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Abstract

High throughput measurement of gene expression at single-cell resolution, combined with systematic perturbation of
environmental or cellular variables, provides information that can be used to generate novel insight into the properties of
gene regulatory networks by linking cellular responses to external parameters. In dynamical systems theory, this information
is the subject of bifurcation analysis, which establishes how system-level behaviour changes as a function of parameter
values within a given deterministic mathematical model. Since cellular networks are inherently noisy, we generalize the
traditional bifurcation diagram of deterministic systems theory to stochastic dynamical systems. We demonstrate how
statistical methods for density estimation, in particular, mixture density and conditional mixture density estimators, can be
employed to establish empirical bifurcation diagrams describing the bistable genetic switch network controlling galactose
utilization in yeast Saccharomyces cerevisiae. These approaches allow us to make novel qualitative and quantitative
observations about the switching behavior of the galactose network, and provide a framework that might be useful to
extract information needed for the development of quantitative network models.
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Introduction

One of the primary goals of systems biology is to uncover the

dynamics of cellular networks. Sometimes, this has meant

collecting time-series data and applying tools for time-series

analysis such as Fourier methods to identify periodically expressed

genes [1–3] or temporal clustering to identify different dynamic

‘‘modes’’ [4–6]. In other cases, it has meant the construction of

explicit state-based dynamical models, based either on qualitative

expectations of system behavior [7–10] or based more directly on

quantitative experimental data [11,12]. Another common goal has

been to characterize the steady-state behavior of the network,

which is of particular interest if the system exhibits multistability

[13–15]. In these cases, the steady-states, along with their basins of

attraction, have been likened to distinct cell types [16–18], and

thus define the repertoire of ‘‘behaviors’’ available to the cell.

Mathematically, the analysis of steady states falls into the domain

of bifurcation theory, which addresses the existence, number and

stability of fixed points or limit cycles/attractors of dynamical

systems and how these change as a function of system parameters

or inputs [19]. Usually, this analysis is performed on deterministic

mathematical models such as differential equations or difference

equations.

Here, we are concerned with the experimental and computa-

tional quantification of bifurcation-like behavior in stochastic

genetic switches. There is considerable evidence that signalling

networks in a population of genetically-identical cells exhibit large

cell-to-cell variability in their output, despite operating in a

homogeneous external environment (see e.g., [20,21]). In some

cases, inherent fluctuations in the internal state of the cells leads to

distinguishable subpopulations, even when cells are genetically

identical and experience a homogenous environment. For exam-

ple, a ubiquitous network motif is the bistable genetic switch, with

output variability distributed about high and low states dependent

upon the level of an external input signal [13,22–25]. Accurate

estimates of bifurcation structure from noisy experimental can

provide important qualitative, and in some cases quantitative,

information about system behavior, guide model development and

parameter estimation efforts, or help to discriminate among

competing hypotheses regarding network architectures. For

example, recent work has demonstated that the statistics of the

fluctuations about the steady-states provides significant constraints

on kinetic parameter estimation [26].

Two ingredients are necessary for empirical analysis of the

bifurcation behavior of a cellular network. One is single-cell

measurements of one or more cellular variables, such as gene

expression. Technologies such as microarrays, SAGE or quanti-

tative mass spectrometry, which operate on collections of cells or

whole tissues, obscure potential heterogeneity in the sample. They

do not discriminate, for example, between a 100% increase in
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expression of a gene, and a 200% increase in its expression in 50%

of the cells. With technologies such as fluorescent cell imaging and

flow cytometry, however, the state of each cell can be ascertained.

As a result, one can determine whether the cell population is

homogenous or if it comprises a set of subpopulations—each

undergoing different dynamical behaviors corresponding to

different growth strategies, differentiation endpoints, etc. The

other necessary ingredient is a method for experimental mani-

pulation of some system parameter(s) or environmental condi-

tion(s), in order to study how subpopulations change under varying

conditions. This may mean changing the concentration of ligands

or nutrients in the cellular environment or artificially manipulating

the activity of regulatory factors inside individual cells. For

example, Ozbudak et al. [13] recently used single-cell fluorescence

microscopy to establish an empirical map of the two-dimensional

bifurcation diagram for the lactose utilization network in Eschericia

coli as a function of the systematic variation of two environmental

parameters. Moreover, targeted disruption of feedback loops

within the galactose utilization network of Saccharomyces cerevisiae

has provided key insights into the control of cell-cell variability in

gene expression and mechanisms underlying the stochastic

switching between distinct epigenetic expression states [25,27].

Increased use of these techniques demands the establishment of

methods for analyzing the generated data in a statistically robust

and computationally efficient manner.

The organization of this paper is as follows. First, we discuss

traditional bifurcation analysis in greater detail, introducing in

particular saddle-node bifurcations, a type of bifurcation widely

associated with the dynamics of gene regulatory switches. We

then describe the necessity of generalizing the notion of

bifurcation behavior to account for the inherent noise (stochas-

ticity) in cellular networks. Next, we present the data that

motivated our study—single-cell flow cytometry data measuring

activity in the yeast galactose utilization network over a range of

extracellular galactose concentrations. We then report on two

broad approaches to analyzing this data and extracting estimates

of bifurcation structure, namely, mixture density modeling and

conditional mixture density modeling. We evaluate the relative

strengths of these approaches, and describe a number of novel

qualitative and quantitative observations about switching in the

galactose network.

Results

Stochastic bifurcation structure
Bifurcation analysis is a branch of dynamical systems theory

concerned with steady-state or asymptotic behaviors of a

dynamical system [19]. Typically, bifurcation analysis is applied

to a deterministic dynamical model, such as a system of difference

equations or differential equations. To give a concrete example

inspired by the data presented and analyzed later in this paper,

imagine a situation where a single gene is activated by an input

signal A, representing, for example, the activity of transcription

factor protein. Let P denote the gene’s protein product. Suppose

that the gene is an auto-activator: the protein product acts as a

transcription factor to upregulate its own expression. Following

standard modeling approaches (e.g. [28]) we describe the time-

varying behaviour of the protein abundance by the differential

equation

d

dt
P(t)~c0zc1

A2(t)

c2zA2(t)

P2(t)

c3zP2(t)
{c4P(t), ð1Þ

where the parameter c0 corresponds to a basal level of protein

production, c1 is the maximal additional production attributable to

regulation, c2 and c3 characterize the effects of the activators, and

c4 indicates the rate of protein degradation or dilution due to cell

growth.

Figure 1A is a bifurcation diagram for this system, showing the

steady state values of P as a function of the input A, which in this

context is called the bifurcation parameter. Intuitively, if levels of

A are low, then little P is produced and the system reaches a

steady state at a low level of P. Conversely, if A is highly abundant,

then a great deal of P is produced, leading to a high steady state.

Most interestingly, when A lies in and intermediate range, three

steady states coexist. Intermediate levels of A and a large initial

amount of P will stimulate sufficient production to maintain P at a

high concentration. However, if initially the level of P is low,

production is not maintained, and the system reaches a low steady

state. There is also a third, unstable steady state between the low

and high steady states. The values of A at which the number of

steady states changes, i.e., the turns of the ‘S’-shaped curve in

Figure 1, are called bifurcation points and correspond in a

deterministic system to the critical values of A where a small

change in this parameter may cause the system to transition

between states of low and high levels of P.

In contrast with deterministic models, real cellular networks can

be significantly noisy, with system variables fluctuating over time

for a variety of reasons, including, for example, fluctuations in

biochemical reaction rates, random partitioning of cellular content

at cell division, and variation in cell size and cell age (see e.g.,

[21]). Thus, if one were to observe multiple instances of a bistable

system—say, a culture of genetically identical cells experiencing a

homogeneous medium—one would not expect the experimental

measurements to agree with the predictions of a deterministic

model, even after the culture has attained a steady behaviour [29].

Noticeably, stochastic fluctuations will constantly push individual

cells on excursions away from a stable expression state, causing a

broadening of the population distribution around this state. The

mean of the population distribution will reflect the steady state

expression only when these excursions are symmetric, and the

mode of the distribution, which corresponds to the state where the

system on average spends most time, may be the better surrogate

of deterministic steady states in a stochastic dynamical system

(e.g., [30]).

Author Summary

Decades ago, Waddington, and later Kauffman, likened the
dynamics of a differentiating cell to a marble rolling
downhill on bumpy terrain—the epigenetic landscape. In
this metaphor, the valleys of the landscape represent the
paths that cells can follow towards a stable cell type, and
the fate of the cell is determined by the constant
modulation of the epigenetic landscape by internal and
external signals. With new technologies for measuring
single-cell gene expression, it is increasingly feasible to
map out these valleys and how external variables influence
cellular responses. Moreover, it is possible to quantify
population level effects, such as what fraction of a
population of cells arrives at one valley or another, and
variability at the cellular level, such as how individual cells
bounce around within, and possibly between, valleys due
to the stochasticity of cellular biochemistry. In this paper,
we discuss which characteristics of the epigenetic land-
scape can readily be extracted from single-cell gene
expression data, and describe computational methods
for doing so.

Estimating Stochastic Bifurcation Structure
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In a bistable system, fluctuations can induce stochastic tran-

sitions between the two expression states such that some cells are

expressing at low level while others express at high levels. The

result is the emergence of a bimodal population distribution and

subpopulations with distinct expression characteristics. Figure 1B

depicts what the steady state distribution for P might look like as a

function of A, assuming the stochastic system would show a

lognormal distribution for P about the deterministic steady states.

(For a graph of real data from that galactose network, see Figure 2.)

In this case, the time-invariant steady state distribution of the

system is reached when the probability that a cell will switch from

the low to the high expression state is the same as that associated

with a transition from the high to the low expression state. The

time it takes for the system relax to steady state, which is set by the

kinetic rate parameters and the level of noise in the system, can

range from the order of seconds to several tens of cell generations

[31]. It is also noted that very rapid transitions between expression

states may result, at the population level, in a persistent

subpopulation that is not associated with a steady state in the

deterministic model, and that noise, under certain conditions, may

shift the location of bifurcation points or induce new bifurcations

(see e.g. [32]).

How can we capture the bifurcation behavior of a stochastic

dynamical system? Suppose that A represents the bifurcation

parameter (e.g., an externally controlled parameter or variable), and

Y represents an observed variable of the system, such as the protein

abundance. Suppose that for any value of A, and under a specified

set of experimental conditions, we observe a population of cells with

values of Y following some distribution P(Y DA). We propose that

the stochastic bifurcation structure of the system should specify four

pieces of information as a function of the parameter A:

1. The number of distinguishable subpopulations

2. Some notion of the ‘‘location’’ of those subpopulations, in

terms of the observable variable Y

3. Some notion of the variability in Y within each subpopulation

4. The fractions of the whole population that are represented by

each subpopulation

This is not a formal definition of stochastic bifurcation structure;

these are principles, which might be formalized in a number of

different ways. For example, as mentioned above, the modes of the

steady state distribution of a stochastic dynamical system have

previously been proposed as analogs to the steady states of a

deterministic model. Thus, one might use the modes of the

distribution P(Y DA) to determine the number and location of

subpopulations, satisfying the first two parts of the definition above.

In particular, one could use bimodality as a defining feature of

bistability in a stochastic switching system and associate bifurcation

points with parameter values A where the population distributions

change from unimodal to bimodal. In many cases, this may work

well, although below we will show some reason to question the use of

modes as defining of the number of subpopulations.

If one can assign every cell to a subpopulation, then the variance

of Y within each subpopulation and the relative sizes of the

subpopulations provide natural answers to the third and fourth

parts of the definition above. As with the locations of the modes,

these features of the stochastic bifurcation structure may be related

to properties of a deterministic model. For example, the degree of

variation around a mode, or the fraction of time the system spends

near the mode, are related to the degree of stability of the state in

the deterministic model [32]. Below, we use the formalism of

mixture models to instantiate these four principles of stochastic

bifurcation structure. First, however, we present our experimental

data on the galactose network.

The galactose utilization network in S. cerevisiae
Our thoughts on stochastic bifurcation structure and methods to

estimate it were motivated, indeed necessitated, by data we collected

on activity in the galactose utilization network in S. cerevisiae. The

network includes genes for the import and metabolism of galactose

as well as various regulatory genes [33,34], and is known to behave

as a bistable switching network. For a range of external galactose

concentrations, cells stochastically switch between induced and non-

induced states [25]. To assay this behavior, a standard laboratory

strain was augmented with a gene encoding a fluorescent protein

under the control of the promoter region normally regulating the

Figure 1. Examples of bifurcation behavior. (A) Bifurcation diagram of the system in Equation 1, an idealized model of a gene activated by
signal A as well as by its own protein product P, with parameters c0~0:1, c1~10, c2~c3~c4~1. The three colored curves identify low, high, and

unstable steady states for P (i.e., values for which
dP

dt
~0), as a function of the activating input A. Black arrows show the direction of change of P,

assuming A constant. (B) With noise in the dynamics, individual cells would fluctuate in the vicinity of the steady states, leading to some overall
distribution for P over time or across cells.
doi:10.1371/journal.pcbi.1000699.g001

Estimating Stochastic Bifurcation Structure
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transcription of the endogenous Gal10 gene (see Materials and

Methods). Gal10 is a general indicator of activation of the network,

hence the fluorescent reporter should be expressed when and only

when the native network is itself active. Cells were cultured for

22 hours in 17 different constant concentrations of galactose from

two different initial conditions—pregrowth in the absence of

galactose to establish a non-induced initial state or pregrowth in

the presence of galactose at high concentration to establish an initial

state where all cells are induced. The activity of the network in

individual cells was quantified by flow cytometry to measure the

intensity of the fluorescence emitted by the expressed reporter gene.

Four biological replicates were made of every experiment. The

collected data comprises counts of how many cells were detected in

each of 1024 fluorescence channels, which are logarithmically

related to real fluorescence intensity and have a dynamical range of

four orders of magnitude (i.e., channel 1024 represents 10,000 times

the intensity of channel 1).

Figure 2 displays the data, which is broadly consistent with

previous experiments [25]. At low galactose levels, all cells show

low network activity. At higher galactose concentrations, a highly

active subpopulation emerges, and at yet higher levels, the highly

active subpopulation dominates and the low-activity subpopula-

tion disappears. While these overall trends in the data are visually

clear, the challenges in analyzing the data quantitatively include

robustly determining the locations and sizes of the subpopulations,

especially when one is much smaller than the other, dealing with

cells not clearly attributable to any one subpopulation, and

separating cell-to-cell variability from replicate-to-replicate vari-

ability. Ideally, these should be done in a statistically robust,

computationally simple, and objective manner.

Estimates of stochastic bifurcation structure of the
galactose network

Mixture models and conditional mixture models. A

natural approach to modeling multi-modal data is to employ

mixture distributions. We model data from each biological replicate

separately, in order to avoid conflating replicate-to-replicate variation

with cell-to-cell variation within a replicate. Consider a replicate, r,

and a galactose concentration, g. A mixture distribution expresses the

probability that a particular cell is detected in fluorescence channel Y
in terms of J[f1,2,3, . . .g component distributions as

Prg(Y )~
XJ

j~1

prgjPrgj(Y ): ð2Þ

Here, Prgj(Y ), the jth component in the mixture, is typically

some elementary probability density, such as a normal, lognormal,

Figure 2. Fluorescence data for the reporter protein indicating activity level of the galactose utilization network in S. cerevisiae.
Fluorescence is reported as a function of galactose level in culture (expressed as percent weight per volume; 1% = 10g/L), under the galactose
pregrowth condition (A), and the raffinose pregrowth condition (B). All four biological replicates are shown stacked on each other. The blue area
represents the number of cells counted in each fluorescence channel in replicate 1, the next lighter blue area is the sum of the counts in the first two
replicates, and so on.
doi:10.1371/journal.pcbi.1000699.g002

Estimating Stochastic Bifurcation Structure
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exponential, or uniform distribution. The values prgj , variously called

‘‘mixture coefficients’’, ‘‘component weights’’ or ‘‘prior probabilities’’,

specify the degree to which the jth component contributes to the

overall distribution. For every r and g, they must be positive and must

sum to one.

For a given replicate, fitting mixture distributions to each

galactose concentration g meets most of our requirements for

specifying stochastic bifurcation structure. If we assume each

component of the distribution corresponds to a meaningful sub-

population in the data, then the number of components (which must

be optimized as part of the model fitting) tells us the number of

subpopulations. The mixture coefficients tell us the relative sizes of

those populations. Looking at a component distribution, Prgj(Y ),
the mean, median or mode can be used to define the ‘‘location’’ of

the subpopulation. We will use Gaussian components to represent

subpopulations, in which case the mean, median and mode are the

same. Finally, the variance of the component distribution represents

variability within the subpopulation.

The only downside of this approach is that it does not explicitly

model the dependence of these features of stochastic bifurcation

structure on the external controllable bifurcation parameter—the

galactose concentration g. Rather, it gives us ‘‘snapshots’’ of the

stochastic bifurcation structure at the particular galactose

concentrations for which data is collected. As a result, it does

not immediately offer a means to predict the fluorescence

distribution one would see at a different, untested galactose

concentration—though certainly some such predictor could be

constructed post hoc from the set of mixture distributions

estimated at each measured concentration. Because most aspects

of stochastic bifurcation structure might be expected to vary

smoothly with g, it makes sense to make the dependence on g
explicit. For this reason, we explored conditional mixture models.

For a given replicate r, a conditional mixture model expresses

the probability that a cell is detected in fluorescence channel Y
conditioned on any possible galactose concentration g as:

Pr(Y Dg)~
XJ

j~1

prj(g)Prj(Y Dg): ð3Þ

The difference between this and the previous equation is that

mixture coefficients, prj , are now functions of g, as are the

component distributions, Prj . For example, if the component

distributions are Gaussian, we may represent the dependence on g
by assuming some smooth functional form for the means and

variances of those Gaussians as a function of g. If a conditional

mixture model is fit based on measurements at certain galactose

levels, it can be evaluated to predict a distribution for Y at

different concentrations. Such models also tend to represent data

much more compactly—that is, with fewer parameters—than a set

of (unconditional) mixture models, which keep separate parame-

ters for each level of g modeled.

Modeling assumptions and fitting approaches. We used

two different approaches to fit mixture models and one approach

to fit a conditional mixture model to the data. In all approaches,

the mixtures contained one or more Gaussian components as well

as a single uniform component. The uniform component was

given a fixed mixture coefficient of p~0:02, and was used to

account for inevitable outliers in the data arising, for example,

from contaminating particles or carry-over between samples. In

our first approach to fitting mixture models, we used the standard

expectation-maximization (EM) algorithm [35] to fit the model

parameters (i.e., the mixture coefficients and the Gaussian means

and variances) at each galactose concentration. Model parameters

were taken as the best-fitting (highest log likelihood of the data) out

of 100 runs of EM from different random initial conditions. We

first fit a model with one Gaussian component, then two, then

three, etc., until cross-validation estimated that additional

Gaussian components were not significantly improving the fit.

Details are in the Materials and Methods section. In our second

approach to fitting mixture models, we used a mode estimation

technique to identify peaks in the data. For each mode identified,

we introduced one Gaussian component to the mixture, with

mean equal to the mode location. We then used EM to fit the

mixture coefficients and variances of the Gaussians, leaving the

means fixed. For the conditional mixture models of each replicate,

we assume two Gaussian components in addition to the uniform

component, to account for the low-expressing and high-expressing

subpopulations. The means of the Gaussian components were

assumed to be affine in the galactose concentration g.

mlo~alozblog ð4Þ

mhi~ahizbhig ð5Þ

The variances of the Gaussian components were assumed

independent of g. For the mixture coefficients, we assume the

weight of the low-expressing component took the form

plo(g)~Pmax min (1,e{l(g{t)): ð6Þ

This function is equal to Pmax for galactose concentrations below

the threshold t, above which the function decays exponentially

towards zero at rate l. The rationale for this particular form was

based on observations from our unconditional mixture fits, and

will become clear shortly.

Modeling results. Figure 3A shows the locations of the

subpopulations in replicate one, as estimated by the three methods:

mixture models fit by EM (EM), mixture models fit by mode

estimation followed by EM (ME+EM), and conditional mixture

models fit by EM (CEM). There is strong agreement between the

methods in terms of both the number and location of the

subpopulations. Activity of the low subpopulation, when it exists,

appears nearly independent of g. However, the location of the high

subpopulation increases with increasing galactose concentration. All

methods agree that a distinct high subpopulation is established at

the fourth galactose concentration (0.0033%), though the methods

disagreed on this feature in other replicates, as we will show shortly.

There is minor disagreement on the galactose concentration at

which the low subpopulation disappears. For the conditional

mixture model, we have plotted the low subpopulation mean as

long as its mixture coefficient is greater than 0.01. (Due to the form

of the model used for mixture coefficients, the model actually

assumes the low component exists at all galactose concentrations,

though with size that vanishes exponentially as a function of

increasing concentration.)

Figure 3B shows the estimated mixture coefficients for the low

subpopulation as a function of galactose concentration. The

mixture coefficient for the high subpopulation, where it exists, is

0.98 minus the low mixture coefficient, as the coefficients for the

low, high and uniform components must sum to one. At the lowest

galactose levels, virtually all of the cells are in a low-expressing

state. Then, apparently abruptly, a high subpopulation becomes

established and comes to dominate with increasing galactose

concentration, as the low subpopulation fades away. It was the

close agreement of the unconditional mixture models on this basic

Estimating Stochastic Bifurcation Structure
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story that motivated the form of Equation 6 for the mixture

probability of the low subpopulation in the conditional mixture

model.

Figure 3C shows the standard deviations estimated by the three

methods. All methods find that variability within the high

subpopulation is greater than within the low subpopulation—a

feature readily visible in the data (e.g., Figure 3A). Otherwise,

there appears to be little dependence on galactose concentration,

except perhaps for a slight decrease in variability within the high

subpopulation with increasing galactose.

In Figure 4A and B we show the subpopulation means estimated

by the three methods in the galactose pregrowth condition and the

raffinose pregrowth condition respectively. In panels C and D, we

show the estimated subpopulation sizes. Many qualitative features

observed in replicate one with galactose pregrowth continue to

hold. The expression in the low subpopulation is largely

independent of galactose concentration, whereas expression in

the high subpopulation increases with galactose concentration.

There is exclusively a low subpopulation up to some galactose

concentration, above which a high subpopulation is abruptly

established and grows gradually with increasing galactose as the

low subpopulation fades away. However, there are several

differences between the replicates. A key difference is in the

establishment of the high subpopulation. In the galactose

Figure 3. Results of mixture modeling on replicate one. (A) Means of subpopulations, as extracted by: mixture models estimated by the
expectation-maximization algorithm (EM), mixture models estimated by a combination of mode estimation and expectation-maximization (ME+EM),
and a conditional mixture model estimated by expectation-maximization (CEM). The x-axis represents the 17 levels of galactose tested, in order of
increasing concentration. The y-axis represents fluorescence channels of the flow cytometer, which are proportional to the logarithm of fluorescent
intensity. Darker background shading represents more cells counted in the channel at the given galactose level. (B) Estimated mixture coefficients
(prior probabilities) of the low subpopulation as a function of galactose concentration. (C) Estimated standard deviations of the Gaussian distributions
representing low (darker) and high (lighter) subpopulations as a function of galactose concentration.
doi:10.1371/journal.pcbi.1000699.g003

Figure 4. Comparison of subpopulation means and sizes across replicates. (A) Subpopulation means as extracted by the three fitting
methods, in all four replicates of the gal-pregrowth condition. (B) Subpopulation means in the four raf-pregrowth replicates. (C,D) Estimated sizes of
the low subpopulations in the gal-pregrowth and raf-pregrowth conditions respectively.
doi:10.1371/journal.pcbi.1000699.g004

Estimating Stochastic Bifurcation Structure
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pregrowth condition, there is disagreement as to whether a high

subpopulation exists at the fourth galactose level. All the EM and

CEM fits concluded that there is a high subpopulation, but only

two of the ME+EM fits did so. Moreover, there is disagreement as

to the location of those subpopulations, with the EM fits reporting

lower-expressing high subpopulations than the other methods. A

close look at the data (Figure 5) helps to illuminate these

discrepancies. Panels A and C show that at the third and fifth

galactose concentrations tested, all replicates have, respectively, no

high subpopulations and clear high subpopulations. At the

intermediate concentration, all replicates show an emerging high

subpopulation. In some of the replicates, this subpopulation is

sufficiently blended with the main low subpopulation so that there

is no distinct peak. This is why the ME+EM approach, which

determines the number and location of subcomponents by peak

detection, does not identify a high subpopulation in some

replicates. The fact that the high subpopulation tends to have

much higher variance than the low subpopulation increases the

difficulty of distinguishing the two, as well as pinning down the

location of the high subpopulation. A similar phenomenon occurs

in the raffinose pregrowth condition (Figure 4B,D), though over a

slightly higher and broader range of galactose concentrations. The

disappearance of the low subpopulation at yet higher galactose

levels does not show the same indistinct blending of high and low

subpopulations (Figure 6). Rather, the low subpopulation remains

separate from the high subpopulation while shrinking in size.

While the three fitting methods produce qualitatively similar

results in many respects, a question arises as to whether any of the

methods is better than the others in a quantitative sense. The first

way we examined this question was to compare the log likelihood

of the data under different models and replicates. Figure 7A shows

the mean negative log likelihood (see Materials and Methods for

exact definition) that each model achieved on the fitted data

(‘‘training error’’), and when evaluated on the data from other

replicates (‘‘testing error’’). As is often the case, the training errors

are smaller than the testing errors. The results show a potential

trend for the EM fits to be better than the ME+EM fits, and for the

ME+EM fits to be better than the CEM fits. However, none of the

pairwise differences in testing error reach statistical significance at

the p~0:05 level.

In Figure 7B,C we attempt to separate the degree of

disagreement between methods and inherent variability between

replicates. We examined estimated locations of four different

subpopulations, as specified in the figure caption. For each

subpopulation, we estimated biological variability by averaging

the three location estimates (one from each method) and

computing the standard deviation of that pooled estimate across

the four replicates in the same pregrowth condition. To estimate

variability due to each method we did the reverse—averaging

each method’s location estimates across replicates, and then

taking the standard deviation across the three methods. In both

pregrowth conditions and for all four subpopulations, the

variability across replicates was significantly greater than the

variability among the estimates of the different methods. One-

way ANOVAs of the location estimates for each subpopulation

result in a similar conclusion (data not shown).

Figure 5. Emergence of the high subpopulation at increasing galactose concentrations, in the galactose pre-growth condition.
Empirical count distributions for the four replicates are shown, smoothed using a width-11 moving average to improve visibility. (A) At the third
galactose concentration (0.0022%). (B) At the fourth galactose concentration (0.0033%). (C) At the fifth galactose concentration (0.0038%).
doi:10.1371/journal.pcbi.1000699.g005

Figure 6. Disappearance of the low subpopulation at higher galactose concentrations, in the galactose pre-growth condition.
Empirical count distributions for the four replicates are shown, smoothed using a width-11 moving average to improve visibility. (A) At the 14th

galactose concentration (0.0132%). (B) At the 15th galactose concentration (0.0152%). (C) At the 16th galactose concentration (0.0174%).
doi:10.1371/journal.pcbi.1000699.g006
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Discussion

We have defined a notion of stochastic bifurcation structure

suitable for studying the behavior of stochastic genetic switches,

and we have generated an extensive map of the response of the

canonical bistable yeast galactose utilization network to variation

in external galactose concentrations. While the data broadly

conforms to our expectations for stochastic switching between low

and high expression states within the network, several additional

properties are noteworthy. The establishment of a ‘‘high’’

expressing subpopulation occurs rather abruptly and fairly

consistently at a concentration of approximately 0.003% galactose,

although this state is initially overlapping the low expressing

subpopulation. By contrast, the low subpopulation fades away

more gradually at higher concentrations, while maintaining clear

separation from the high subpopulation. Activity within the high

subpopulation, in terms of fluorescent intensity, increases substan-

tially as a function of galactose concentration—by approximately

300% over the range of concentrations tested. Activity within the

low subpopulation is fairly constant, and is, in most cases,

indistinguishable from that of cells not expressing the reporter

gene (data not shown), though there may be a mild increase in

expression as the galactose concentration increases. Hence, the

response of the network to varying conditions appears to combine

a boolean-type ‘‘binary’’ switch between ‘‘on’’ and ‘‘off’’

expression states with a continuous ‘‘graded’’ modulation of

activity within the ‘‘on’’ state.

From a methodological point of view, we proposed that mixture

density estimation and conditional mixture density estimation are

ideally suited to extracting stochastic bifurcation structure from

real, noisy data. Our tests of two different mixture fitting methods

and one conditional mixture fitting method suggested that, in most

respects, the methods are equally accurate in fitting the data. It is

possible that the conditional mixture model was less accurate.

Visually, it appears to overestimate the location of the high

subpopulation at smaller galactose concentrations, and underes-

timate it at higher concentrations (see Figures 3A or 4A,B).

However, this is due simply to the affine form assumed for the

dependence of subpopulation location on concentration. Alterna-

tive forms could readily be chosen to allow greater flexibility in

fitting the data. Regardless, the overall level of disagreement

between methods appeared smaller than the variability between

different biological replicates. One potentially important distinc-

tion between the two mixture modeling approaches, standard EM

and mode estimation followed by EM, is that the former is able to

identify a ‘‘high’’ subpopulation at lower galactose concentrations

than the second approach. This is because, at the lowest galactose

concentrations, the ‘‘high’’ subpopulation is very broad and

partially merged with the typical low subpopulation—in some

cases, to such a degree that the overall distribution is still unimodal

(see Figure 5). The standard EM method, because it requires

multiple runs to avoid the problems of local minima and for cross-

validation, is considerable slower than either of the other methods.

Still, all methods run orders of magnitude faster than the data

collection takes, so this is a minor concern.

Conditional mixture models have several additional advantages

compared to fitting the data at each galactose level separately: they

use fewer total parameters, and are thus less likely to overfit the

data, and they explicitly represent and make predictions for the

bifurcation structure at all values of the bifurcation parameter—

not only the values tested experimentally. This approach worked

well on our data. The drawback of this approach is that it requires

choosing functional forms to represent the dependence of mixture

probabilities and mixture component parameters on the bifurca-

tion parameter. In this case, a proper means of representing

mixture probabilities only became clear after doing the individual

fits. In early conditional mixture model fits, we assumed the

mixture probabilities were independent of galactose concentration.

This had the unfortunate side affect that the high component

would start to ‘‘capture’’ cells from the low subpopulation at low

galactose levels, dragging down the whole mean curve for the high

subpopulation until it intersected and overlapped with the low

subpopulation. The form we chose for the mixture probabilities

avoids this problem by definitively assigning cells to the low

component at all galactose levels below some threshold. This

illustrates that the strength of using few parameters and explicitly

generalizing across bifurcation parameter values also implies a

danger of poor performance if an inappropriate representation is

chosen. While this is a truism in the statistics and machine learning

communities, it is all the more important to keep in mind in

systems biology where there is a greater focus on interpreting

models, as opposed to, say, being concerned only about prediction

accuracy.

Figure 7. Comparison of goodness-of-fit between methods and biological replicates. (A) For each method, the mean negative log
likelihood of the data. ‘‘Training’’ means each model is evaluated on the same data to which it is fit, whereas ‘‘testing’’ means each model is evaluated
on the data from the other three replicates having the same pregrowth condition. Black bars indicate 95% confidence intervals. (B,C) Variability in the
estimated locations of four subpopulations: the low (and only) subpopulation at the zero galactose concentration (P1), the low subpopulation at the
9th galactose concentration (P2), the high subpopulation at the 9th galactose concentration (P3), the high (and only) subpopulation at the largest
tested galactose concentration (P4). Cyan bars show the variability attributed to different estimation methods, whereas green bars show the
variability attributed to different biological repliciates.
doi:10.1371/journal.pcbi.1000699.g007
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Despite our focus on mixture modeling, one can imagine other

approaches for estimating stochastic bifurcation structure. For

example, clustering methods such as K-means or self-organizing

maps could readily be applied in much the same way as we applied

mixture density estimation. Nonparametric density estimation

techniques might also be applied, although it would take extra

effort to extract subpopulations from a nonparametric density

estimate. Investigating such alternative approaches is an important

topic for future research.

Part of our contribution is in specifying four types of information

that should be included in a stochastic bifurcation analysis: the

number of distinct subpopulations, the fraction of cells they contain,

the level of expression and the variance within each subpopulation.

Our notion of stochastic bifurcation structure is considerably

different from ideas employed in stochastic bifurcation theory,

which addresses the behavior of explicitly stochastic dynamical

models, such as stochastic differential equations [36]. The primary

concern of stochastic bifurcation theory is the number and stability

of different steady state distributions of a model. In gene regulatory

networks, it is not unreasonable to assume that any given cell could

eventually, through random fluctuations, reach the same state as

any other cell [23,25]. Such a system is said to be ‘‘communicating’’,

and under fairly general conditions, has only a single steady state

distribution for each bifurcation parameter value [37]. By the gross

standard of stochastic bifurcation theory, such a system does not

show any bifurcations at all. We, by contrast, have attempted to

paint a finer-grained picture of the dependence of a stochastic

dynamical system on an experimentally manipulated parameter.

This picture is largely consistent with the expectation that

fluctuations within the context of a deterministic network model

constantly push individual cells on excursions away from a stable

expression state, and induce stochastic transitions between the two

expression states to generate bimodal population distributions [29].

Indeed, our focus identifying subpopulations is closely related to the

idea in Kepler and Elston [29] of defining bifurcations via the

number of critical points in the steady state distribution. However,

our approach is much different; whereas they start with first-

principles stochastic chemical descriptions of simple gene regulatory

models, we start with empirical measurements of a complex gene

regulatory system.

Stochastic bifurcation structure may provide useful information

for the development of quantitative regulatory network models,

however this remains to be investigated. The exact relationship

between stochastic observables and model features is not yet

clearly established. For example, models of gene regulatory

networks are usually derived from molecular interactions within

individual cells and rarely consider effects due to population

dynamics. The gradual fading of the low-expressing subpopulation

observed in our experiments could be due the stochastic dynamics

of the regulatory network itself, or it could be due to a reduced

growth rate of the low-expressing cells. Additionally, while we took

steps to present the cells in each culture with homogenous

extracellular conditions (see Materials and Methods), it is likely

that there was some variability in the conditions experienced by

different cells or by the same cell over time. Depending on the

magnitude of this effect, it too might need to be estimated, if

possible, and separated from intrinsic cell-to-cell variability if one

wants accurate estimates of cellular network parameters.

Careful quantitative estimation of stochastic bifurcation structure

facilitates comparison between different experimental conditions or

genetic backgrounds. For example, the yeast strain studied by

Acar et al. (W303) is much less sensitive to galactose and displays

an almost 10-fold shift of the bimodal region (to concentrations

between approximately 0.02% and 0.3%) compared to our strain

(an equivalent of BY4743; see also discussion in Bennett et al. [38]).

Thus, even subtle differences in DNA-encoded parameters may

have significant impact on the stochastic bifurcation structure of a

given gene regulatory network. It should be possible to link DNA

sequence information to quantitative properties of gene regulatory

networks. This may require the development of several methodo-

logical, in addition to experimental, approaches that can extract

consistent information about stochastic bifurcation structures. For

example, it would be necessary to compare different, empirically-

measured stochastic bifurcation structures associated with different

genotypes to determine whether there is a statistically significant

difference between them and, if so, identify the origin of the

difference using a dynamical systems theory or other type of

modelling framework. In addition, such methods could be useful to

investigate how gene regulatory networks have evolved, to infer

regulatory relationships between genes, or refine our knowledge of

them, based on stochastic bifurcation behavior in experiments

involving systematic genetic perturbations, such as gene deletions,

gene knockdown or overexpression experiments.

Materials and Methods

Strains, growth conditions, and gene expression assays
The experiments use a diploid Saccharomyces cerevisiae strain

expressing a single copy of yeast-enhanced green fluorescent

protein ( yEFPG) from the native promoter of the GAL10 gene

(PGAL10). The diploid was obtained by mating two haploid strains,

a Mat a strain (yHP101) derived from BY4741 (Mat a, his3D1;

leu2D0; met15D0; ura3D0, Open Biosystems) by PCR-mediated

replacement of the open reading frame of the Ade2 gene by a Leu2

expression cassette, and a Mat a strain (yHP201) derived from

BY4742 (Mat a; his3D1; leu2D0; lys2D0; ura3D0, Open Biosys-

tems) by PCR-mediated gene replacement of Ade2 by a DNA

fragment carrying the reporter cassette PGAL10{yEGFP and an

expression cassette conferring histidine auxotrophy. Following

PCR validation of the appropriate gene replacements, the

diploid strain, designated yHP301 (Mat a=a, his3D1=his3D1;

leu2D0=leu2D0; LYS2=lys2D0; met15D0=MET15; ura3D0=
ura3D0; ade2 :: LEU2=ade2 :: HIS3{PGAL10{yEGFP) was stored

at {800C in rich media (YPD) containing 20 g/L Yeast Bacto-

Peptone (Wisent), 10 g/L yeast extract (Wisent) 20 g/L glucose

(Sigma-Aldrich) and 1% w/vol adenine (Sigma-Aldrich) supple-

mented with 15% w/vol glycerol (Sigma-Aldrich).

Prior to quantification, yHP301 was streaked onto synthetic

dropout medium (Wisent, Inc.) agar plates without leucine and

histidine supplemented with 2% w/vol glucose and 1% w/vol

adenine. Individual colonies were used to inoculate 3 mL rich

media (YPR) containing 20 g/L Yeast Bacto-Peptone, 10 g/L

yeast extract, 1% w/vol adenine and 2% w/vol raffinose (Wisent)

or YPR media supplemented with 2% w/vol galactose (Becton,

Dickenson). Following growth for 24 hours at 300C and

continuous shaking (250rpm), twenty-one 100mL aliquots of each

culture were transferred to a deep well block and washed twice

with 270mL YPR media supplemented with varying amounts of

galactose (final concentrations 0.0, 0.0015, 0.0022, 0.0033, 0.0038,

0.0043, 0.0050, 0.0057, 0.0066, 0.0076, 0.0087, 0.0100, 0.0115,

0.0132, 0.0174, 0.020, 0.080, 0.20, 0.50, 2.0%w/vol). Following

the wash, cells were resuspended in 300mL of the appropriate

media and optical density (OD) quantified with a Perkin Elmer

Victor3V plate reader using 100 mL cultures. A fraction of the

remaining volume was subsequently used to inoculate 400mL fresh

media containing the appropriate amount of galactose to an OD

of 3|10{4, and grown in a 96 deep well block for 22 hours at

300C and 250rpm prior to analysis.
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Reporter gene expression was quantified in individual cells

using a Beckman-Coulter FC500 flow cytometer. A total of 60,000

events were collected for each condition and filtered using custom-

written software script using a fixed elliptical forward/side-scatter

autogate capturing approximately 50% of the events in each

sample. The fluorescence intensity (488nm excitation, 510–550nm

emission) associated with these events was used to generate

representative expression distributions for each sample condition.

A total of four replicates were obtained, for each final galactose

concentration and both pre-growth conditions.

Mixture density estimation
Mixture density estimation using EM used 100 runs in an effort

to avoid problems with stopping at solutions that were only locally

optimal. Each of the 100 runs began from different random initial

parameters. The means of each Gaussian component were chosen

uniformly between the lowest and highest data point. Standard

deviations were initialized to 50—roughly the level observed at

single-subpopulation galactose concentrations—and initial mix-

ture probabilities for the Gaussians were set to 0:98=N where N is

the number of Gaussians. (Recall that a fixed 0.02-weighted

uniform density is also part of the mixture). The exception to this

rule was the mode-estimation-plus-EM approach, for which means

were initialized to the mode estimates, and we used a single run of

EM. The parameter updates during the M-step were as described,

e.g., in Bishop [35]. If the variance of a Gaussian shrank below

0:01, the component was eliminated, because such a Gaussian is

focussed on a single fluorescence channel, and does not represent a

true subpopulation.

The EM fitting employed cross-validation to determine the

proper number of Gaussian components to have in the mixture for

each replicate and at each galactose level. After fitting a model

with N Gaussian components, we tested whether an Nz1
Gaussian model would be significantly better by performing 10-

fold cross-validation. In each fold, 90% of the data was used to fit

an Nz1 Gaussian model, which was scored by the mean (across

data points) log likelihood of the remaining 10% of the data. We

calculated the mean and standard deviation (across folds) of the

Nz1 Gaussian model scores. If the mean was c standard

deviations greater than the score of the N Gaussian model, we

accepted the increase to Nz1 Gaussians, and performed the

process again. We chose c~4, as we found this was sufficiently

stringent to prevent splitting of what were clearly single

subpopulations (e.g., at zero galactose concentration).

Mode estimation for the mode-estimation-plus-EM approach

began by smoothing the data by taking a running average over a

window of size 71 channels. Call this f (c). First and second

derivatives, f ’(c) and f ’’(c), were estimated by computing centered

finite differences, with the same width of 71 channels. A mode in

the density was detected at channel c point if the first derivative

crossed from positive to negative (i.e., f ’(c{1)§0 and f ’(c)v0)

and if f ’’(c)=(1zf ’(c))v{0:0002. Ordinarily, one might thresh-

old only the second derivative. However, small bumps in the data

series are characterized by both smaller first and second

derivatives in the vicinity of a mode, and combining them in this

way lead to more robust and balanced detection of peaks of all

sizes in preliminary tests. The choices of a 71-width averaging

window and the 20.0002 threshold were based on pilot testing on

a separate, but related, set of flow cytometry data.

For fitting the conditional mixture density models, we used only

a single run of EM, as further runs did not improve accuracy.

Updates are standard, as given in Bishop [35]. Low and high

subpopulation means were initialized to have means of 200 and

700 respectively (independent of galactose level), standard

deviations were initialized to 50, and mixture probabilities to 0.49.

Availability
All code is written in MATLAB. Code and raw data are

available upon request, as well as on TJP’s website: http://www.

perkinslab.ca
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2. Rustici G, Mata J, Kivinen K, Lió P, Penkett C, et al. (2004) Periodic gene
expression program of the fission yeast cell cycle. Nature genetics 36: 809–817.

3. Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, et al. (2001)

Circadian regulation of gene expression systems in the Drosophila head. Neuron

32: 657–671.

4. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and
display of genome-wide expression patterns. Proceedings of the National

Academy of Sciences of the USA 95: 14863–14868.

5. Ramoni M, Sebastiani P, Kohane I (2002) Cluster analysis of gene expression

dynamics. Proceedings of the National Academy of Sciences of the United States
of America 99: 9121.

6. Ernst J, Nau G, Bar-Joseph Z (2005) Clustering short time series gene expression

data. Bioinformatics-Oxford 21: 159.

7. Mendoza L, Alvarez-Buylla ER (1998) Dynamics of the genetic regulatory

network for Arabidopsis thaliana flower morphogenesis. Journal of Theoretical
Biology 193: 307–319.

8. Von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity

network is a robust developmental module. Nature 406: 188–192.

9. Albert R, Othmer HG (2003) The topology of the regulatory interactions

predicts the expression pattern of the segment polarity genes in Drosophila
melanogaster. Journal of Theoretical Biology 223: 1–18.

10. Faure A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a

generic boolean model for the control of the mammalian cell cycle.

Bioinformatics 22: e124–e131.

11. Yuh CH, Bolouri H, Davidson EH (1998) Genomic cis-regulatory logic:

experimental and computational analysis of a sea urchin gene. Science 279:
1896–1902.

12. Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, et al. (2004) Dynamic
control of positional information in the early Drosophila embryo. Nature 430:

368–371.

13. Ozbudak E, Thattai M, Lim H, Shraiman B, van Oudenaarden A (2004)

Multistability in the lactose utilization network of Escherichia coli. Nature 427:
737–740.

14. Huang S, Guo Y, May G, Enver T (2007) Bifurcation dynamics in lineage-

commitment in bipotent progenitor cells. Developmental Biology 305: 695–713.

15. Kaufmann B, Yang Q, Mettetal J, van Oudenaarden A (2007) Heritable

stochastic switching revealed by single-cell genealogy. PLoS Biol 5: e239.

16. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of Theoretical Biology 22: 437–467.

17. Kauffman SA (1993) The Origins of Order: Self-Organization and Selection in
Evolution. New York: Oxford University Press.

18. Huang S, Eichler G, Bar-Yam Y, Ingber D (2005) Cell fates as high-dimensional

attractor states of a complex gene regulatory network. Physical review letters 94:

128701.

19. Beuter A, Glass L, Mackey MC, Titcombe MS (2003) Nonlinear Dynamics in
Physiology and Medicine Springer-Verlag.

20. Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences,

and control. Science 309: 2010–2013.

21. Kaern M, Elston T, Blake WJ, Collins JJ (2005) Stochasticity in gene expression:

From theories to phenotypes. Nature Reviews Genetics 6: 451–464.

22. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle

switch in Escherichia coli. Nature 403: 339–342.

Estimating Stochastic Bifurcation Structure

PLoS Computational Biology | www.ploscompbiol.org 10 March 2010 | Volume 6 | Issue 3 | e1000699



23. Isaacs FJ, Hasty J, Cantor CR, Collins JJ (2003) Prediction and measurement of

an autoregulatory genetic module. Proceedings of the National Academy of
Sciences USA 100: 7714–7719.

24. Kobayashi H, Kæ rn M, Araki M, Chung K, Gardner TS, et al. (2004)

Programmable cells: interfacing natural and engineered gene networks. Proc
Natl Acad Sci USA 101: 8414–8419.

25. Acar M, Becskei A, van Oudenaarden A (2005) Enhancement of cellular
memory by reducing stochastic transitions. Nature 435: 228–232.

26. Munsky B, Trinh B, Khammash M (2009) Listening to the noise: random

fluctuations reveal gene network parameters. Mol Syst Biol 5: 318.
27. Ramsey SA, Smith JJ, Orrell D, Marelli M, Petersen TW, et al. (2006) Dual

feedback loops in the GAL regulon suppress cellular heterogeneity in yeast. Nat
Genet 38: 1082–1087.

28. Kærn M, Weiss R (2006) Synthetic gene regulatory systems. In: Szallasi Z,
Stelling J, Periwal V, eds. System Modeling in Cellular Biology. pp 269–298.

29. Kepler TB, Elston TC (2001) Stochasticity in transcriptional regulation: origins,

consequences, and mathematical representations. Biophys J 81: 3116–3136.
30. Horsthemke W, Lefever R (1984) Noise-induced transitions Springer-Verlag.

31. Walczak AM, Wolynes PG (2009) Gene-gene cooperativity in small networks.

Biophys J 96: 4525–4541.

32. Scott M, Hwa T, Ingalls B (2007) Deterministic characterization of stochastic

genetic circuits. Proc Natl Acad Sci USA 104: 7402–7407.

33. Lohr D, Venkov P, Zlatanova J (1995) Transcriptional regulation in the yeast

GAL gene family: a complex genetic network. The FASEB Journal 9: 777.

34. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, et al. (2001) Integrated

genomic and proteomic analysis of a systematically perturbed metabolic

network. Science 292: 929–934.

35. Bishop CM (2007) Pattern Recognition and Machine Learning Springer.

36. Crauel H, Imkeller P, Steinkamp M (1999) Bifurcations of one-dimensional

stochastic differential equations, Springer, chapter 2. pp 27–48.

37. Meyn S, Tweedie R (1993) Markov chains and stochastic stability Springer-

Verlag.

38. Bennett MR, Pang WL, Ostroff NA, Baumgartner BL, Nayak S, et al. (2008)

Metabolic gene regulation in a dynamically changing environment. Nature 454:

1119–1122.

Estimating Stochastic Bifurcation Structure

PLoS Computational Biology | www.ploscompbiol.org 11 March 2010 | Volume 6 | Issue 3 | e1000699


