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Abstract

The spread of infectious diseases fundamentally depends on the pattern of contacts between individuals. Although studies
of contact networks have shown that heterogeneity in the number of contacts and the duration of contacts can have far-
reaching epidemiological consequences, models often assume that contacts are chosen at random and thereby ignore the
sociological, temporal and/or spatial clustering of contacts. Here we investigate the simultaneous effects of heterogeneous
and clustered contact patterns on epidemic dynamics. To model population structure, we generalize the configuration
model which has a tunable degree distribution (number of contacts per node) and level of clustering (number of three
cliques). To model epidemic dynamics for this class of random graph, we derive a tractable, low-dimensional system of
ordinary differential equations that accounts for the effects of network structure on the course of the epidemic. We find that
the interaction between clustering and the degree distribution is complex. Clustering always slows an epidemic, but
simultaneously increasing clustering and the variance of the degree distribution can increase final epidemic size. We also
show that bond percolation-based approximations can be highly biased if one incorrectly assumes that infectious periods
are homogeneous, and the magnitude of this bias increases with the amount of clustering in the network. We apply this
approach to model the high clustering of contacts within households, using contact parameters estimated from survey data
of social interactions, and we identify conditions under which network models that do not account for household structure
will be biased.
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Introduction

Contacts sufficient for transmission of infectious disease occur

repeatedly within stable relationships such as between sex partners

or within households and workplaces. Epidemiologists increasingly

use random network models that explicitly capture such

interactions to study disease dynamics [1]. This work has shown

that infectious disease dynamics can be profoundly influenced by

two key network properties– the distribution in the number of

contacts per individual (the degree distribution) [2] and the

transitivity or clustering of contacts, such as within households

[3,4]. However, we lack a general framework for studying the

combined epidemiological impacts of clustering and degree

distribution. For public health, such understanding may be critical

to predicting epidemiological events across diverse populations

and tailoring control strategies appropriately.

As epidemiological models grow in complexity, we face the

question of how much complexity is necessary and useful. For

example, which features of network structure significantly

influence disease dynamics and which can we ignore without

introducing large biases? In some cases, mass action models that

assume panmixis may be adequate and thus we can ignore

network structure altogether. In others, incorporating realistic

degree distributions and/or clustering may be important. A

published simulation-based study [5] suggests that clustering

affects epidemic dynamics when transmissibility is low and

contacts between two individuals are highly autocorrelated.

However, there remains a clear need for general, systematic

model selection rules.

The impact of the degree distribution on epidemics in the

absence of clustering is complex, but has received considerable

attention and is relatively well understood [1,2,6,7]. For example,

in networks with power law degree distributions (so-called scale

free networks), as the variance of the degree distribution diverges

to infinity, the reproduction number for a given pathogen also

diverges to infinity while the minimum transmissibility necessary

for epidemics to occur approaches zero (meaning even diseases

with very low infectiousness have the potential to cause epidemics).

In contrast, the effects of clustering on epidemics are still

unclear. Some studies suggest that clustering decreases epidemic

thresholds, making an epidemic more likely to occur after an initial

introduction [8]. Others studies suggest that the relationships

between clustering and the epidemic threshold is subtle [9–11],

and depends on the nature of clustering in the population. The

effects of clustering on the timescale of an epidemic are less

ambiguous, with most studies suggesting that clustering decreases
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the rate of epidemic propagation. Here, we describe and analyze a

versatile model that allows extensive exploration of the interactive

impacts of clustering and degree distribution on epidemic

dynamics. Although clustering always retards an epidemic, the

timescale of the epidemic is more sensitive to the variance of the

degree distribution than to clustering.

Following the approach introduced in [12,13], we model the

spread of infectious disease through structured host populations

using networks that are straightforward generalizations of the

configuration model [14]. Our model is designed so that one can

easily tune the parameters describing the degree distribution and

the number of cliques in the network (a clique is a completely

connected subgraph), which is closely related to the clustering

coefficient. Although these networks are not tree-like locally, they

can be analyzed using branching processes and percolation theory,

as shown in [12,13], and more recently in [15] and [16].

Our epidemic model generalizes the approaches recently

introduced in [17,18] for modeling the dynamics of epidemics in

networks. These models exactly predict epidemic spread in a class

of random networks. The resulting model consists of a low

dimensional system of ordinary differential equations that

describes the prevalence of infection over time. Recently, an

alternative system of approximate ODEs was independently

developed [19] which describes epidemics in networks with

arbitrary degree distributions and clustering coefficients. This

heuristic approach is intended to be fairly generic, and it is not

clear if there are clustered networks for which this model is exact.

Our complimentary approach allows straightforward analytical

solutions (using percolation theory and branching process

methods) for a simple class of random networks. In some cases,

our model agrees closely with the one presented in [19], but it can

differ substantially around epidemic thresholds. This result

suggests that the clustering coefficient (a single value for the entire

network) alone is not always sufficient to determine the full

epidemiological impact of clustering.

We also revisit one of the early, pioneering approaches to

modeling disease transmission through complex contact networks:

approximating the final size of an epidemic (the giant component

of the network) using bond percolation [12,13]. A recent paper

introduces a method that correctly accounts for variation in

infectious periods when making such calculations [16]. In contrast

to what is found in unclustered networks, in which such variation

does not significantly impact epidemic sizes [20–23], we find that

in highly clustered networks ignoring variation in infectious

periods can introduce considerable bias.

In addition, we model a realistic population by estimating

network parameters from a large diary-based survey of social

interactions [24]. We quantify the amount of network clustering

that occurs within households and show that ignoring household

clustering can lead to significant prediction errors including

overestimation of both prevalence and, somewhat counter-

intuitively, the epidemiological significance of households.

Materials and Methods

We consider a basic susceptible-infected-recovered model.

Infectious nodes transmit to neighbors at a constant rate b and

transition to the immune recovered state at a constant rate c. Once

recovered, the node cannot be re-infected, and can no longer

transmit to neighbors. Key parameters and variables are defined in

table 1.

Our solutions are based on the class of undirected random

graphs originally described in [12,13], which are refinements of

bipartite configuration models [8,25,26]. A node can be a member

of multiple cliques of various size. A two-clique is a pair of nodes

with an edge between them, and we will call these lines. A three-

clique is three nodes with all three possible edges, which we call

triangles. Each node is a member of a random number of lines and

triangles. The probability that a node is a member of l lines and t
triangles is described by the probability mass function pl,t. Our

model captures network structure using the probability generating

function (PGF):

g(x,y)~
X

l,t

pl,tx
lyt:

The degree distribution, which describes the probability that a

node is a member of k edges, is generated by the following

univariate PGF:

G(x)~g(x,x2):

Finite-size realizations of these random networks can be easily

generated as described in the next section. Most of this section

concerns the derivation of equations that describe epidemic

dynamics; these solutions are asymptotically exact in the limit of

large population size, and as discussed below, compare well to

large random networks.

Clustering is often characterized using the clustering coefficient,

C, which is the ratio of 3| the number of triangles [12,13],

denoted ND, to the number of 2-paths in the network, denoted N3.

C can be interpreted as the probability that two random edges that

share a common node are joined by a third edge to form a

triangle. Thus we have

C~3ND=N3

~
g(y)(1,1)

1

2
G’’(1)

: ð1Þ

When differentiating the PGF, we will use superscripts so that,

for example, g(x) would indicate the first derivative with respect to

x and g(x,x) would indicate the second derivative with respect to x.

The PGF can be used to calculate many useful properties of the

graph; for example, the expected number of lines and triangles to

which a random node belongs is

Author Summary

The transmission dynamics of infectious diseases are
sensitive to the patterns of interactions among susceptible
and infectious individuals. Human social contacts are
known to be highly heterogeneous (the number of social
contacts ranges from few to very many) and to be highly
clustered (the social contacts of a single individual tend
also to contact each other). To predict the impacts of these
patterns on infectious disease transmission, epidemiolo-
gists have begun to use random network models, in which
nodes represent susceptible, infectious, or recovered
individuals and links represent contacts sufficient for
disease transmission. This paper introduces a versatile
mathematical model that takes both heterogeneous
connectivity and clustering into account and uses it to
quantify the relative impact of clustered contacts on
epidemics and the prediction biases that can arise when
clustering and variability in infectious periods are ignored.
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M~
X

l,t

lpl,t~g(x)(1,1) ð2Þ

M̂M~
X

l,t

tpl,t~g(y)(1,1): ð3Þ

Generating random clustered networks
Random graphs [12,13] can be algorithmically generated by

assigning a random number of lines and triangles to a set of N
nodes from the distribution pl,t. Edges can then be created by

1. generating a set of half-lines or ‘‘stubs’’, such that the number

of times a node appears in the set is equal to the number of

lines to which it belongs,

2. generating a set of ‘‘corners’’, such that the number of times a

node appears in the set is equal to the number of triangles to

which it belongs,

3. ensuring that the number of stubs is divisible by two and the

number of corners is divisible by three, for example by

randomly deleting any remainder,

4. repeatedly constructing an edge between two stubs drawn at

random and without replacement,

5. and, repeatedly constructing edges between three corners

drawn at random and without replacement.

This algorithm may produce loops and double-edges, but the

frequency of such edges will be negligibly small for large graphs

[27], and we simply delete them if they do occur.

Disease transmission through clustered random
networks

The ODEs that describe epidemic dynamics in clustered

networks can be expressed in several equivalent forms and derived

from at least two different perspectives. Below, we present two

systems of equations that respectively describe the change in the

number of cliques with i susceptible and j infectious nodes and the

probability that a susceptible node is connected to such a clique.

Both of these systems can also describe the dynamics of the

number of infected and susceptible individuals in the population as

a function of time. First we present the system of equations based

on the probabilities wX that a random node u is connected by a

line to a node in state X and the probabilities wXY that u is

connected in a triangle to two nodes in states X and Y . Below we

present an alternative derivation based on the numbers of cliques

with different configurations. The derivation of this system is very

similar to what was presented in [28], but is less mathematically

parsimonious than the system of equations in this section, which

requires only 7 ODEs. And, below we show how this system can

be extended to networks with generalized distributions of clique

sizes, that is, networks that include cliques larger than size three.

We follow the recently introduced edge-based compartmental

modeling approach of [18]. This approach is based on the

consideration of the fate of a single randomly chosen node u in the

network. The probability this node is susceptible is equal to the

proportion of nodes that are susceptible, and the probability it is

infected or recovered is similarly the proportion of nodes that are

infected or recovered. If we know the probability the node is

susceptible as a function of time, then we can calculate its

probability of being infected or recovered, so we focus our

attention on calculating S(t), the probability the randomly chosen

test node is susceptible. Following [18] we modify the test node so

that it does not transmit infection once infected. This does not alter

the probability it is susceptible, but eliminates some conditional

probability arguments we would have to consider otherwise.

Assume u is a member of l lines and t triangles. Then the

probability it is susceptible is hl
2ht

3 where h2 is the probability that a

random line has not transmitted to the test node and h3 is the

probability that neither of the other nodes in a triangle has

transmitted to the test node. So assuming we can calculate h2 and

h3 as functions of time, we have S as a function of time. From this

we use I~1{S{R and _RR~cI to find I and R.

Let us first consider h2. We divide h2 into wS , wI , and wR, the

probabilities that a neighbor along a line has not transmitted

infection to u and is either susceptible, infected, or recovered

respectively. The probability the neighbor has not transmitted is

Table 1. Definitions for key parameters and variables.

Parameter Definition

b Transmission rate

bk Transmission rate within a clique of size k

c Recovery rate

C Clustering coefficient

N The number of nodes in the network

S,I ,R The fraction of the population susceptible, infectious, and recovered respectively

pl,t The frequency of nodes in the network that is a member of l lines and t triangles

g(x,y) Probability generation function for the numbers of lines and triangles of which a node is a member

h2(t) A survivor function for remaining susceptible given that a node is a member of a single line

h3(t) A survivor function for remaining susceptible given that a node is a member of a single triangle

wS ,wI ,wR The probabilities that a neighbor of a susceptible node along a line is susceptible, infectious or recovered

wXY The probabilities that the two neighbors of a susceptible in a triangle are in states X and Y

nijN The number of 3-cliques with i susceptible and j infectious members

MSI N The number of lines with one susceptible and one infectious member

doi:10.1371/journal.pcbi.1002042.t001
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h2~wSzwIzwR, ð4Þ

and 1{h2 is the probability that it has transmitted. We create

compartments for these states and display the flux between them

in Figure 1.

The fluxes from wI to wR and 1{h2 are proportional to each

other, and each begins as zero, so we can show that

wR~ c
b (1{h2). We find wS by a different approach, similar to

the calculation of S. A neighbor found along a randomly chosen

line will tend to have more lines than a node chosen uniformly at

random. The random number of such lines is described by the

excess degree distribution [29], and we calculate the generating

function for this distribution as follows. Denote ql,t!lpl,t to be the

probability that there are l lines and t triangles connected to a

susceptible node that we reach by following a line from an

infectious to a susceptible node not counting the line by which we

arrived. Similarly, rl,t!tpl,t is the probability that if we follow a

triangle to a susceptible node, there are l lines and t triangles

connected to that node, not counting the one by which we arrived.

Then we have the generating functions

gq(x,y)~
X

l,t

ql,tx
lyt~g(x)(h2x,h3y)=g(x)(h2,h3) ð5Þ

gr(x,y)~
X

l,t

rl,tx
lyt~g(y)(h2x,h3y)=g(y)(h2,h3): ð6Þ

Equations 5 and 6 generate the excess degree distributions for lines

and triangles.

A neighbor reached by following a line connected to u is

susceptible with probability hl{1
2 ht

3 (recall that u does not cause

infection) where l is a realization of the excess degree distribution.

Summing over values of l, we find wS~
P

l,t lpl,th
l{1
2 ht

3=
g(x)(1,1)~gx(h2,h3)=g(x)(1,1). Now we rearrange equation 4

which gives wI~h2{c(1{h2)=b{g(x)(h2,h3)=g(x)(1,1).

We can finally calculate h2 by noting that Figure 1 shows
_hh2~{bwI . We find

_hh2~{bh2zb
g(x)(h2,h3)

g(x)(1,1)
zc(1{h2): ð7Þ

To complete the system, we need a corresponding equation for

h3. Here the system is more complicated. For the line case, if the

neighbor had not transmitted, there were just three states to

consider. But when considering triangles, if neither neighbor has

transmitted, there are
3

2

� �
~6 states to consider. We define wSS

to be the probability both neighbors are susceptible, wSI to be the

probability one neighbor is susceptible, while the other is infected

but has not transmitted to u, wII to be the probability both are

infected but neither has transmitted to u, and similarly define wSR,

wIR, and wRR. Figure 1 shows the compartments and flux between

them.

We do not have a simple relation for wRR and h3, so our

derivation changes mildly. The starting point will be _hh3, which

satisfies

_hh3~{bwSI{2bwII{bwIR:

Figure 1. A schematic of the system of equations 7–8. A: The flux between the probabilities that a node u is connected to a triangle with all
possible configurations as well as the probability that a node v=u in the triangle has transmitted to u. B: The flux between the probabilities that a
node u is connected by a line to a node v that is susceptible, infectious, recovered, and the probability that v has transmitted to u.
doi:10.1371/journal.pcbi.1002042.g001

Hetero. and Clust. Contact Pat. on Inf. Dis. Dyn.

PLoS Computational Biology | www.ploscompbiol.org 4 June 2011 | Volume 7 | Issue 6 | e1002042



To calculate the right hand side, we first find wSS , the

probability that both neighbors in a triangle are still susceptible.

Under the assumption that transmissions have not happened in

the triangle, the probability that one neighbor is still susceptible isX
l,t

tpl,th
l
2ht{1

3 =g(y)(1,1)~g(y)(h2,h3)=g(y)(1,1). Since we require

both be susceptible,

wSS~
g(y)(h2,h3)

g(y)(1,1)

� �2

:

We take A to be the rate that a neighbor in a triangle is infected

from outside the triangle. Then A~{ _wwSS=2wSS . After some

simplification, we find

A~{
g(x,y)(h2,h3) _hh2zg(y,y)(h2,h3) _hh3

g(y)(1,1)
:

We are now ready to find equations for wSI , wII and wIR. We will

also need to find wSR to complete the system, but we will not need

wRR. We find

_wwSI~2AwSS{(bzcz2b)wSI

_wwSR~cwSI{AwSR

_wwII~(Azb)wSI{2(bzc)wII

_wwIR~AwSRz2cwI I{(bzc)wIR

ð8Þ

This completes our system of equations. We are able to

calculate h2 and h3 as functions of time, which in turn leads to S,

from which we can find I and R as well:

_RR~cI , S(t)~g(h2,h3), I~1{S{R: ð9Þ

Alternative derivation of epidemic dynamics. This model

is based on the idea that the number of transmissions events in the

network per unit time is a linear function of several time

dependent variables:

1. MSI (t)! the number of lines that begin at a susceptible node

and terminate at an infectious node,

2. n21(t)! the number of triangles with two susceptible nodes and

one infectious node,

3. n12(t)! the number of triangles with one susceptible and two

infectious nodes, and

4. n11(t)! the number of triangles with one susceptible node, one

infectious node, and one recovered node.

The variables MXY are dimensionless quantities that do not

depend on N. For comparison to simulations, the number of half-

lines MXY would be NMXY . The constant of proportionality

depends on the variable under consideration. Given a graph size

N , the total number of lines and triangles in the graph are

respectively

N

2
M~

N

2

X
l,t

lpl,t~
N

2
g(x)(1,1) ð10Þ

N

3
M̂M~

N

3

X
l,t

tpl,t~
N

3
g(y)(1,1), ð11Þ

since there are 2 nodes per line and 3 per triangle. For the

variables nij defined above, the total number of triangles is Nnij .

And the total number of lines between susceptibles and infected is

NMSI . However, below we also use the variable MSS which is

proportional to the number of lines connecting two susceptibles. In

this case, the total number of such lines is
N

2
MSS since this

variable counts lines twice (once for each susceptible node in the

clique).

We will assume that the number of transmissions per unit time

over a line or triangle are proportional to

T2~bMSI ,

T3~b(2n21z2n12zn11):

To model epidemic spread, we construct a set of ODEs in terms of

the M and n variables as well as two survivor functions for

susceptible nodes [17,30]:

1. h2(t): the probability that a neighbor in a ‘‘line’’ has not

transmitted infection prior to time t, and

2. h3(t): the probability that both neighbors in a ‘‘triangle’’ have

not transmitted infection prior to time t.

The probability that a node with l’ lines and t’ triangles remains

susceptible is hl’
2ht’

3 (see [17,30] for a justification). Consequently

the fraction of the population, S, that remains susceptible at any

time is

S~
X

l,t

pl,th
l
2ht

3~g(h2,h3):

The probability that an edge beginning at a susceptible node

will terminate at an infectious node is MSI=MS , where MS is

proportional to the number of half-lines or stubs connected to

susceptible nodes. Similarly, the probability that a susceptible node

is connected to a triangle with i susceptible nodes and j infectious

nodes is i|ni,j=M̂MS .These two variables can be expressed in terms

of the PGF:

MS~
X

l,t

l|pl,th
l
2ht

3~h2g(x)(h2,h3),

M̂MS~
X

l,t

t|pl,th
l
2ht

3~h3g(y)(h2,h3):

The system of ODEs relies on several more variables derived

from the generating function. When a transmission event occurs,

lines and triangles that were formally counted among MSS or n21

may instead be counted among MSI or n12. Quantifying the

magnitude of these changes requires that we calculate the average

degree of a newly infected node. This is accomplished with the

excess degree distribution and its corresponding generating

function [29] (equations 5,6). The mean number of lines and

triangles in these joint distributions gives us the expected number

of lines or triangles of a newly infected node. We denote the means

as dij , which is the average excess number of type-j links for a

Hetero. and Clust. Contact Pat. on Inf. Dis. Dyn.
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susceptible node selected with probability proportional to the

number of type-i links. Using the generating functions, we have

dll~h2g(x)
q (1,1),

dlt~h3g(y)
q (1,1),

dtt~h3g(y)
r (1,1),

dtl~h2g(y)
r (1,1):

ð12Þ

The hazard of infection along a single edge is proportional to

the probability that the edge terminates at an infectious node

(MSI=MS ) and the transmission rate, implying [17]

_hh3~{h3
T3

M̂MS

, ð13Þ

_hh2~{h2
T2

MS

: ð14Þ

Dynamics of MSI and MSS require careful consideration of

how edges are rearranged following a transmission event. _MMSS

describes the time derivative of the normalized number of lines

between susceptibles. T2 transmissions occur per unit time along

lines, and the newly infected individual is connected to an

average of dll lines in addition to the one by which the individual

was infected. The probability that such a line is shared with a

susceptible node is the ratio of the number of lines between

susceptibles to the total number of half-lines connected to

susceptibles: MSS=MS . Note that this probability does not

correspond to what we would have in randomly mixing

population, which would just be the fraction of susceptible half-

lines in the network: MS=M. The extent to which MSS=MS

differs from MS=M reflects the extent to which the state of

neighbors in the network is correlated due to the spread of the

epidemic. Therefore, MSS will decrease at a rate of

2T2dllMSS=MS .

Furthermore, T3 transmissions will occur via triangles, and the

newly infected node will be connected to an expected number dtl

lines. Each of these will also terminate at a susceptible node with

probability MSS=MS . Then we conclude

_MMSS~{2
MSS

MS

T2dllzT3dtlð Þ: ð15Þ

The equation for _MMSI can be derived similarly. The edge

rearrangement follows a similar pattern as for MSS , but we must

account for the increase of MSI when a newly infected node is

connected to another susceptible (with probability MSS=MS ) and

the decrease of MSI when the new infection has connections to

other infecteds (with probability MSI=MS ). Then the new

infection has connections to other infecteds (with probability

MSI=MS ), yielding terms of the form (T2dllzT3dtl)MXY=MX .

In addition to the edge-rearrangement terms, we must account

for changes due to recovery ({cMSI ) and direct transmission

({bMSI ).

_MMSI~{MSI (czb)z T2dllzT3dtlð Þ MSS

MS

{
MSI

MS

� �
ð16Þ

Finally, the equations for the number of triangles with i
susceptible and j infectious constituents, nij , is found by

considering rearrangements as above, as well as flux between

classes that are due to an infectious member of the triangle

transmitting to a susceptible member, or recovering. For example,

a triangle with one susceptible and two infectious nodes (state

(1,2)) will transition to the state (0,3) at the rate 2b, because there

are two edges between susceptible and infecteds in this clique. It

will also transition to the state (1,1) at the rate 2c, because there

are two infectious nodes in the clique that can recover. To

summarize, we find

_nn30~{ T3dttzT2dltð Þ 3n30

M̂MS

,

_nn21~{(2bzc)n21z T3dttzT2dltð Þ 3n30

M̂MS

{
2n21

M̂MS

� �
,

_nn20~cn21{ T3dttzT2dltð Þ 2n20

M̂MS

,

_nn12~2bn21{(2bz2c)n12z T3dttzT2dltð Þ 2n21

M̂MS

{
n12

M̂MS

� �
,

_nn11~2cn12{(bzc)n11z T3dttzT2dltð Þ 2n20

M̂MS

{
n11

M̂MS

� �
:

ð17Þ

An extra differential equation can be solved for the epidemic

prevalence at any time.

_II~{ _SS{cI

~
d

dt
g(h2,h3){cI

~ _hh2g(x)(h2,h3)z _hh3g(y)(h2,h3){cI

ð18Þ

This system can also be related to the one in the previous section

by the change of variables wX ~MSX=MS and wSI~n11=M̂MS , etc.

If an initial fraction e%1 of the population is infected at the

beginning of the epidemic and the total number of lines and

cliques are respectively proportional to M and M̂M (equation 3), we

use the initial conditions

h3(0)~e

h2(0)~e

MSI (0)~eM

MSS(0)~(1{2e)M

n30(0)~(1{e)M̂M=3

n21(0)~eM̂M=3,

ð19Þ

and the remaining variables would be zero.

Generalization to clique sizes w3
It is straightforward to generalize the derivation for triangles (3-

cliques) to larger clique sizes, and to furthermore allow the

transmission rate to be a function of clique size. Let nk
i,j denote the

number of cliques of size k with i susceptible and j infectious

nodes. We will generalize the preceding model to allow

transmission rates to vary between cliques of different sizes. The
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transmission rate for edges within a clique of size k will be denoted

bk. We consider clique sizes from k~3 to a maximum of m.

Having multiple clique sizes requires us to introduce additional

dummy variables into the generating function. The vector y of

dummy variables with elements y2,y3, � � � ,ym correspond to each

of the m{2 clique sizes and unclustered edges. Note that the

element y2 is the dummy variable corresponding to lines,

previously denoted x. Then the following will generate the degree

distribution:

g(y)~
X

t2,t3,t4,���,tm
pt2,t3,���,tm P

m

k~2
y

tk
k :

h will be the vector of survivor functions with elements

h2,h3, � � � ,hm.

Letting the derivative of g with respect to the dummy variable

yk be denoted g(yk), the number of cliques of size k in the network

is proportional to M̂Mk : ~g(yk)(~11)=k (because there are k nodes for

every k clique). In addition, the number of links from susceptible

nodes to cliques of size k is M̂Mk
S~hkg(yk)(~hh).

We find the dynamics of nk by tabulating the flux to and from

cliques with similar configurations. A k{clique with i susceptible

and j infectious nodes will have i|j edges between susceptible and

infectious nodes, so that transmissions within cliques will occur at

the rate bkij. The rate of transmissions that occur within cliques of

size k is

Tk~bk

Xk{1

i~1

Xk{i

j~1

ijnk
i,j :

The rate of transmissions by unclustered edges will be

T2~b2MSI , and nodes in cliques of size kw2 with i susceptible

and j infectious nodes will be infected from outside of the clique

(i.e. by an edge with an infectious node not in the clique) at a rate

r(i,j,k) : ~
Xm

l~2

Tldlk

 !
ink

ij

M̂Mk
S

,

where dlk is the average number of k cliques of a node selected by

randomly choosing a susceptible member of a random l{clique:

dlk~hkg(yl ,yk)(h)=g(yl )(h):

A clique with j infectious nodes will have recovery events at the

rate cj.
Putting these terms together yields the following solution for the

dynamics of nk
i,j . These equations are defined for all i and j such

that izjƒk.

_nnk
i,j~

r(iz1,j{1,k)zbk(iz1)(j{1)nk
iz1,j{1zc(jz1)nk

i,jz1

{r(i,j,k){bkijnk
i,j{cjnk

i,j if iv k and jw0,

c(jz1)nk
i,jz1{r(i,j,k) else:

0
BB@ ð20Þ

The survivor functions will be determined by the following set of

differential equations:

_hhk~{Tkhk: ð21Þ

The equations for MSS and MSI will be the same as equations

16 and 16, except that indirect transmissions by cliques larger than

three must be taken into account.

_MMSS~{2
MSS

MS

Xm

j~2

Tjdj2

 !

_MMSI~{MSI (czb)z
Xm

j~2

Tjdj2

 !
MSS

MS

{
MSI

MS

� �
:

ð22Þ

Calculation of the survivor functions only requires cliques such

that iw0 and izj§2, so it is not necessary to solve for all possible

configurations of i susceptible and j infectious nodes. In general, if

cliques range in size from 3 to m, this will require
mz1

2

� �
{1

equations.

Bond percolation approximations for final epidemic size
For an infectious disease spreading in a population in which all

individuals have the same susceptibility and the same infectious-

ness and all transmissions are independent, the epidemic process

can be exactly represented through a bond percolation process.

Consider an individual u chosen to be the initial infection. Assume

the per-contact probability of transmission is t. If we delete each

edge of the network with probability 1{t, then the probability

that u is in the same component of the residual network as a given

set of nodes is equal to the probability that that set of nodes is

infected in the epidemic [20,23,31].

However, if there is variable infection duration or some other

cause of heterogeneity in infectiousness, this is no longer the case:

those individuals with longer infectious period are more infectious.

Assuming the only heterogeneities are due to variable infectious-

ness, it has been shown [22] that in networks without short cycles

the final size of large outbreaks depends only on the average

infectiousness in the limit of large networks.

When there are short cycles, the size of epidemics does depend

on how infectiousness is distributed. The assumption that all

individuals have the average infectiousness only gives an upper

bound on epidemic size [23,31]. This bound is often a reasonable

approximation [9]. Recently, an alternative percolation technique

was developed [16] which accounts for variable infectious periods

and can accurately calculate final sizes in some clustered networks.

Taking the transmission rate to be b and the recovery rate to be

c, the average probability of infecting a neighbor is �tt~b=(bzc).
First, we investigate how closely the bond percolation approach

reproduces epidemics with constant transmission and recovery

rates for the clustered networks considered here. Second, we

present an alternative simple solution for final size in clustered

networks that takes variable infectious periods into account.

The original bond percolation method for clustered networks

[12,13] can be used to determine the probability that there would

be zero, one or two secondary infections following an initial

infection in a triangle. If the transmission probability �tt is constant,

the probability of having one or two secondary infections in a

triangle is (refer to [12,13]):

N one secondary infection: �aa1 : ~2�tt(1{�tt)2,

N two secondary infections: �aa2 : ~�tt2z2�tt2(1{�tt).

In fact, these probabilities are functions of the infectious period

of the initial case in a triangle, which is itself an exponentially

distributed random variable. We can solve for the true

probabilities by integrating over the infectious period (in this case
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t denotes time). Conditional on the infectious period being t, the

probability of transmission by single infected to a single neighbor

of that infected is 1{e{bt. When the infectious period is

exponentially distributed with rate c, we have the following:

N One secondary infection:

a1 : ~

ð?
0

ce{ct 2(1{e{bt)e{bt(1{�tt)
� �

dt

~2(1{�tt)2{2
c

2bzc
(1{�tt)

~½2b=(cz2b)�½c=(bzc)�2

N Two secondary infections:

a2 : ~

ð?
0

ce{ct (1{e{bt)2z2(1{e{bt)e{bt�tt
� �

dt

~1z(1{2�tt)
c

2bzc
z2(1{�tt)(�tt{1)

This distribution is generally different from the one based on �aa1

and �aa2, and the expected number of secondary infections is strictly

less with variable infectious periods. To see this, we denote the

averages R~2a2za1 and �RR~2�aa2z�aa1, and note that only second

order terms of t will differ between R and �RR. We have

�tt2~b2=(bzc)2, and

St2T~

ð?
0

ce{ct(1{e{bt)2dt

~
2b2

(bzc)(2bzc)

ð23Þ

It is straightforward to see that St2Tw�tt2. Furthermore, if we

collect all terms involving t2 in the equation for R, we find a

leading factor of {2�tt. Consequently, these terms will be negative

and will have larger magnitude in the expression for R than for �RR,

so Rv�RR.

Now we present an asymptotically exact solution for final

epidemic size. Let u be a random node. Let q2 be the probability

that a neighbor of u along a line is not infected from another node

at the end of the epidemic. Then following the methods described

in [12,13], this probability must satisfy

q2~
g(x)(h2(?),h3(?))

g(x)(1,1)
: ð24Þ

Similarly, let q3 be the probability that a neighbor in a triangle

never receives an infectious dose from outside that triangle.

q3~
g(y)(h2(?),h3(?))

g(y)(1,1)
ð25Þ

We need to calculate h2 and h3 at ? in order to calculate final

epidemic size. It suffices to find h2 and h3 in terms of q2 and q3 and

then solve the system.

We have h2 is the probability that a line does not transmit to u.

Clearly this can be calculated by considering the probability the

neighbor is never infected plus the probability the neighbor is

infected, but does not infect u. This is

h2(?)~q2z(1{q2)(1{�tt) ð26Þ

Finding h3 is slightly harder. This is the probability that neither

neighbor in a 3-clique is infected from outside, or exactly one

receives infection from outside, or both receive infection from

outside and transmission does not reach u. As above, a1 is the

probability that a node in a triangle will lead to exactly one further

transmission within the triangle, and a0 will be the probability it

will cause no transmissions. The probability that an infected

neighbor in a triangle recovers prior to transmitting to either of its

neighbors is a0~c=(cz2b). Then

h3(?)~q2
3z2q3(1{q3)

a1

2
za0

� �
z(1{q3)2(1{�tt)2 ð27Þ

The first term means neither neighbor is infected. The second

term has exactly one neighbor infected (factor of 2 because there

are two choices), with the neighbor either infecting the other

neighbor, but nothing further or the neighbor infects no one. The

third term is both getting infected from outside; we do not need to

consider the correlations in this case.

Equations 24–25 can be solved numerically by iteration from

small initial values of q2 and q3 [12,13]. Given h2(?) and h3(?),
the final size can be calculated:

R(?)~1{g(h2(?),h3(?)): ð28Þ

In the SI, we show how these calculations can be extended to

models with generalized distributions of clique sizes.

Comparison to alternative models
To validate the model assumptions, we compare solutions of the

system given by equations 13–17 to stochastic simulations in

continuous time based on the Gillespie algorithm [32]. Random

networks are generated as described above. At time t~0, a

number of I(0) initial infections are selected uniformly at random

within the network. When a susceptible is infected, new

transmission and recovery events are queued with exponentially

distributed waiting times.

We also compare our model to a similar model consisting of

ODEs based on moment-closure [19]. This model was developed

for networks with a given degree distribution generated by G(x)
and a clustering coefficient C. Unlike our model, this system does

not specify a joint distribution for the number of lines and

triangles. Rather, this system is based on the concept that potential

triangles, of which a degree k node will have
k

2

� �
, will exist with

independent probability w. This system also uses PGFs within a

low-dimensional system of ODEs, and proposes that S~G(h),
with _hh~{hb½SI �=MS , where ½SI � is the number of half-edges

from a susceptible node that terminates at an infectious node.

Equations for ½SI � are derived in terms of the number of

connected triples, or 2-paths, of nodes that pass through a

susceptible. This model makes the approximation that the number

of 2-paths connecting two susceptibles and an infected is a simple

function of the clustering coefficient w:

½SSI �&½SS�½SI � G’’(h)

N(G’(h))2
(1{C)zCG’(1)

½SI �
hG’(h)MI

� �
:
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The number of 2-paths connecting a susceptible with two infecteds

is

½ISI �&½SI �2 G’’(h)

N(G’(h))2
(1{C)zCG’(1)N

½II �
M2

I

� �
:

We will subsequently refer to this as the House-Keeling (HK)

model.

Results

We used our low-dimensional model to explore the interactions

between the variance of the degree distribution and the level of

clustering, as they impact epidemic dynamics. To do this, we

constructed a negative binomial degree distribution which allows

us to hold the mean degree constant while interpolating variances

that range from the mean of the distribution to infinity. The

negative binomial distribution with parameters p and r is

generated by

gnb(x; r,p)~
p

1{(1{p)x

� �r

: ð29Þ

We modified this distribution so that a tuneable fraction pt of

edges are part of a triangle while keeping the mean of the

distribution constant. To construct this distribution, we modify the

PGF so that all edges occur in pairs; the degree will always be an

even integer. The number of pairs of edges follows a negative

binomial distribution. With probability pt, a pair of edges is part of

a triangle, and with probability 1{pt, the pair of edges forms two

lines with nodes that are not themselves connected. Because lines

always appear in pairs, it is easy to keep the mean of the

distribution constant while tuning the amount of clustering with pt,

which can range between zero and one. Then given a random

number k 2-tuples generated by equation 29, the number of lines

and triangles was generated by ((1{pt)x
2zpty)k, where y is the

dummy variable for triangles, and x is the dummy variable for

lines. Note that the exponent of 2 for x causes all lines to occur in

pairs. Using the composition property of PGFs, the degree

distribution can be generated by

g(x,y)~gnb((1{pt)x
2zpty): ð30Þ

We compared solutions of the clustering model to 50 stochastic

simulations on random networks with 5,000 nodes and 10 initial

infections (Figure 1).

The degree distribution was generated by equation 30, with a

mean of 2 and a variance of 3. The fraction of edges that are part

of a triangle was pt~90%. For comparison, we also plot a solution

to the clustering model with pt~0, so that there is no clustering.

Our results show that clustering slows the epidemic and reduces

the final number ultimately infected. The system of equations 13–

17 correctly predicts the final size, while the trajectory passes

through the central mass of simulated trajectories. The analytical

model approximately corresponds to the median time for a

stochastic simulation to reach a given prevalence.

We examined the effects of clustering on the final size of the

epidemic (Figure 2). The clustering model (equations 13–17)

correctly reproduces the final epidemic size observed in simula-

tions. However, the MN percolation solution [12,13] is noticeably

biased for non-zero clustering, although it does correctly trend

downwards (Figure 3). Over-estimation of the final epidemic size

by the MN model is expected because the number of secondary

infections within a triangle is overestimated when the infectious

period is not constant, as detailed in the methods section.

To calibrate the HK model with our chosen pt, we used the

univariate generating function

G(x)~g(x,x2),

as there are two edges for every triangle. The HK clustering model

also overestimates final size for this class of random graph, which is

not unexpected, because the HK model assumes a different

mechanism for generating transitivity in the network. The lack of

alignment between the HK model and equations 13–17 indicates

that clustering can impact disease dynamics not only through

macroscopic effects such as the clustering coefficient, but also

through microscopic characteristics. As we show below, the

discrepancy between the HK and clustering models is greatest

when the variance of the degree distribution is low; and the large

discrepancy between the two models in Figure 3 occurs at the

lowest variance considered.

When we systematically explored the effects of the variance of

the degree distribution and clustering on the estimated final size of

an epidemic, we found that the final epidemic size decreases as

clustering increases (Supporting Figure 1 in Text S1). Consistent

with previous studies, the final size usually decreases as variance

increases. This can happen, for example, if the degree distribution

has more nodes with degree~1 when it is more skewed, which are

easily isolated from the giant component. There is an exception,

however, when the variance is very small, and clustering is high. In

this region, with variance between 1 and 1.5, the final epidemic

size can actually increase with larger variance.

We also examined the bias (absolute difference from the true

value) of alternative calculations of final size as a function of the

variance of the degree distribution and clustering (Supporting

Figure 1 in Text S1). The bias of percolation approximations

increases with clustering in all cases. However bias is insubstantial

when the variance is large, even if clustering is also large. This is a

result, at least in part, of the nonlinear relationship between pt and

the clustering coefficient. Given a constant fraction of links to

triangles, pt, the number of triangles in the network is

ND~
X

l,t

t|pl,t=3~g(y)(1,1)=3,

which is constant with respect to the variance of the degree

distribution (holding the mean constant). The number of paths

with two edges, that is the number of connected triples is

N3~
1

2
G’’(1)~

X
k~lz2t

pk~lz2t

k

2

� �
,

which increases with the second moment of the distribution

(
P

k pkk2). Thus, increasing the variance of the distribution

(holding the mean constant) decreases the ratio of ND to N3. The

clustering coefficient, w~3ND=N3 is more important than the

total number of triangles in determining epidemic outcomes. As

we increase variance, w converges to zero, and the clustering

model converges to the percolation and HK model solutions.

Variance and w, rather than ND, are the important quantities for

determining final size, because as the variance of the degree

distribution increases, the mean excess degree, G’’(1)=G’(1), also

increases. The number of two paths through a node of degree k is
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Figure 2. Cumulative number of infections through time. Fifty stochastic simulations (blue dashed lines) are compared to the solution of
equations (black line) 13–17. The degree distribution is generated by equation 29 with p~2=3 and r~1=2. N~5000,I(0)~10,pt~0:9,b~1:5, and c~1.
For comparison, a trajectory with pt~0 is shown in red.
doi:10.1371/journal.pcbi.1002042.g002

Figure 3. Comparison of clustering models. The degree distribution is Poisson for the number of pairs of edges (mean degree~2). The black
line corresponds to the solution of equations 13–17. The boxplots illustrate the 90% confidence interval from 50 stochastic simulations on networks
with 5000 nodes. The remaining trajectories correspond to to the original bond percolation calculations [12,13], our modified bond percolation
calculations, and the HK clustering model [19], respectively. b~1:5,c~1.
doi:10.1371/journal.pcbi.1002042.g003
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k

2

� �
. If we consider a node with mean excess degree

k~G’’(1)=G’(1), which is the mean degree of a new infected

node early in the epidemic, the probability that two neighbors of

that node are connected is

pt

k{1
~

ptG’(1)

G’’(1)
,

which will decrease as variance of the degree distribution

decreases.

To measure the timescale of epidemics, we define tp to be the

time to peak incidence, tp~argmax({ _SS(t)). When we evaluated

the influence of degree variance and clustering on the timescale of

epidemics, we found that while clustering always slows the

epidemic and increases tp, variance accelerates an epidemic and

decreases tp (Supporting Figure 2 in Text S1). We also found that

tp is much more elastic with respect to variance than pt

(Supporting Figure 2 in Text S1). The HK model is in close

agreement with the clustering model (equations 13–17), but can

differ by as much as 10% when pt is large.

The spread of infectious disease through households
Many respiratory diseases such as influenza spread through

networks of close-proximity contacts. Transmission can be

especially intense within households, where contacts are highly

clustered. The clustering of close-proximity contacts that occurs

within households is an important factor in the spread of such

diseases and such clustering has been the subject of many

mathematical models [16,33]. In this section we illustrate how

the model in equations 19–21 can be parameterized from real data

that includes household contacts. The model developed below is

designed for didactic purposes; it does not provide a realistic

representation of a specific disease spreading in a specific

population. This model excludes a number of complexities, such

as age structure, clustering of non-household contacts, and

dynamic partnerships. Nonetheless, the model illustrates the

conditions under which it is important to include clustering of

household contacts. Model misspecification can bias both model

predictions and model-based estimates of parameter values.

To parameterize this model, we used data from the POLY-

MOD study [24], which consists of a sample of 7,290 individuals

in eight European countries. These data are diary-based estimates

of the number and type of contacts sufficient for transmission of a

respiratory pathogen over a 24 hour period. Crucial for our

purposes, the data provide a breakdown of contacts made both

inside and outside of households. After pooling the data from each

country, we find that the number of contacts outside of households

was well described by a geometric distribution, which is generated

by

go(x)~
p

1{(1{p)x
, ð31Þ

with p~0:092. The geometric distribution was selected by the

minimum AIC criterion in comparison with Poisson and negative

binomial distributions fit to the data using maximum likelihood.

For household sizes, we used the empirical distribution rather than

fitting the data to an idealized distribution.To ensure that the

system is computationally tractable, we limited the maximum

household size at eight, and rounded down any households of

larger size; only 2% of households included more than eight

individuals. Letting the vector of dummy variables y~(y2, � � � ,y8)

correspond to household sizes, the following generates the

household size distribution:

gh(y)~:08z:13y2z:18y3z:21y4z:14y5z:09y6z

:06y7z:11y8:
ð32Þ

The first term in gh(y) accounts for the probability of living alone.

This model assumes that the household size is independent of the

number of contacts made outside the household. This approxi-

mation is supported by the data, which shows very low correlation

between the number of contacts reported within and outside of

households (Pearson correlation coefficient r~2:9%). Conse-

quently, the generating function for the entire system is the

product of marginal PGFs.

h(x,y)~go(x)gh(y): ð33Þ

For most respiratory diseases, it is reasonable to assume that the

transmission rate within households, bh, is greater than the

transmission rate outside of households, bo [34]. Applying the

PGF 32 to the system of equations 19–21 and using the

transmission rates bh and bo completes the model.

Figure 4 shows the final epidemic size (cumulative number of

infections) for the clique model over a range of transmission

probabilities both within and outside of households. The transmis-

sion probability is the per-edge probability that an infected will

transmit prior to recovery, and is bh=(bhzc) within households and

bo=(bozc) outside of households. The final size is much more

sensitive to bo than bh because the mean number of non-household

contacts is much greater than household contacts (10.9 versus 3.3)

and the household contacts only occur within cliques.

To determine the epidemiological significance of household

clustering, we compared the clique model to a null model that had

an identical degree distribution but no clustering. The null model

retains household contacts with the transmission rate bh, but in the

null model, such edges do not appear in cliques. In general, the

null model without clustering will over-estimate epidemic size.

Consequently, null model-based estimates of the epidemiological

importance of household contacts will tend to be inflated. The

following discussion is oriented around the estimation of epidemic

size given epidemic parameters. However, model misspecification

will also bias estimates of transmission rates and other parameters

made by fitting the network models to empirical epidemic data.

We have identified two sources of bias in the null model without

clustering:

1. Clustering by household introduces redundancies relative to

the null model that limit transmission, regardless of transmis-

sibilities.

2. When there are two classes of edges (high transmissibility and

low transmissibility), the household model aggregates the high

transmissibility edges into the redundant parts of the network.

The second factor accounts for most of the bias in this example;

clustering alone introduces little bias. For example, comparisons of the

null model and clique model with bh~bo~7:5% and c~1 show that

true final size is 29%, and the null model is biased by less than 0.36%.

The bias is greatest when transmissibility is high within

households, but low outside of households (Figure 3). Outside of

this small region, the null model can provide good approximation.

Nevertheless, there is good reason to believe that for many real

epidemics, the parameters will lie close to the region of high bias.

For example, the per-day transmissibility of influenza within
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households has been estimated to be around 5% [34], and based

on a 6 day infectious period, this implies a cumulative transmission

probability of 20–30%. If transmission rates per edge outside of

households are an order of magnitude less than household

transmission rates, the network model without clustering may be

biased by more than 25%.

Discussion

We have investigated the interactive effects of clustering and the

degree distribution of contact networks on the timescale and final size

of infectious disease epidemics. For this purpose, we developed a

model that generalizes the one presented in [17]. This model has

previously been generalized in other dimensions [18], including the

incorporation of simultaneous network dynamics, such as edge

swapping [30,35], populations with heterogeneous contact rates [36],

multiple edge types with distinct transmission rates [28], preferential

attachment [28], and growing networks with natural birth and

mortality [37]. These extensions can be combined and extended

further to model, for example, epidemics in clustered networks that

also have dynamically rearranging ties, or networks in which larger

clique sizes or other network motifs are prominent [15].

Model selection for epidemic dynamics in networks is a

challenging problem; and our work has made two contributions

to understanding the biases introduced by model misspecification.

We have shown that when infectious periods vary among

individuals, models that assume homogeneous transmissibility

across all edges in a clustered network can be very biased; and the

magnitude of this bias increases with the amount of clustering in

the network. In contrast, bond percolation models that neglect

variable infectious periods suffer negligible bias in configuration

model networks without clustering [21].

The impact of clustering and degree distributions on SIR

epidemic dynamics was previously investigated with the HK

model [19]. We have compared that model to ours by calibrating

the clustering coefficient of the HK model to match the fraction of

links to triangles in ours. Our comparison indicates that the models

are in close agreement when the variance of the degree

distribution is high, but substantial differences in the expected

final size and timescale of the epidemic exist when the degree

distribution is homogeneous and clustering is extensive. This

suggests that epidemic dynamics depend not only on the clustering

coefficient, but also on the specific nature of clustering in the

network. While the HK model is easy to parameterize when a

population has a known clustering coefficient, our model facilitates

parameterization using data with well defined cliques, such as

human populations with household structure [16,34].

This model allows the number of cliques of different sizes

connected to a node to be correlated, but assumes that no two

cliques connected to a node share other members. For example, it

is not possible for two triangles connected to a node u to share any

nodes except for u. However, this feature of the model could be

relaxed without much difficulty. A motif-based generalization of

the configuration model was recently presented in [15] which

provides one way of allowing triangles and other cliques to share

more than one node.

Contact data increasingly provide the information necessary to

parameterize network models including the one presented here.

Social network studies often ascertain degree distributions and

clustering coefficients [38,39] and epidemiological surveillance

data often provide partnership durations and measures of

concurrency [28,40]. We have demonstrated how such data can

be used to parameterize the network structure parameters of our

model, with a focus on the clustering introduced by household

structure, and we have shown the value of explicitly considering

this component of human contact patterns in epidemiological

models. Without it, models may overestimate both the epidemi-

ological risk of a population and the extent to which household

contact contribute to that risk.

Supporting Information

Text S1 Supporting information. This supplement contains sup-

porting Figures and methods. including a bond percolation solution for

final epidemic size in models with generalized distributions of clique

sizes, and a generalization of the wXY system to clique sizesw3.

(PDF)
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