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Abstract

Studies of sequential decision-making in humans frequently find suboptimal performance relative to an ideal actor that has
perfect knowledge of the model of how rewards and events are generated in the environment. Rather than being
suboptimal, we argue that the learning problem humans face is more complex, in that it also involves learning the structure
of reward generation in the environment. We formulate the problem of structure learning in sequential decision tasks using
Bayesian reinforcement learning, and show that learning the generative model for rewards qualitatively changes the
behavior of an optimal learning agent. To test whether people exhibit structure learning, we performed experiments
involving a mixture of one-armed and two-armed bandit reward models, where structure learning produces many of the
qualitative behaviors deemed suboptimal in previous studies. Our results demonstrate humans can perform structure
learning in a near-optimal manner.
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Introduction

From a squirrel deciding where to bury its nuts to a scientist

selecting the next experiment, all decision-making organisms must

balance exploration of alternatives against exploitation of known

options in developing action plans. Finding a balance is equivalent

to knowing when you can profit from learning about new options

and knowing when you know enough. However, determining

when exploration is profitable is itself a decision problem that

requires understanding or learning about the statistical structure of

the environment. Theoretical work on optimal exploration [1,2]

shows that assessing the long-term value of exploration involves

integrating the predicted informational value of exploration with

primary reward. Predicting the value of future information

requires having a model of the reward generation process for

the domain.

The structure learning problem may be present in tasks with as

few as two options. Suppose, for example, that you interact with

the environment by choosing one of the two options at discrete

choice points and that the option chosen generates a stochastic

binary reward. As a rational agent, your aim is to maximize the

total reward from the environment, but the difficulty is that the

rate of reward for each option is unknown and must be learned. In

this simple setting, there may be several hypothesis about how the

reward generation process works—how actions, observations and

unknowns are structurally ‘‘connected.’’ We propose three kinds of

structures that capture several versions of sequential decision-

making tasks available in the literature. The first structure has

temporal dependency between the present probability of reward

and the past probability of reward, investigated in the context of

Multi-Armed Bandit problems [3–5]. When this dependency involves a

random walk, the environment becomes non-stationary and a

rational agent will discount both past reward observations [6] and

potential future reward (equivalent to discounting) and it will

exhibit a higher learning rate in the sense of a greater dependence

on recent reward information. In the second structure, reward

probabilities can be affected by actions. For example, choosing an

option may temporarily decrease the reward probability. Different

kinds of action-reward probability contingencies can produce a

range of different rational responses, from probability matching

(foraging) to maximization. The third structure is reward coupling

and is the primary focus of this paper.

To illustrate what structure learning entails, Fig. 1A shows a

probabilistic graphical model representing the possible relation-

ships between variables for a typical sequential decision task with

two outcomes. In the graph, nodes represent unknown or

observable quantities and links represent statistical contingencies

between them. The unknown probabilities of reward at a given

time t{1 for both option 1 and 2 are represented by h1 and h2,

respectively. Taking action at{1 at time t{1 produces a reward x
that can be either 0 (failure) or 1 (success). Learning the success

probabilities must be balanced with the desire to maximize

expected future reward. Different assumptions about the connec-

tivity (structure) between variables produce a surprising range of

rational responses. One of those structures is temporal dependency (see

Fig. 1B) between success probabilities. In this case, rather than

being fixed, the success probabilities h
0

1 and h
0

2 depend on past

values h1 and h2 [3,4]. The second structure includes an effect of
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actions on reward probabilities (see Fig. 1C). Different kinds of

action-reward probability contingencies can produce a range of

different rational responses, from matching to maximization [7,8].

Fig. 1D illustrates Reward coupling which determines whether the

reward probabilities are related to each other. For example,

options may be probabilistically coupled so that if one option is

‘‘good’’ the other must be ‘‘bad’’. This type of structure has

profound consequences on exploratory and exploitative behavior.

To illustrate reward coupling, imagine you are serving a ball in

tennis against an opponent who almost always adopts the same

position near the center of the court. How do you choose whether

you serve left or right? Assume the defender must anticipate and

make its choice to defend left or right before it sees your serve.

Clearly you should take advantage of the previous history of

successful and unsuccessful serves against this opponent to try to

exploit any weakness, but how you should make use of this history

depends on what you can learn from your choices. For example, if

you last served left and failed, can you infer it would have been

better to serve right? The answer depends critically on the way

options are probabilistically related. The outcomes of an

anticipatory defender are probabilistically coupled - its probability

of selecting left is one minus its probability of selecting right

(similar to a coin flip). For coupled outcomes, what can be learned

on each trial is independent of your actions and no active

exploration is needed.

Author Summary

Every decision-making experiment has a structure that
specifies how rewards are obtained, which is usually
explained to the subject at the beginning of the
experiment. Participants frequently fail to act as if they
understand the experimental structure, even in tasks as
simple as determining which of two biased coins they
should choose to maximize the number of trials that
produce ‘‘heads’’. We hypothesize that participants’
behavior is not driven by top-down instructions—rather,
participants must learn through experience how the
rewards are generated. We formalize this hypothesis using
a fully rational optimal Bayesian reinforcement learning
approach that models optimal structure learning in
sequential decision making. In an experimental test of
structure learning in humans, we show that humans learn
reward structure from experience in a near optimal
manner. Our results demonstrate that behavior purported
to show that humans are error-prone and suboptimal
decision makers can result from an optimal learning
approach. Our findings provide a compelling new family
of rational hypotheses for behavior previously deemed
irrational, including under- and over-exploration.

Figure 1. Different structures in sequential decision-making. A) General structure. Arcs highlighted denote B) temporal dependency
between success probabilities, C) action-dependent reward state leading to different optimality principles—from foraging to maximization and D)
reward coupling affecting exploration vs. exploitation demands.
doi:10.1371/journal.pcbi.1001003.g001
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Imagine instead you throw a ball at one of two targets: left or

right—with the goal of determining which target is easier to hit. In

this case, you can infer little from a failure on the left target about

your success on the right. The options are independent, which

means that observing one option tells you little or nothing about

the other. Exploration is then necessary for learning, and your

choices impact what can be learned. Thus, the kind of probabilistic

dependence between options determines whether passive (action

independent) or active learning strategies are needed.

An organism with initial ignorance about the environment will

not have a model of the probabilistic coupling, and thus will not

know the value of exploration. But how can it know what kind of

probabilistic dependence is present?

In this work, we investigate the possibility that people learn

models of reward generation using rational analysis. From a

rational perspective, actions should be selected both to increase

reward and to provide information about the reward generation

process. Probabilistic methods for learning dependencies between

variables are termed structure learning or causal learning, and has

been an active topic within the machine learning community. We

argue that structure learning plays a major role in human

sequential decision making. Because structure denotes the

statistical relationships between entities and events, it forms the

basis for generating future predictions, and it enables model-based

approaches to reinforcement learning.

Using model-based (Bayesian) reinforcement learning [9–12]

optimal exploration can be extended to handle uncertainty across

a set of plausible reward generation models. In one formulation we

follow here, latent parameters on model structure are treated as a

hidden state, such that the algorithm tries to find values of the

hidden state that maximize expected discounted reward. In

essence, at the beginning of a set of tasks, we assume there is

initial uncertainty over a parametric family of structures—causal

models of reward generation. The learning of this causal structure

is then incorporated into acting. This is a natural extension of

causal induction (predictive of behavior in simpler tasks [13]) to

sequential experimentation.

To maximize the differences that uncertainty about the causal

relationships between options would produce, we exposed subjects

to one of two possible models that represent two extremes in the

exploration– exploitation trade-off in a slot-machine gambling

environment, where the probabilistic coupling between the payoffs

between machines must be learned. Using Bayesian RL to

generate an optimal exploratory agent for this environment, we

show that optimal actions with reward model uncertainty include

exploratory actions that are specific to model learning, and exhibit

patterns that would be considered over- and under- exploration for

an agent without reward model uncertainty. We demonstrate that

humans are able to learn the probabilistic coupling structure for

this environment, and that they exhibit exploratory choice

behavior predicted by reward model learning.

Results

Participants made decisions in a set of 32 two-option tasks, each

terminating stochastically, with an average of 48 trials. For each

task, an option produced an stochastic binary reward with a fixed

probability that had to be estimated by the participant.

Participants were asked to maximized their reward gathered for

the whole experiment and were compensated in proportion to the

total reward.

Formally, the choice of option 1 or 2 transitions the agent into that

state, and generates an observable binary reward x1 and x2,

respectively. The reward distributions are initially unknown but

remain constant within a task, which ends stochastically with a

probability 1{c. At the end of each task the reward distributions are

reset. The tasks are analogous to playing slot machines in a casino.

There are two slot machines. The state of the environment x
represents which of the slot machines is active. Actions involve

selecting which of the machines to activate (pull the slot machine

lever), and active machines generate binary rewards probabilistically.

To experimentally test how well humans can learn the

probabilistic coupling structure of an environment, we used two

environments with different reward structure designed to generate

clear differences in decisions and exploratory behavior. In the first

environment, which we term independent, the reward distributions

for each machine are independent. In the second environment,

called coupled, the two reward distributions are coupled by sharing

a common cause: when one option gives reward, the other will not.

The optimal policies for these environments generate exploratory

behavior that span the range of possibilities, from independent

where exploration is necessary to coupled, where exploration is

superfluous. An agent with uncertainty about whether the

environment is coupled or independent will need to learn both

the coupling structure and the reward values of the options.

The environments were presented as two distinctive ‘‘blocks’’ of

tasks. Each block was presented as a ‘‘game room’’ and machines

in that game room had a unique color (blue in one room and

yellow in the other). Unknown to the subjects, however, the first

block of 16 tasks corresponded to one reward structure and the

second block of 16 tasks corresponded to other reward structure.

We argue that it would be unreasonable for participants to

assume a reward structure beforehand. They, instead, have to

perform an estimation of this structure through a block of tasks

while jointly learning the reward rates within the task. To predict

human decisions in the task, we develop a normative model that

makes decisions while actively gathering evidence about both task

structure and the rewards available at each option and compare its

performance both to other normative models that assume a fixed

task structure and to model-free RL based on Q-learning with soft-

max action selection.

Structure learning model with Bayesian reinforcement
learning

In general, structure learning involves estimating the underlying

dependency structure between variables. Such learning has been

formulated as a probabilistic inference problem, where inference is

performed over a family of hypothesized dependencies. Within

machine learning, it is common to represent these dependencies

using graphical models, in which nodes are variables and

conditional dependencies between variables can be represented

as edges.

More specifically, a graphical model conveys knowledge on how

a joint probability distribution can be factored into multiple known

conditional probabilities. For example, in Fig. 2A, and ignoring all

the plates, the edge from node h1 to node x1 would indicate that

the joint probability distribution p(h1,x1) can be equivalently

written as the product of two known distributions p(x1Dh1)|p(h1).
Additionally, a plate is a shorthand notation for replicating

variables inside it while sharing conditional relationships and

distribution functions. For example, the node h1 inside the plate

with m~1, . . . ,M means that there are M variables

(h11,h12, . . . ,h1M ) that have the same known distribution function.

The node x1 is inside a plate with n~1, . . . ,Nm and inside the m
plate, which indicates—quite compactly—that the total set of

nodes is x1m1,x1m2, . . . ,x1mNm
for each m[f1, . . . ,Mg. Finally, the

conditional probabilities p(x1mnDh1m), for any n and m, correspond

to the same distribution function.

Structure Learning in Decision-Making
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A variety of Machine Learning methods have been developed to

perform structure learning in graphical models (e.g., [14,15]), and

these have provided a compelling account of human causal

inference and learning in cognitive tasks [13,16]. Below we show

human structure learning in a sequential decision-making task.

However, formulating the structure learning problem within

sequential decision making is significantly more difficult, requiring

a combination of probabilistic inference with reinforcement

learning commonly called Bayesian reinforcement learning.

Bayesian reinforcement learning (BRL) can be used to describe

an agent that learns the structure of rewards in the environment

while performing optimal action selection that balances exploration

and exploitation. Agents interact with a stochastic environment by

performing an action a that affect the state of the environment x by

transitioning to a new state x’ with probability p(x’Dx,a). Rewards

are received with a probability p(rDx,a) that depends on the action

and the outcome of the action. For the agents we are interested in

describing, the goal is to maximize the reward accumulated across

participation in a set of tasks which end stochastically with a

probability 1{c. The optimal BRL agent schedules actions that

maximize the expected reward received during the task:

EB rzcr’zc2r’’z . . .
� �

, where r is the reward to be received

immediately, r’ the reward received next, r’’ the reward received

two steps into the future, and so on, and B is current model of the

environment. In standard model-based reinforcement learning, the

agent uses a probabilistic model of reward sources and environment

to compute this expectation. In BRL, the agent does not know either

the reward sources and environment precisely, but rather generates

beliefs over a family of possible models.

After each observation, the belief distribution is updated using

Bayesian inference. By considering the set of possible future

observations, this belief updating can be used to ‘‘look ahead’’ to

predict future rewards that can be achieved from different plans of

action. The value of a belief can be found using the Bellman equation [17]

V (B)~ max
a

r(B,a)zc
X

x

p(xDB)V (BDx)

( )
, ð1Þ

where BDx represents the belief ‘‘update’’ by Bayes’ rule

BDx: p(xDB)p(B)

p(x)
: ð2Þ

In the context of reinforcement learning, a policy is a

prescription of what action should be taken at a particular state.

One of the key ideas in BRL is that the optimal policy can be

described as a mapping from belief states to actions. In particular,

an optimal policy p can be recovered by

p(B)~ arg max
a

r(B,a)zc
X

x

p(xDB)V (BDx)

( )
ð3Þ

We specialized this framework to model structure learning in

sequential decision experiments (see Materials and Methods for

more details). For the BRL agent with structure learning,

uncertainty about reward dynamics and contingencies can be

modeled by including within the belief state not only reward

probabilities, but also the possibility of independent or coupled

structure. Maximizing the expected reward over this belief state

yields the optimal balance of exploration and exploitation,

resulting in action selection that seeks to simultaneously maximize

(1) immediate expected rewards, (2) information about reward

dynamics and (3) information about task structure.

Fig. 2A represents a graphical model for the generation of

rewards in an independent environment. Rewards xa are samples

from Bernoulli distributions with separate Beta prior distributed

reward probabilities ha for each option. The belief state about ha is

summarized by the counts of the number of successes aa and

failures ba for each option. Fig. 2B shows a graphical model for a

coupled environment. Coupling is represented as a ‘‘shared’’

probability of reward h1 from which the rewards x1 and x2 are

sampled. However, the probability of reward x1 follows a

Bernoulli distribution with parameter h1 whereas x2 follows a

Bernoulli distribution with parameter 1{h1.

To model learning coupling structure, we introduce a hidden

binary state c, representing whether the options are independent

or coupled in the environment. Uncertainty about the coupling

structure generates a mixture between the independent and

coupled environment models. Fig. 2C shows the full graphical

model that incorporates uncertainty about the environment

structure. It is a mixture model of the independent and coupled

environments (Fig. 2A and B.) The parameter c switches between

a coupled environment for c~1 and an independent environment

for c~0 (see Materials and Methods for details.). Structure

uncertainty is captured by a Bernoulli distribution on c with

parameter w, which will change solely based on the rewards

observed.

Without uncertainty, the optimal decision-making strategies for

both the independent and coupled environments are well-known

and relatively simple. The optimal policy for a coupled

Figure 2. Graphical models of reward generation. The agent faces M tasks, each comprising a random number Nm of choices. A) Rewarding
options are independent. B) Rewarding options are coupled within a task. C) Mixture of tasks. Rewarding options may be independent or coupled.
The node c acts as a ‘‘XOR’’ switch between coupled and independent structure.
doi:10.1371/journal.pcbi.1001003.g002
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environment is purely exploitative—it simply chooses the option

with the greater number of successes (including failures of the

other option as successes) because the reward observed in one

option tells us everything the reward that would have been received

in the other option. Optimal action selection for an independent

environment, however, involves balancing the exploration–exploi-

tation trade-off. Exploration is required because choosing one

option does not provide information about the other. The optimal

policy for an independent environment involves computing a

quality index for each option, called the Gittins index [18], and

selecting the highest quality option. The Gittins index computes

the maximum expected reward per unit discounted time for each

option, and is the result of the following optimization problem:

Va(Ba)~ sup
tw0

E
Pt{1

t~0 ctrtDBa

h i
E
Pt{1

t~0 ctDBa

h i :

With uncertainty, optimal action selection depends on the belief

that the environment is coupled, as captured by the parameter c. In

the methods section, we show that the optimal policy for structure

learning can be expressed as a mixture of the optimal policies for the

independent and coupled environments. For all the models, the

optimal policy p is a function of the observed counts of successes, sa,

and failures, fa, for each option, and priors a1,b1,a2,b2,w.

To illustrate the behavior of the structure learning model, we

expose the model to a sequence of tasks. The model is placed in

either a coupled or independent environment (Fig. 3A & B). Every

50 trials the reward probabilities on the options are randomly

reset, but the type of environment stays fixed. For both

environments, the structure learning model learns the environ-

ment type, as expressed by the convergence of the posterior

distribution on the c parameter to its true value. For the

parameters h1 and h2, the marginal probability is indicated by

the color, with brighter indicating higher relative probability mass.

The structure learning model quickly learns in both environments,

although it is frequently easier to detect an independent

environment—whenever both options are significantly above or

below chance, the coupled structure can be quickly ruled out.

Once there is high certainty on the structure (p(c~1DD)&0 or

p(c~1DD)&1, where D is the data), beliefs are concentrated on

the parameters that matter for that structure—p(h1DD) and

p(h2DD) becomes concentrated on the reward probabilities of each

Figure 3. Learning simulation of structure learning model. Four tasks of 50 trials each are sequentially shown to the structure learning model.
Priors were a1~b1~a2~b2~1 and w~0:5. Marginal beliefs on reward probabilities (brightness indicates relative probability mass), probability of
coupling and expected reward are shown as functions of time. A) Simulation on Independent Environment B) Simulation on Coupled Environment.
doi:10.1371/journal.pcbi.1001003.g003

Structure Learning in Decision-Making
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option in the independent environment, and p(h2DD) becomes

uniform in the coupled environment.

The effect of structure uncertainty on the behavior of the

structure learning model is evident by looking at the expected

reward. For action a~1, this expected reward is

r(Bs1,f1,s2,f2
,1)~p(c~0jD)

a1zs1

a1zs1zb1zf1

zp(c~1jD)
a1zs1zf2

a1zs1zf2zb1zs2zf1
,

where p(cDD) is the posterior probability on the structure given the

data D represented by the counts s1, f1, s2 and f2. If the

probability that the structure is coupled is high (p(c~1DD)&1),

then the expected reward accrues regardless of which action is

chosen. If the probability that the structure is independent

(p(c~1DD)&0) is high, then the expected reward depends only

on the option chosen. Thus the belief about coupling gates the

need for exploration. In an independent model, there is a value

attached to choosing the option with less evidence even if the

current evidence suggests it has a lower probability of success. The

expected reward for action a~2 is similarly

r(Bs1,f1,s2,f2
,2)~p(c~0jD)

a2zs2

a2zs2zb2zf2

zp(c~1jD)
a1zs2zf1

a1zs1zf2zb1zs2zf1
:

In Fig. 4, we perform a simulation that shows how the structure

learning model described can behave as a independent or coupled

model depending on the uncertainty about coupling belief. We

purposely chose evidence values for which the independent model

would pick one option while the coupled model would pick the

other. When a curve dips below 0, it means that the learning

model would choose option 1, and when it does above 0, it would

pick option 2. Note that the structure learning model can

sometimes behave as a coupled or independent model depending

on the uncertainty about the structure. This difference between

the structure learning model vs. fixed models will play an

important role later when we show that people change their

policy in accord with structure learning.

Model comparison
To quantify structure learning in participant’s decisions, we

compared the predictions of the structure learning model with

models that capture the decisions expected from knowledge of

structure in the absence of learning (fixed independent and

coupled structure). Additionally, we used Q-learning algorithm

[19] with a soft-max action selection [20] as a base model. Q-

learning is a model-free RL method that does not model the

reward probabilities or structure, rather it estimates the value of an

action by compiling over experienced outcomes (called Temporal

Difference learning). However, Q-learning does not balance

exploration and exploitation in a principled way, but rather

performs heuristic explorations based on random actions. It is

proven to estimate the optimal value of an action after infinitely

many observations for every action and state [19]. The temporal

difference aspect of Q-learning as well as the exploratory

interpretation of the soft-max rule have been shown to correlate

with brain activity [4,21,22].

Fitting the models to all the response data, we find that the

structure learning model prediction rate (M~87:7%(87:4,88:1),

N~33904) is better than the coupled model prediction rate

(M~84:4%(84,84:7), N~33904), exact binomial test pone{tailedv

0:01, better than the fixed independent model prediction rate

(M~79%(79,79:9), N~33904), pone{tailedv0:01, and better than

Q-learning model (M~81%(80:981:8), N~33904), pone{tailedv

:01). Note that the Bayesian models have no free parameters, with the

exception of the initial value of the prior belief about coupling

structure w for the structure learning model, which is quickly

swamped by the evidence. However, we allowed for individual

differences in all five parameters of the Q-learning model. For all

models, we assumed uniform priors on probabilities of reward

(aj ,bj~1, 1ƒjƒ2, at the beginning of tasks).

The remainder of the results are organized as follows. Because

essentially all models predict well a large number of trials that

occur later in blocks (where evidence is high and the better option

is easy to identify), we focus on the set of trials for which there is at

least one disagreement between the models so that we can better

tell them apart. We call this set of trials diagnostic. We show the

structure learning model can better account for several aspects of

decision-making on diagnostic trials. In particular, we show how

uncertainty in task structure tracks qualitative and quantitative

changes in choice behavior. Then we show that the structure

learning model gives a principled explanation for strategies that

appear suboptimal. Finally, we analyze decisions that are

specifically diagnostic for the structure learning model (structure

learning predicts differently than fixed models) and show that the

structure learning model predicts human choice behavior better

than models with fixed structure.

Participants’ decisions better captured by a structure

learning model. We show 1) participants quickly adapt their

choices to the environment that they are in, independent or

coupled, and 2) normative belief about coupling predicts

participants exploratory moves while learning which type of

environment they are in.

Because optimal policies depend on the observed rewards for

both options, we analyzed participants’ choices as a function of two

measures of the observed successes and failures: evidence and

Figure 4. Effect of task uncertainty on exploration– exploita-
tion of structure learning model. The data available for the options
are s1~1, f1~0, and s2~5 and discount factor c is 0.98, all values fixed
for the simulation. The number of failures for option two (f2) is varied
from 1 through 3. Under these conditions, the independent would
always choose option 1 whereas the coupled model would always
choose option 2. However, the structure learning model switches
between these two The graph shows the difference in values between
the option 2 and 1 as a function of the task uncertainty.
doi:10.1371/journal.pcbi.1001003.g004

Structure Learning in Decision-Making
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confidence. In essence, we categorized a trial based on the

observation history that preceded it. The evidence measure is the

log odds ratio of the observed reward rate of the better option

(higher reward probability) to the worse (lower reward probability).

Evidence: log
sb

sbzfb

� �
{ log

sw

swzfw

� �
ð4Þ

where s and f denotes the observed number of successes and failures

respectively and the subscripts b and w denote the better and worse

options, respectively. The confidence measure is the log of the ratio

of the number of observations at each option

Confidence: log sbzfbð Þ{ log swzfwð Þ ð5Þ

Together the two measures capture the important aspects of the

observed successes and failures for decision-making, and are

commonly used to analyze proportional data [23]. Evidence

measures which option appears better (in relative terms) based on

the observed frequencies. Confidence measures the relative

reliability of the evidence.

We compile all choices in the diagnostic trials with the same

evidence and confidence and computed the fraction of these

choices to the better option. We separated our analysis for the

independent environment (Fig. 5A, left panel) and coupled

environment (Fig. 5B, left panel). Multiple pair-wise comparisons

between the models reveal that the structure learning model is

significantly better at predicting participants’ decisions than the

rest of the models, pv:001 (Fig. 5A and B, right panels)

Participants’ choices are tracked by structure uncertainty

of structure learning model. To better test whether

participants’ decisions reflect structure learning, we analyze how

coupling belief affected decisions within diagnostic trials. For each

trial, we computed the learning model’s coupling belief for the

sequence of observed rewards (p(c~1DD), where D is the reward

history). We then computed the fraction of choices to the better

option as a function of coupling belief, for both participants and

for each of the models. The results are shown in Fig. 6A,B.

Qualitatively, human choices mirror the structure learning model.

Quantitatively, the structure learning model correlates strongly

with participants in the coupled environment (Fig. 6D),

r(8)~0:85, pv0:01, and less on the independent environment

(Fig. 6B), r(7)~0:53, p~:2. However, the correlation to fixed

models is weaker in both environments (independent environment:

r~{0:39 independent model, r~{0:26 coupled model; coupled

environment: r~{0:45 independent model, r~0:47 coupled

model.). Taken together, these results suggest that people are

behaving remarkably like an optimal structure learning model in a

couple environment, with some unaccounted behavior in an

independent environment.

Behavior deemed suboptimal by fixed structure models

are optimal for structure learning. In the following sections,

we focus on explaining trials that are deemed suboptimal if the

process of reward generation of the environment is assumed

known by the participant. In particular, we show that uncertainty

about task structure provides incentive for making these

apparently sub-optimal choices.

Some studies have suggested that behavior in two independent

option tasks is suboptimal when compared to an optimal model

[24–27] —that people explore too little to find the better option

quicker, or explore too much, continuing to choose an option that

should have been discarded. We tested whether these types of trials

are better predicted by the learning model.

By under-exploration, we mean that subjects choose differently

than an independent model for trials where the independent

model selects the option with lower reward proportion (because

the counts are low), and thus the independent model has a higher

Figure 5. Full behavior on diagnostic trials as a function of evidence and confidence. Diagnostic trials are those in which there is at least
one disagreement between the models. For each of these trials, we compute the evidence and confidence of each option. A cell in the graph
indicates the empirical probability that the model (or participants) pick the better option as a function of evidence and confidence. The right panels
show prediction rate of different models in diagnostic trials. All pair-wise differences are significant (pv:05) A) Trials in Independent Environment
B) Trials in Coupled Environment.
doi:10.1371/journal.pcbi.1001003.g005
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value for the lower reward probability option. By over-exploration,

we mean that subjects choose differently than an independent

model for trials where the independent model selects the option

with higher reward proportion and high counts—i.e., the option

chosen is clearly less rewarding and there should be nothing left to

learn from it. A percentage of trials are under-explorative

(M~9%, n~1910) or over-explorative (M~10%, n~1984) out

of the number of trials in the independent environment

(N~19104). The learning model was able to predict most of the

under-exploratory trials (M~79:8% 78,81½ �), and significantly

more trials than other models, pone{tailedv0:01 (see Fig. 7A). The

learning model also predicted over-exploratory trials (M~11:2%
9:8,12:7½ �) better than the other models, pone{tailed~0:04, but the

predictive performance is relatively poor (Fig. 7A).

The subset of trials classified as over-exploratory by the

independent model were not well predicted by any of the models,

which essentially corresponds to an anti-diagonal trend in

participants decisions in the evidence versus confidence space

(see Fig. 6, left panel). For negative evidence and positive

confidence and for positive evidence but negative confidence,

participants choose opposite to normative predictions. Both of

these cases correspond to participants persisting in choices despite

evidence to the contrary. We believe that this pattern may be a

consequence of temporal dependence in participants choices, a

possibility we return to in the Discussion section.

Behavior in coupled environments has also been suggested to be

sub-optimal [24,25,28–31]. Given that there is no need for

exploration and the optimal behavior is inherently exploitative, we

tested whether behavior that diverged from the coupled model’s

predictions would be better predicted by the learning model. A

small percentage of trials (M~9:4%, n~1405) disagreed with the

coupled model in the coupled environment (N~14800). The

learning model predicts 17% (15:1,19:1) of these trials, and has

higher prediction rate than the independent model, although not

significant, pone{tailed~0:1.

Trials not predicted by the coupled or independent

models are task-learning trials predicted by structure

learning model. For structure learning tasks, there are decisions

purely intended to diminish the uncertainty about the structure. A

simple way to isolate these decisions is by selecting trials in which fixed

models (coupled and independent) pick one option while the structure

learning model picks the other. A Welch-Satterthwaite two-sample t-
test confirms the intuition that these trials happen earlier than other

trials within an environment, t(4256:02)~{1:9, p~0:02. For these

trials, the learning model was able to predict almost all of participants’

decisions (M~96:7% 94:3,98:3½ �, N~342), and thus the fixed

models predicted almost none (M~3:2% 1:6,5:6½ �, N~342), exact

binomial test pone{tailedv0:01 (see Fig. 7C). Q-learning predictions

were also worse than chance on these trials M~28:8% 26:4,30:2½ �,
N~342), and worse than structure learning model pone{tailedv0:01.

Discussion

We have provided evidence that structure learning may be an

important missing piece in evaluating human sequential decision

making. The idea of modeling sequential decision making under

uncertainty as a structure learning problem is a natural extension of

previous work on structure learning in models of cognition [13,16] (also

see [32]), animal learning [33] and motor control (e.g., see [34]). It also

extends previous work on Bayesian approaches to modeling sequential

decision making in the Multi-armed bandits [35] by adding structure

learning. It is important to note that we have intentionally focused on

reward structure, ignoring issues involving dependencies across trials.

Clearly reward structure learning must be integrated with learning

about temporal dependencies [36] (e.g. assumptions of a non-stationary

environment [5,37,38]).

Interestingly, there were a set of participants’ decisions that

none of the models were able to capture and that constitute 9.4%

of the data. These trials are predominately localized on positive

evidence (Eq. 4), but negative confidence (Eq. 5) levels (see Fig. 5A

and B, left panel, people column.). These choices corresponded to

persisting in choosing the worst option despite statistical evidence

supporting the better option. None of the models considered

would choose the worse option under these conditions. Partici-

pants may have limited memory or may be considering a larger

space of possible models; for example nonconstant reward rates

(allowing for nonstationary reward probabilities).

Figure 6. Better arm selection ratio. In the diagnostic trials, A) and C) Belief in coupling tracks changes in participant choices similarly to the
learning model B) and D) behavior vs. structure belief is well correlated with the learning model, but not with independent and coupled.
doi:10.1371/journal.pcbi.1001003.g006
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Although we focused on learning coupling between options, there

are other kinds of reward structure learning that may account for a

broad variety of human decision making performance. In

particular, allowing dependence between the probability of reward

at a site and previous actions can produce large changes in decision

making behavior. For example, in a ‘‘foraging’’ model where

reward is collected from a site and probabilistically replenished,

optimal strategies will produce choice sequences that alternate

between reward sites [39]. Thus uncertainty about the indepen-

dence of reward on previous actions can produce a continuum of

behavior, from maximization to probability matching. Note that

structure learning explanations for probability matching are

significantly different than explanations based on reinforcing

previously successful actions (the ‘‘law of effect’’) [40]. Instead of

explaining behavior in terms of the idiosyncrasies of a learning rule,

structure learning constitutes a fully rational response to uncertainty

about the causal structure of rewards in the environment. By

expanding the range of normative hypotheses for human decision-

making, we believe we can begin to develop more principled

accounts of human sequential decision-making.

The general alternative to the rational approach is to assume that

choice behavior reflects some fundamental limitations in sensing,

neural computation or storage. It is possible that the decisions we

could not predict in any dependent environment result from human

processing limitations. For example, one of the key decision patterns

that does not fit in the normative approach is choice stickiness, a

persistence in choosing the same option despite evidence suggesting it

would be better to switch. This could reflect a transition to model-free

learning in the independent environment. Participants may have

learned a policy for choosing that option based on early reward

evidence. However, we find no evidence for this possibility in our

data. Another possibility is that participants have memory limitations

that prevent them from compiling all of the evidence [35]—the

observed persistence may be sensitivity to local reward. While

limitations to human decision-making surely exist, and people are

bounded rational, our results provide evidence that decisions are also

driven by sophisticated structure learning. We believe that many

aspects of human decision-making that appears mysterious may be

the result of the brain’s attempts to acquire compact and useful

representations of the structure of its environment.

We foresee an adoption of more sophisticated models of

sequential decision-making to account for the compact represen-

tation that humans might be using to act in diverse reward

structures. While we believe that the theory to analyze these

representations is available, it has only been cautiously adopted in

Psychology and Neuroscience [35,41–43]. We have already seen

Figure 7. Model comparison in different aspects of decision-making. A and B) Performance of learning model and coupled model for decisions
not predicted by the independent model in the independent environment (separated into under-exploratory and over-exploratory trials) C) Prediction performance
for trials where independent and coupled model prefer one option whereas the learning model prefers the other. These trials are called task learning trials.
doi:10.1371/journal.pcbi.1001003.g007
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this pattern of adoption occur in Artificial Intelligence where the

development of efficient computational methods to solve Bellman’s

equation (i.e. model-free RL methods like Q-learning) led to the

rapid development and application of RL methods starting in the

1980s, despite the fact that the theoretical foundations had been

laid by control theorist more than two decades prior [1,44,45].

While Robotics, for example, today hardly uses model-free

reinforcement learning to think about tasks of any level of

complexity, much work remains for model-based reinforcement

learning to make its way into mainstream human and animal

sequential decision-making analysis.

Materials and Methods

Informed consent was obtained and all investigations were

conducted according to the principles expressed in the Declaration

of Helsinki, under the Assurance of Compliance number

FWA00000312.

Experimental methods
Sixteen volunteers solve 32 bandit tasks, 16 for each

environment. The probabilities of rewards were randomly

sampled from a uniform distribution, and the stopping times for

each bandit task were sampled from a Geometric distribution

Nm*Geometric(1{c). The average stopping time was 48. The

order of the tasks within an environment was randomized, and the

order of presentation of the environments was randomized as well.

All subjects were exposed to the same probabilities of rewards and

stopping times.

Each option is shown in the screen as a slot machine. Subjects

pull a machine by pressing a key in the keyboard. When pulled, an

animation of the lever is shown, 200 msec later the reward appears

in the machine’s screen, and a sound mimicking dropping coins

lasts proportionally to the amount gathered. We provide several

cues, some redundant, to help subjects keep track of previous

rewards. We display the number of pulls, total reward, and the

current average reward per pull. Reward magnitudes were 0 or

100 points. The machine’s screen changes the color according to

the average reward, from red (zero points), through yellow (fifty

points), and green (one hundred points). The machine’s total

reward is shown as a pile of coins underneath it. The total score,

total pulls, and rankings within a game were presented.

All participants finished all tasks. Each participant performed 1194

trials on independent environment and 925 on the coupled en-

vironment, for a total of 33904 trials. In general, participants under-

stood the task well. No apparent outliers were found nor missed trials.

Models of sequential decision-making
The language of graphical models provides a useful framework for

describing the possible structure of rewards in the environment.

Consider an environment with several distinct reward sites that can

be sampled, but the way models generate these rewards is unknown.

In particular, rewards at each site may be independent, or there may

be a latent cause which accounts for the presence of rewards at both

sites. Uncertainty about which reward model is correct naturally

produces a mixture as the appropriate learning model. This structure

learning model is a special case of Bayesian Reinforcement Learning

(BRL), where the states of the environment are the reward sites and

the transitions between states are determined by the action of

sampling a reward site. Uncertainty about reward dynamics and

contingencies can be modeled by including within the belief state not

only reward probabilities, but also the possibility of independent or

coupled rewards. Then, the optimal balance of exploration and

exploitation in BRL results in action selection that seeks to maximize

(1) expected rewards (2) information about rewards dynamics, and (3)

information about task structure.

The belief over dynamics is effectively a probability distribution

over possible Markov Decision Processes that would explain

observables. As such, the optimal policy can be described as a

mapping from belief states to actions. In principle, the optimal

solution can be found by solving Bellman optimality equations but

generally there are countably or uncountably infinitely many states

and solutions need approximations. If we were certain which of

the two models were right, the action selection problem has known

solution for both cases, presented below.

Model with fixed independent structure. Learning and

acting in an environment like the one described in Fig. 2A is known

as the Multi-Armed Bandit (MAB) problem. The MAB problem is a

special case of BRL because we can partition the belief B into a

disjoint set of beliefs about each option B~ B1,B2
� �

. Because

beliefs about non-sampled options remain frozen until sampled

again, independent learning and action selection for each option is

possible. Let la be the reward of a deterministic option in

V (Ba)~ max
la

1{c
,r(Ba,a)zc

X
x~0,1

p(xDBa)V (Ba
xa~x)

( )

such that both terms inside the maximization are equal. Gittins [18]

proved that it is optimal to choose the option a with the highest such

reward la (called the Gittins Index). This allows speedup of

computation by transforming a many-arm bandit problem to many 2-

arm bandit problems.

In our task, the belief about a binary reward may be represented

by a Beta Distribution with sufficient statistics parameters a,b (both

w0) such that xaDha*Bern(ha), where ha*Beta(aa,ba). Thus, the

belief about option a is Ba~ aa,bað Þ expected reward r(aa,ba,a) and

predicted probability of reward f (xa~1Daa,ba) are aa(aazba){1.

The belief state transition is bxa~x~ aazx,baz1{xð Þ. Therefore,

the Gittins index may be found by solving the Bellman equations

using dynamic programming

V (aa,ba)~

max
la

1{c
,

aa

aazba

zc
aa

aazba

V (aaz1,ba)z
ba

aazba

V (aa,baz1)

� �� 	 ð6Þ

to a sufficiently large horizon. In experiments, we use c~0:98, for

which a horizon of H~1000 suffices.

Model with fixed coupled structure. Learning and acting

in coupled environments (Fig. 2B) is trivial because there is no

need to maximize information in acting. The belief state is

represented by a Beta distribution with sufficient statistics a1,b1

(w0). The expected reward of option a is then defined as:

r(a1,b1,a)~

a1

a1zb1

a~1

b1

a1zb1

a~2

8>><
>>: ð7Þ

The optimal value of action is myopic as follows

V (a1,b1)~
maxar(a1,b1,a)

(1{c)
: ð8Þ

The belief state transitions are Bx1~x~ a1zx,b1z1{xð Þ and

Bx2~x~ a1z1{x,b1zxð Þ.

ð6Þ
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Learning and acting with structure learning model. We

restrict ourselves to the following scenario. The agent is presented

with a sequence of M bandit tasks, from m~1, . . . ,M, each with

initially unknown Bernoulli reward probabilities and coupling.

Each task involves Nm discrete choices, where Nm is sampled from

a Geometric distribution with parameter 1{c.

Fig. 2C shows the mixture of two possible reward models shown

in Fig. 2A and B. Node c switches the mixture between the two

possible reward models and encodes part of the belief state of the

process. Notice that c is acting as a XOR gate between the two

generative models. Given that it is unknown, the probability

distribution p(c~0) is the mixed proportion for independent

reward structure and p(c~1) is the mixed proportion for coupled

reward structure. Specifically:

1. For the block: Coupling parameter c may be either 0 or 1, and

is unknown for the agent. For learning, put Bernoulli prior with

parameter w. Sample c*p(c; w)~wc(1{w)1{c.

2. For the bandit task m~1, . . . ,M: Sample hj*Beta(1,1) for

parameters, all unknown for the agent. For learning, put Beta

priors hj*Beta(aj ,bj), with j~1,2.

3. For choice n~1, . . . ,Nm, with stochastic stopping time

Nm*(1{c)ct:

N Choose option 1: x1Dh1*Bern(h1)

N Choose option 2: x2Dh1,h2,c*
Bern(h2) c~0

Bern(1{h1) c~1

�
Learning can be performed analytically. Let x be a sequence of

rewards observed. For the likelihood term p(xDh1,h2,c) in the

posterior, the observations x are independent given hj ’s and c.

Hence, we just need to keep track of the number of successes (1’s)

and failures (0’s) of each option, rather than when rewards were

observed. Let sa and fa be the number of successes and failures for

option a in x. It is clear that the posterior distribution p(h1,h2,cDx)
is not closed with respect to the prior, but still by keeping track of

the counts we can compute the necessary quantities for the

Bellman’s equation in a straightforward manner.

After simple algebraic manipulation, we can obtain the

posterior distribution on coupling. At the beginning of each

bandit task, we assume the agent ‘‘resets’’ its belief about options

(si~fi~0), but the posterior over c is carried over and used as the

prior on the next bandit task. Let B(u,v)~C(u)C(v)=C(uzv) be

the Beta function, where C(u) is the Gamma function. For

simplicity, we define D:fs1,f1,s2,f2g. The marginal posterior on

c is as follows

p(cDD)~

ð1

0

ð1

0

p(h1,h2,cDD) dh1dh2

!

(1{w)
B(a1zs1,b1zf1)B(a2zs2,b2zf2)

B(a1,b1)B(a2,b2)
c~0

w
B(a1zs1zf2,b1zf1zs2)

B(a1,b1)
c~1

8>>><
>>>:

ð9Þ

The beliefs about environment dynamics, however, may still be

completely represented by the counts and prior parameters within

a task with a probability distribution about environment dynamics

as Eq. 9.

The predicted rewards are:

p(x1 DD)~
X

x2~0,1

c~0,1

ð1

0

ð1

0

p(x1,x2 Dh1,h2,c)p(h1,h2,cDD)dh1dh2

~

p(c~0DD)
a1zs1

a1zs1zb1zf1

zp(c~1DD)
a1zs1zf2

a1zs1zf2zb1zs2zf1

x1~1

p(c~0DD)
b1zf1

a1zs1zb1zf1

zp(c~1DD)
b1zs2zf1

a1zs1zf2zb1zs2zf1

x1~0

8>>><
>>>:

ð10Þ

and similarly

p(x2jD)~

p(c~0jD)
a2zs2

a2zs2zb2zf2
zp(c~1jD)

b1zs2zf1

a1zs1zf2zb1zs2zf1
x2~1

p(c~0jD)
b2zf2

a2zs2zb2zf2
zp(c~1jD)

a1zs1zf2

a1zs1zf2zb1zs2zf1
x2~0

8>>><
>>>:

ð11Þ

From now on, we define BD:p(h1,h2,cDs1,f1,s2,f2) for simplic-

ity. The action selection involves solving the following Bellman

equations

V (Bs1 f1s2 f2
)~

max
a~1,2

r(BD ,1)zc p(x1~0DBD)V (Bs1,f1z1,s2,f2
)zp(x1~1DBD)V (Bs1z1,f1,s2,f2

)
h i

a~1

r(BD ,2)zc p(x2~0DBD)V (Bs1,f1,s2,f2z1)zp(x2~1DBD)V (Bs1,f1,s2z1,f2
)

h i
a~2

8><
>:

ð12Þ

To obtain (12) using dynamic programming for a horizon H,

there will be a total of (1=24)(1zH)(2zH)(3zH)(4zH)~
O(H4) computations which represent different occurrences of si,fi

out of 4H possible histories of rewards. This dramatic reduction

allows us to be relatively accurate in our approximation to the

optimal value of an action.

We use a horizon H~55 for computing values with Eq. 12. Notice

that we can recover the action selection of fixed models by computing

V ( . . . ,w~0, . . . ) for the independent model and V ( . . . ,w~1, . . . )
for the coupled model. However, we use Eq. 6 for the independent

model and Eq. 7 for the coupled environment because is much more

efficient. We checked that actions of the learning model when the task

certainty is very high (p(c~1D:)&0 or p(c~1D:)&1) do not differ

from Eq. 6 or Eq. 7, respectively.

Q-learning with soft-max. It is possible to optimally act

without a model of the environment by using what is known as

model-free reinforcement learning. One of the most popular

model-free reinforcement learning algorithms is known as Q-

learning, which can compute the optimal value of an action after

infinitely many observations for each action and states [19].

However, Q-learning does not have a principle for performing

exploratory actions and it is usually coupled with occasional

random actions (e.g., see [10,12] for a contrast with Bayesian

reinforcement learning). For example, the e-greedy action

selection chooses a random action an e fraction of the time and

the soft-max action selection uses the current estimates of values to

construct a distribution on the probability where, roughly

speaking, actions with higher value estimates have higher

probability of selection. In practice, e-greedy and soft-max Q-

learning are extremely fast methods for making decisions, but they

do not keep track of the accuracy and need a great deal of data to

correctly estimate values.

ð10Þ

ð11Þ

ð12Þ
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We use Q-learning with soft-max action selection as model for

base comparison. Suppose that the value of each option at time t is

Qt(1) and Qt(2), then the action selection is random and driven by

the following soft-max rule:

p(aDQt(1),Qt(2),y)! exp yQt(a)ð Þ, ð13Þ

where y has the following interpretation: a large value (e.g.,

y??) indicates that the agent will always choose the option with

highest Q, a value y~0 indicates that the agent will pick an option

uniformly at random, and a negative value (e.g., y?{?)

indicates that agent tends to choose in opposition to what is

prescribed by the Q values.

After taking an action a, interacting with the environment and

receiving a reward r, the agent updates its estimation of the values

by the temporal difference rule:

Qtz1(a)~(1{a)Qt(a)za(rzc max
a’~1,2

Qt(a’)), ð14Þ

where a is known as the learning rate and c is the discount factor. A

learning rate a~0 indices that the agent won’t consider new

rewards in the estimation of Q, while a learning rate a~1
indicates that the agent will consider only the last reward in the

estimation and not past rewards.

Q-learning needs an initial estimation of the value of each

option (Q0(1) and Q0(2)), the learning rate a and the parameter y
for the soft-max rule. For our data analysis, we fit these parameters

per participant so as to maximize the prediction rate of the Q-

learning model.
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