheses. In that

context, it makes intuitive sense that the system should be able

to measure the uncertainty of such a distribution: comparing two

uncertainties as we do here is rarely needed as such, but comes

into play in more complicated decisions. Just as a low feeling of

confidence in an item to be memorized is a clue that further study

is needed [26], high visual uncertainty signals that more

Figure 5. Results of experiment 2 and 3. In these two experiments, the test and the standard stimuli varied in uncertainty. We plot the
proportion of times the test stimulus was chosen as a function of the difference between the uncertainty of the standard and the uncertainty of the
test. The dots represent individual results, the solid line is the average over observers. Experiment 2 used orientation discrimination, experiment 3
used letter discrimination. The templates are shown on top of each graph. The levels of uncertainty are standardised across observers, see Text S1.
doi:10.1371/journal.pcbi.1000504.g005

Objective Uncertainty in the Visual System
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information is needed, making precise evaluation of visual

uncertainty an essential aspect of exploration mechanisms [27].

The results given here agree with other studies that have found

unexpectedly accurate decision-making in perceptual [28,29] and

motor systems [30,31]. These results imply that uncertainty is dealt

with at an implicit level: unlike them, we require observers to make

explicit comparisons between levels of uncertainty. The observers

who took part in our experiment nevertheless found the task quite

intuitive: indeed, we often make comparative judgments of visual

uncertainty ‘‘in the wild’’, as when we judge if we see better from

one vantage point than another.

Generally, we expect that confidence measures have the

potential to play a larger role in computational investigations of

perceptual decision-making. The evaluation of uncertainty is a

necessary first step in any statistical decision-making system, and

biases and approximations in evaluating uncertainty will cause

sub-optimal decisions. A systematic study of the evaluation of

uncertainty in the visual system will help uncover the shortcuts

taken by the brain in making perceptual decisions.

Our method can be generalized to other noise models, other

sensory modalities, and other tasks. But showing that fine-grained

discrimination of uncertainty can be done is of course not an end

in itself: uncovering how that essential operation is achieved in the

brain is a natural next step.

Methods

Additional and more complete methods can be found in Text S1.

Ethics statement
This study was conducted according to French guidelines on

research involving human participants. All participants gave

informed consent.

Experiment 1
Stimuli. The templates used were Gabor patches, with a

standard deviation of 1.4. Observers viewed the stimuli from a

distance of 57 cm. Uncorrelated (white) Gaussian noise was added

to the templates to produce the stimuli.

Observers. 12 observers took part in the first experiment. All

observers had normal or corrected-to-normal vision and gave

informed consent.

Experimental setup. General. Observers were familiarised

with the task with a 20-trial run of the experiment, during which

the experimenter was present. They completed a total of 1000

trials over the course of two sessions. We varied the signal-to-noise

ratio of the stimuli randomly, trial by trial. Feedback on the

orientation task was provided on every trial.

False Choice and True Choice conditions. On each trial, a condition

was chosen pseudo-randomly. In the True Choice condition, the

two stimuli were generated independently from the same noise

distribution. This was done to ensure that the two images had

equal contrast, and that observers could not use that clue to

discriminate between less certain and more certain stimuli. In the

False Choice condition, the first stimulus was computed as in the

True Choice condition, but the second was obtained by flipping

the first either left-to-right or left-to-right followed by up-down.

This made it possible to have two stimuli that were different pixel-

to-pixel, and looked different to the observer, but contained the

same amount of information (i.e., had the same entropy).

Experiment 2
The experimental method was the same as in experiment one,

unless indicated otherwise.

Stimuli. The templates used were Gabor patches, presented

in a square window subtending 5 degrees of visual angle. The

stimuli were generated by adding uncorrelated noise, then

Figure 6. Proportion of correct predictions for three models of choice. The maximum of response and absolute difference models are
presented in the text. Observers presented a bias in their choice of stimuli (most of them choosing the top one with a proportion higher than
chance), so we plot the proportion correct of a model that predicts observers always choosing the stimulus to which they are biased (Bias only, see
Methods).
doi:10.1371/journal.pcbi.1000504.g006

Objective Uncertainty in the Visual System
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projecting onto an equal-uncertainty hyperplane as described in

Text S1.

Observers. 8 observers took part in the second experiment,

including the first author. All observers had normal or corrected-

to-normal vision and gave informed consent.

Experimental setup. Observers were familiarised with the

task with a 10-trial run of the experiment, during which the

experimenter was present. Observers then completed a total of

500 trials in one session. The difference in uncertainty between the

test and the standard stimuli was chosen at random on every trial,

between four different levels (see Text S1). Feedback on the

orientation task was provided on every trial.

Experiment 3
The experimental method was the same as in experiment 2,

unless indicated otherwise.

Stimuli. The templates used were a T and a X, rendered in a

sans-serif font. The templates are shown on figure 5. The contrast

of the templates was adjusted so that they had equal energy.

Observers. 4 observers took part in the third experiment,

including the first author. All observers had normal or corrected-

to-normal vision and gave informed consent.

Experimental setup. Observers were familiarised with the

task with a 10-trial run of the experiment, during which the

experimenter was present. Observers then completed a total of

500 trials in one session. The difference in uncertainty between the

test and the standard stimuli was chosen at random on every trial,

between four different levels (see Text S1). Feedback on the

orientation task was provided on every trial.

Supporting Information

Text S1 Supporting Information.

Found at: doi:10.1371/journal.pcbi.1000504.s001 (1.21 MB

DOC)
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