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Abstract

The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is
thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave
oscillations (SWO) in the human electro-encephalogram (EEG). A computational model of the underlying mechanism
predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by
average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a
reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the
decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex
precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between
electrical stimulation and accelerated synaptic homeostasis in human sleep.
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Introduction

Human sleep is characterized by distinct sleep stages which can

be readily identified in the electroencephalogram (EEG). Of

particular interest is the activity in the 0.5–4 Hz frequency band

known as slow-wave activity (SWA). The power of SWA increases

following extended waking and decreases in power and spatial

coherence throughout the night [1,2]. SWA activity is thought to

reflect a homeostatic mechanism that regulates sleep [3]. These

changes in power have been hypothesized to result from

potentiation and downscaling of synaptic connections during

wakefulness and sleep respectively [4–9].

Homeostatic plasticity refers to a physiological feedback

mechanism that regulates average firing rates by altering synaptic

strength: high firing rates lead to synaptic depression and low

firing rates to potentiation [10]. A link between homeostatic

plasticity and sleep homeostasis is supported by the parallels

between firing rates and SWA: namely, extended waking results in

increased cortical firing rates at the beginning of sleep, and firing

rate decays again during sleep [11].

Here we consider slow-wave oscillations (SWO, 0.5–1 Hz) in

the human EEG as a marker for sleep homeostasis and its

modulation by transcranial electrical stimulation. We found that

a relatively short 25 minutes of stimulation in humans during

slow-wave sleep at the beginning of the night had a lasting effect

on homeostatic decay of SWO in the hours following

stimulation.

The effects of transcranial electrical stimulation on brain activity

have been the subject of intense investigation in the last decade

[12,13]. A number of studies show specific enhancement in human

cognitive performance including memory, language, computa-

tional, and executive function [14–17]. The mechanisms leading

to the observed cognitive effects of weak electrical stimulation in

human behavioral studies remain fundamentally unaddressed.

The current mechanistic explanation is limited to the notion of

neuronal excitability where function is ‘‘increased’’ or ‘‘decreased’’

by virtue of neuronal polarization with anodal or cathodal

stimulation respectively. However, the basic physics of current

flow calls this simple notion into question as cortical folding leads

to varying polarity across cortex making the origins of polarity

specific effects unclear [18]. Furthermore, while acute effects of

uniform week electric fields are well characterized, including

modulation of firing rates [19], it is less clear how these acute

effects translate into specific long term effects.

We hypothesized that stimulation during slow-wave sleep alters

neuronal firing rates, which would modulate homeostatic synaptic

downscaling and thus alter the homeostatic decay of SWO. A

multi-scale computational model makes this hypothesis explicit by

linking the macroscopic domains of current flow in the entire head

with the microscopic cellular effects of polarization. The model

shows that network dynamics of SWA can rectify bi-directional

polarization leading to an unidirectional increase of firing rates

and synaptic downscaling. A number of predicted effects of

stimulation on SWO are subsequently confirmed by the present

human EEG sleep data. Specifically, the data confirmed the

prediction of diminished SWO decay in the hours after

stimulation, and the multi-scale model accurately predicted the

effect sizes across multiple scalp electrodes.
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The ability to accelerate sleep homeostasis may have important

practical implications given that SWA is widely considered to be a

marker of the restorative power of sleep.

Results

SWO power and spatial coherence decay with time
during sleep

In a study on memory consolidation during sleep [14] Marshall

et al. stimulated participants during the first period of slow-wave

sleep with slow-oscillating unipolar stimulation (0.26 mA switched

on and off at 0.75 Hz). Positive (anodal) electrodes were placed

bilaterally over lateral prefrontal cortex and negative (cathodal)

electrodes over left and right mastoids. EEG was recorded

simultaneously from 11 electrodes (Figures 1.A.1, 1.A.2). To

characterize the long term effects of stimulation on slow-wave

activity, we computed here for each participant the power-

spectrum over the course of the night. Slow-wave activity (0.5 Hz–

4 Hz) is modulated in time as participants cycle through non-

REM and REM sleep stages (Figure 1.B.1, average over 10

participants). Note that the EEG data were aligned based on sleep

stages (see Materials and Methods), and sleep-stage cycle-durations

are fairly reproducible across subjects [14,20]. We estimated decay

rates of power and coherence as a linear fit on a logarithmic scale

(dB), which corresponds to an exponential decay in time (example

traces in Figure S1.A–B) [21–23]. In the present data the

homeostatic decay of power in the band of slow-wave oscillations

(0.5 Hz–1 Hz) amounted to 21.22+0.18 dB/hour (mean + sem,

p-value = 0.0001, N = 10, Student’s t-test, Figure 1.B.3, analysis

window of 4.5 h marked in black, see Materials and Methods). In

addition to changes in power, the computational model, which will

be presented in the following sections, predicted that the spatial

coherence of SWO should also decay. The coherence-spectrum

between electrode pairs was computed and averaged across all

pairs (Figure 1.C.1, average over 10 participants). In the band of

SWO, coherence decays at a rate of 20.70+0.12 dB/hour (mean

+ sem, p-value ~0:001, N = 10, Student’s t-test, Figure 1.C.3).

The present measure of spatial coherence is normalized by power.

Thus, its decay does not simply capture a decrease in power but

reflects instead a break-up of large scale coherent oscillations over

distant cortical areas consistent with recent recordings in humans

[2].

Homeostatic decay of SWO is altered by slow-oscillating
transcranial electrical stimulation

Our hypothesis on homeostatic plasticity predicted that the

decay of SWO should be altered by the transcranial slow-

oscillating stimulation administered to participants for 25 minutes

(spectrograms in Figures 1.B.2, 1.C.2). Specifically, we expected a

reduced rate of decay in both power and spatial coherence in the

hours following stimulation. This prediction was confirmed by the

present data: the post-stimulation decay rate for power averaged

over all electrodes is reduced to 20.69+0.18 dB/hour (N = 10,

paired shuffled statistics, p = 0.016, Figure 1.B.3) and similarly, the

rate of spatial coherence is reduced to 20.15+0.12 dB/hour

(N = 10, p = 0.009, Figure 1.C.3). Significant differences in decay

rate are found also when analyzing individual electrodes in

isolation (p-values corrected for false discovery rate are between

0.013 and 0.035 for all electrodes except F7 with p = 0.132) and

the same is true for coherence (p-values between 0.013 and 0.031

except T3 with p = 0.063). The wider band of SWA (0.5–4 Hz)

yielded essentially the same results (pv0.05). Changes in sleep

structure are hard to assess from the average spectrogram in

Figures 1.B-0.C. Previous analysis already dismissed possible

changes in terms of time spent in different sleep stages during the

60 minutes after the stimulation or the whole night, nor were there

differences in the number of sleep cycles [14].

In summary, as predicted, the decay of SWA, which is widely

considered to be a marker of sleep homeostasis, is reduced in the

hours following electrical stimulation. In the following section we

make quantitative predictions of this phenomenon by detailing our

hypothesis in the form of a multi-scale computational model. We

include a finite-element model of the current flow in the brain as

well as a network model for slow wave oscillations.

Transcranial electrical stimulation in humans polarizes
the cortical surface with mixed polarity

To determine the expected effects of stimulation for this specific

human experiment we first simulated the current flow in an

anatomically accurate model of the head (Figure 2.A.1, see

Materials and Methods). Electrodes were placed as in the human

experiments and currents were monophasic (ON/OFF). As a

result of the typical folding of human cortex, different cortical

regions experience electric fields of varying magnitudes and, more

importantly, of opposing polarities (blue and red in Figure 2.A.2).

Thus, neurons in adjacent cortical areas will experience opposing

membrane polarizations (Figure 2.A.3). This finding is not unique

to the specific electrode montage [18].

Slow-oscillating stimulation increases firing rate during
SWO despite mixed polarity

To examine the effect of differing stimulation polarities on

SWO we developed a simple network model of UP/DOWN state

transitions. Single-compartment excitatory and inhibitory spiking

neurons were recursively connected and arranged on a 2D lattice

(900 neurons, Figure 2.B.1). The model reproduces slow-wave

oscillations by virtue of an activity-dependent slow recovery

variable in a fashion comparable to previous models of SWO

[9,24–26] (Figure 2.B.2). The recovery variable acts to decrease

neuronal excitability after periods of high activity (UP-state) and

recovers after periods of quiescence (DOWN-state). The param-

Author Summary

Sleep pressure is reflected in the power of slow-wave
activity: it is high after extended wakefulness and gradually
decays in the course of the night. Transcranial stimulation
with slow-oscillating currents can entrain electro-enceph-
alographic slow-wave oscillations (SWO) and transiently
increase their power. Motivated by the results from a
multi-scale computational model, we tested in humans
whether 25 minutes of transcranial stimulation attenuates
the decay of SWO in the remainder of the night. A Finite-
Element Model (FEM) is used to estimate the current flow
in the brain and a network model of spiking neurons
determines the resultant effect on SWO. This multi-scale
model predicted increased neuronal firing rates leading to
accelerated synaptic downscaling. As a consequence, the
decay of SWO power and spatial coherence after stimu-
lation is reduced. In addition to reduced decay rate, the
model was also able to successfully predict, in the human
experiments, the spatial distribution of the effect across
EEG electrodes. These combined experimental and mod-
eling results suggest a mechanism by which electrical
stimulation can accelerate synaptic homeostasis and
thereby influence a putative process of sleep regulation.
The ability to accelerate the homeostatic function of sleep
may have important practical implications.

Electrical Stimulation Accelerates Sleep
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eters of the model were chosen to reproduce key features of SWO

in humans, such as oscillation frequency and coherence time, and

the firing rate of single neurons was adjusted to match animal in

vitro data (Figure 2.B.3, see Materials and Methods). Note that

network parameters were chosen here to reproduce the irregular

slow-wave pattern typical of human EEG data (i.e. short

coherence times, see Materials and Methods). These contrast the

very regular oscillations often measured in in-vitro preparations

[26,27] which can be readily reproduced by the present model by

increasing the strength of synaptic connections (see Materials and

Methods). The effects of weak-field stimulation were implemented

as a weak current injection to pyramidal neurons. The specific

model of field-to-neuron coupling was validated at multiple

frequencies in terms of firing rates, spike timing and entrainment

using rat hippocampal slice recordings [19]. The same modeling

approach was also used to model acute entrainment of slow waves

oscillations in cortical ferret slices [28].

Different areas of the network were subjected to depolarizing or

hyperpolarizing fields corresponding to the mixed polarities of the

macroscopic field distributions (Figure 2.B.1). We find that when

the network is subjected to constant current stimulation, average

firing rates during slow-wave oscillations were increased or

decreased depending on the predominant stimulation polarity

(Figure 3.A.1). However, when stimulation was turned on and off

at the same rate as the slow-oscillations (0.75 Hz), firing rate was

only increased (Figure 3.A.2). This remarkable rectification of

Figure 1. Transcranial electrical stimulation affects power and spatial coherence of human EEG during sleep. EEG is recorded from 11
electrode locations, stimulation electrodes are placed bilaterally on the scalp. A.1: In the sham condition stimulation electrodes were placed but no
current was applied. A.2: In the stimulation condition slow-oscillating (0.75 Hz) current is applied for 25 minutes at the beginning of the night. B.1–
B.2: Spectrograms of power in sham and stimulation conditions during the night in the human EEG data (average across subjects, Pz electrode). C.1–
C.2: Spectrograms of spatial coherence between Pz and other EEG electrodes. B.3: Decay rate of power in the SWO band during the analysis period
(4.5 hours after the stimulation). Colors indicate subject. C.3: Decay rate for spatial coherence in the SWO band in the analysis period. Stimulation and
sham condition differ significantly in decay rate for both power and coherence (paired shuffled statistics, N = 10 subjects).
doi:10.1371/journal.pcbi.1002898.g001

Electrical Stimulation Accelerates Sleep
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field-effects on firing rate is the result of the entrainment of the

slow-wave oscillation to the applied oscillating field as will be

explained below.

Entrainment of SWO to oscillating stimulation explains
rectification of firing rate effect

The network model suggests that weak oscillating stimulation

can entrain SWO even for very low amplitude fields (Figure S2.A)

and that entrainment results from a modulation of the duration of

the UP and DOWN state (Figures S2.B.1-S2.B.2). Entrainment, as

previously reported [14] is confirmed here with the present

analysis of EEG data (Figure S2.C.1-C.2, Pz electrode, Rayleigh

test, 5 trials per 13 subjects considered, p = 0.017). Entrainment of

UP/DOWN-state transitions for weak applied fields have also

been reported in ferret slices [28] and spiking activity was also

entrained in in vivo recordings in rat [29]. Neither study reported

any long term effects of fields on SWO.

For monophasic stimulation, as in the present study, entrain-

ment occurs regardless of polarity, but does so with opposing

phase for opposing polarities (Figure 3.A.3). In the case of

depolarizing stimulation (anodal with currents flowing into cortex),

the ON period of stimulation aligns with the UP-state, while in the

case of hyperpolarizing stimulation (cathodal with currents flowing

out of cortex), the ON period aligns with the DOWN-state

(Figure 3.A.4). The depolarizing field during the UP-state can

increase the firing rate of this active state. However, hyperpolar-

izing fields during the DOWN-state can not reduce firing rate as

the network is already quiescent.

Figure 2. Multi-scale model of transcranial electrical stimulation. A.1: A Finite-Element Model (FEM) of tissue resistance was used to
calculate electric field magnitude and direction at the cortical level in response to currents applied on the scalp. Electrodes were placed at the same
locations as in the human sleep experiments (red = anodal = inward, blue = cathodal = outward). A.2: Applied electric fields show mixed polarities
throughout cortex due to cortical folding (color indicates radial field component orthogonal to cortical surface). A.3: Cortical neurons in close
proximity may be exposed to depolarizing (inward) and hyperpolarizing (outward) radial fields. B.1: The network model consists of excitatory and
inhibitory neurons arranged in a 2D-lattice with long- and short-range synaptic connections respectively. Field magnitude and polarity of the
stimulation applied follow the FEM computations and were applied to the network depending on the location within the lattice (applied polarity
indicated with red/blue shading). B.2: Spiking activity of neurons in the network reproduces the typical UP and DOWN states of SWO. The LFP (black
line) is determined as the average of the post-synaptic currents (gray line, LFP low-pass filtered, cut-off frequency 2.5 Hz). B.3: Example of network
activity (LFP in white). Oscillation is in the range of human SWO (0.5–1 Hz). Spectrogram indicates power of this signal. Red curve indicates slow-
oscillating ON/OFF stimulation (0.75 Hz) which is applied to the excitatory neurons in the network.
doi:10.1371/journal.pcbi.1002898.g002
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Figure 3. Entrainment of network oscillations to weak electric field stimulation and effects on homeostatic synaptic downscaling.
A.1: Change in average firing rate by constant current stimulation (DC) as a function of the stimulation intensity and the fraction of neurons polarized
in either direction (depolarized and hyper-polarized). Firing rate increases or decreases depending on predominant polarity of field stimulation. A.2:
Change in average firing rate during slow ON/OFF stimulation (0.75 Hz) as in A.1. Note the rectification of the effect of fields on firing rate, which now
only increases for inward stimulation but does not decrease for outward currents. A.3: Entrainment of the network with 0.31 V/m monophasic ON/
OFF stimulation for purely cathodal (blue) or purely anodal (red) field. Note that the ON period of stimulation aligns with the DOWN state for cathodal
and with the UP state for anodal stimulation. A.4: Phase of network oscillations relative to the oscillating stimulus as a function of the same

Electrical Stimulation Accelerates Sleep
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Thus, while DC stimulation may lead to mixed effects on firing

rate across space, applying slow-oscillating ON/OFF stimulation

during SWO may rectify the effects of fields leading to an

unidirectional increase in firing rate.

Electrical stimulation affects homeostatic downscaling in
the network model

In vivo animal experiments suggest that synapses undergo

downscaling during sleep [5] and that this coincides with a

reduction in firing rates [11]. This is consistent with homeostatic

synaptic plasticity, which adapts synaptic strength so as to stabilize

firing rate to a set level [30]. We implemented here a slow,

activity-dependent negative feedback on excitatory synaptic

strength. Given the relatively high firing rate of the UP-state, this

leads to widespread synaptic downscaling (green curve in

Figure 3.B.1), and in turn, to a decrease in the power of slow-

wave oscillations in the course of time (Figure 3.B.2). Spatial

coherence of slow-wave oscillations also decreased with time

(Figure 3.B.3). Both results are consistent in direction and

magnitude with the present human EEG data (Figures 1.B.1 and

1.C.1).

We argued above that slow-oscillating stimulation leads to an

acute increase of firing rate, even at the small field intensities

expected on human cortex of less than 0.5 V/m. In the network

model this increased firing rate caused faster synaptic downscaling

(Figure 3.B.1, using a field magnitude of 0.31 V/m). With this

accelerated downscaling during stimulation, at the end of stimula-

tion, firing rates are reduced as compared to the sham condition.

Thus, with a diminished drive for downscaling, in the hours after

stimulation the rate of SWO decay was correspondingly reduced –

in power as well as spatial coherence (decays in Figures 3.B.2–

3.B.3 and results in Figures 4.A.1–4.A.2).

In the human experiment acceleration during stimulation could

not be measured directly because entrainment and stimulation

artifact distort the endogenous EEG signal. Instead, we measured

the slope of decay after stimulation (Figures 1.B.3 and 1.C.3). These

measures matched the model predictions shown in Figures 4.A.1–

4.A.2: the difference in the decay for power between the

stimulation and sham conditions in the EEG data is

0:58+0:23 dB/hour and 0:62+0:31 dB/hour in the computa-

tional model; for spatial coherence the difference in decay rate is

0:54+0:20 dB/hour and 1:43+0:78 dB/hour respectively.

Accurate spatial prediction of effect size
To further test the link between stimulation and downscaling,

we analyzed the effect size for each of the 11 recording sites. For

the human experiment the rate of decay in power was determined

for each electrode and averaged across subjects for the sham and

stimulation conditions (Figure 4.B.1–4.B.2). We ran the model

without stimulation using random synaptic weights and selected

for each location a set of weights that approximately matched

spatially the EEG sham condition in terms of their decay rate

(Figure 4.B.3). We then applied stimulation to the model of each

‘‘location’’ using the intensity distribution of fields found in the

FEM model in the vicinity of each electrode. We used the field

intensity orthogonal to the cortical surface since cell polarization is

parameters as in A.1. B.1: Applying a firing-rate dependent synaptic update rule leads to a gradual decrease of average synaptic strength given the
relatively high firing rate of the UP state. Electrical stimulation (red curve) accelerates this effect relative to sham (green curve). B.2–B.3: The
immediate effect of decreased synaptic connections is a decrease in power and spatial coherence of network oscillations. In the stimulation
condition, both power and spatial coherence after the stimulation are lower than in sham condition and they decay at a slower rate after stimulation.
The results represent N~10 simulations with randomly chosen synaptic connections, bars indicate standard error of the mean.
doi:10.1371/journal.pcbi.1002898.g003

Figure 4. Multi-scale model predicted the after-effects of the stimulation and their variation across electrode locations. A.1–A.2:
Decay rate after the stimulation for sham and stimulation condition in the computational model for power and spatial coherence. Compare this to
the measurements in the human EEG data in Figure 1.B.3–C.3. B: Spatial distribution of decay rates across the 11 scalp electrodes averaged across
subjects. 1: for EEG power in sham condition, 2: for EEG power in stimulation condition, 3: Approximate fit of network model parameters to match
human sham data for each electrode location, 4: Resulting decay rates for the location-matched network models with stimulation intensity and
polarity determined from the FEM model in a 1 cm vicinity of each electrode location. C: Change in decay rate of power for stimulation condition.
Each point represents one electrode with EEG data on vertical and multi-scale model on horizontal axis. EEG data significantly correlates with model
prediction.
doi:10.1371/journal.pcbi.1002898.g004
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approximately proportional to the field intensity in the main axis

of pyramidal cells [31]. The average value of the electric field

chosen was 0.93 V/m (in this case the stimulation is depolarizing

or hyperpolarizing for different locations of the network; see

Materials and Methods). This resulted in a decay rate for each

‘‘location’’ as shown in Figure 4.B.4. The spatial distribution is

remarkably similar to the one observed in the human EEG.

Indeed, the effect size of stimulation versus sham across electrodes

was significantly correlated with the predicted values (N = 11

electrodes, r2~0:47, p = 0.02, Figure 4.C).

In summary, the model not only explained the systematic

reduction in decay rate of SWO power after stimulation despite

mixed polarity stimulation, but it also predicted the effect size in

each location by considering the specific mix of polarities near

each electrode.

Discussion

Slow-wave activity has long been associated with the restorative

function of sleep [32] and recovery from wakefulness [5,21]. EEG

slow-wave oscillations reflect periodic transitions between UP and

DOWN states broadly distributed over the cortex [33] and are

thought to be involved in plastic mechanisms [34]. The power of

SWA has been linked to learning; for instance, practice on a

visuomotor task preceding sleep increases SWA and its strength

correlates with task performance following sleep [6,8]. SWA is also

hypothesized to play a crucial role in memory consolidation by

virtue of its ability to group the activity of various brain rhythms

[35] (e.g. hippocampal ripples; [36,37] and thalamo-cortical

spindles [38].)

A predominant feature of SWA is its decay in the course of the

night. Many investigators attribute this decay to homeostatic

downscaling of synaptic strength [5,6,9]. In their view, synaptic

connections that became stronger during wakefulness are reduced

in magnitude during sleep. Consistent with homeostatic synaptic

plasticity, this decrease coincides with a reduction in firing rates

[11]. Homeostatic plasticity represents a negative feedback that

adapts synaptic strength resulting in a steady level of neuronal

activity [10]. Synaptic downscaling during sleep has been

postulated to serve a number of important functions, such as

maintaining computational efficiency of the brain by increasing

the signal-to-noise ratio of synaptically decoded information [35];

allowing maximum storage efficiency while preventing hyperac-

tivity [39]; and maintaining synaptic normalization [40]. The

physiological substrate for the scaling of synaptic connections

could be explained by considering that the levels of neuromod-

ulators strongly differ from waking to NREM sleep, for example

the concentrations of acetylcholine [41,42] and norepinephrine

[43] are significantly altered. Alternatively, spike-timing dependent

plasticity (STDP) during neuronal bursts in slow-wave sleep may

favor synaptic depression [44]. Downscaling has also been

proposed to results from bursts of activity leading to long-term-

depression during NREM sleep [45]. Recent studies also point to a

possible role of glial cells in determining synaptic scaling. [46].

We previously showed that slow-oscillating transcranial electri-

cal stimulation can modify endogenous slow oscillatory activity on

a short term basis [14]. The question for the present work was

whether cortical homeostatic mechanisms are influenced by slowly

oscillating transcranial stimulation.

Anatomically accurate models of current-flow in transcranial

stimulation estimate that the electric fields induced at the cortical

level for a typical 2 mA stimulation are at most 1 V/m [18]. This

may polarize a cell by no more than a fraction of a millivolt

[31,47]. While these intensities seem very small, there are a

number of in vitro and in vivo experiments explaining the basic

mechanisms by which such low-amplitude electric fields may

nevertheless acutely alter neuronal activity, both at the single cell

[48] and at the network level [19,49–51]. In particular, it has

already been shown, both experimentally and using computational

models [19,28], that the effects resulting from the modest

membrane polarization of isolated neurons are significantly

amplified on the network level due to the dynamic nature of

network activity. This can result in altered firing rates and altered

oscillatory rhythms. For instance, the modulation of gamma

activity with theta oscillations in the hippocampus is conceivably

entirely due to the small fields generated endogenously in the theta

band [19]. Similarly, slow-wave activity can be entrained by very

weak endogenous fields in vitro [28] or weak applied currents in vivo

[29]. Most importantly, however, there are a multitude of studies

in human showing long term plastic effects (e.g. [13,52–56], just to

name a few). These are often simply described as lasting changes in

neuronal excitability [57]. However, the mechanisms by which

weak stimulation could modulate/induce plasticity are less well

understood. In humans, both enhancing and suppressing effects

have been found with either polarity of stimulation. Some studies

argue that depolarizing currents enhance glutamatergic or NMDA

dependent Hebbian-type plasticity [58,59], while other studies

have invoked homeostatic plasticity [60]. Lasting effects on

synaptic efficacy have only recently been found in vitro [61,62].

These studies demonstrate that very specific conditions on network

activity are required in addition to weak-field stimulation in order

to observe lasting changes in synaptic efficacy [63].

In the present study we have aimed to provide a detailed

explanation of how weak fields, which are capable of modulating

network firing rates [19], may alter ongoing homeostatic plasticity,

and how this translates into observable macroscopic effects on

EEG slow-wave oscillations. Crucial for our predictions was a

network model of slow-wave oscillations that is based on UP/

DOWN state transitions. We showed that SWO entrain to weak-

field slow-oscillatory stimulation consistent with experiments in

vitro [28] and in vivo [29]. We also confirmed entrainment here

again on the human EEG data (Figure S2.C.1). The model

exhibited entrainment for depolarizing, hyperpolarizing and

mixed polarity stimulation (Figures 3.A.3–3.A.4). Importantly,

we demonstrate how this entrainment rectifies the effects of fields

of mixed polarity to result only in increased firing rates

(Figure 3.A.2). When combined with homeostatic plasticity, the

model reproduced slow-wave decay in power similarly to previous

more complex computational models [9] (Figure 3.B.2). Interest-

ingly, the present model also reproduced the recently observed

breakup of global coherent oscillations [2] reflected here in

declining spatial slow-wave coherence (Figure 3.B.3) – a finding

that we confirmed also in the human EEG data (Figure 1.C.1). We

used a simple negative feedback on firing activity to implement

homeostatic plasticity. Specifically, the model predicted that an

acute increase in the firing rate results in a faster homeostatic

downscaling of synapses. Thus, we predicted a reduced decay of

slow-wave decay (in power and coherence) in the hours after

stimulation (Figure 3.B.2–B.3). Human SWO subsequent to

stimulation were indeed modulated as predicted (Figure 1.B.3–

C.3). The results are further confirmed by the precise agreement of

model predictions with the varying effect size observed across

electrodes (Figure 4.B–4.C).

The choice of a target firing rate was made to reproduce the

experimentally observed decrease in firing rate during slow-wave

sleep as reported in in-vivo experiments [11]. Previous models of

SWO implemented a reduction of synaptic strength explicitly [9]

or implicitly using STDP [64]. More complex models of plasticity,
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such as the BCM model [65] are expected to lead to similar

predictions.

An alternative interpretation of the observed reduction in decay

rate after stimulation may be an alteration of sleep stages, e.g. the

first slow waves stage was disrupted. However, it is not clear how

this hypothesis would lead to different effects at different electrode

locations. It is also possible that fields have a direct effect on

synaptic strength, but current literature suggests that very specific

conditions need to be satisfied for plastic effects to be observed.

While we made no direct observation of firing rates nor synaptic

strengths, the agreement between the present multi-scale model

and the human EEG data does support the hypothesis that field-

induced cell polarization results in an increase of firing rate and

that this accelerates synaptic downscaling during oscillatory

transcranial stimulation.

Materials and Methods

Human EEG data after stimulation in sleep
EEG data was recorded on human subjects from the beginning

of the night sleep until wake the next morning in the study

described by [14]. Briefly, transcranial stimulation with slow-

oscillating currents (ON/OFF at 0.75 Hz with trapezoid wave-

form) was performed after subjects had attained stable stage 2 or

deeper non-rapid eye movement sleep (according to [66]).

Stimulation was repeated altogether 5 times for 5 minutes

followed by 1 minute intervals without stimulation (total of

25 minutes stimulation plus four one-minute intervals). Anodal

stimulating electrodes were placed bilaterally at F3 and F4 and

cathodal electrodes on mastoids M1 and M2 (10/20 system,

Figure 1.A.1). Current intensity on each hemisphere oscillated

between 0.26 mA (on) and 0.0 mA (off) and was below perception.

To assure that stimulation intensities were below perception

thresholds we stimulated subjects for 10 seconds (active and sham)

when subjects where in bed but lights were still on. Immediately

after, subjects were asked whether they had felt anything on their

head. The subjects responses did not differ between the active

stimulation or sham stimulation, indicating that the stimulation

was indeed below perception. Note that the stimulation used in the

study are significantly lower than the maximum used during

transcranial stimulation (2 mA, [13,55]) and so well below the

current amplitudes considered safe for human studies [67,68]. To

test further for possible side effects, heart rate was monitored

during sleep, i.e. during stimulation and thereafter. No obvious

changes in heart rate were observed during the stimulation. The

experimental protocol was approved by the ethics committee of

the University of Lübeck.

For the present analysis EEG data with complete sleep scores

included 10 subjects for the sham conditions and 13 subjects with

active stimulation. Paired tests were thus limited to 10 subjects.

Acute entrainment of EEG to the oscillatory stimulation on this

data has been previously reported [14]. However, this previous

analysis did not consider the phase of entrainment nor slow-wave

spatial coherence, and more importantly, it did not analyze long

term decay of SWO in the hours following stimulation.

Power and spatial coherence changes in the human EEG

data. Slow-wave power varies significantly with different sleep

stages. In order to compare slow-wave power from different

recording sessions it is therefore important to align sleep stages.

The EEG data were aligned to the first uninterrupted 1 minute

period in sleep stage 2. With this, the SWO power (0.5–1 Hz) in

the minute preceding the stimulation period did not differ between

sham and stimulation conditions (N = 10 and N = 13 for sham and

stimulation conditions respectively, p~0:63, two-sample Kolmo-

gorov-Smirnov test). SWO power was measured for each electrode

in periods of 40 seconds by averaging power in the corresponding

frequency bins after Fourier transform. Spatial coherence was

determined from the normalized cross-correlation by Fourier

transforming, squaring, and averaging across SWO frequency

bins. Values are computed for each electrode by averaging

coherence of all pairs involving the electrode. These power and

coherence measures are obtained for all 40 seconds intervals.

Their decay rate during the night was measured as the slope of

these curves using a linear robust fit. The fit considered a 4.5 hour

period starting at the end of the stimulation until 30 min before

the end of the shortest signal (to avoid contamination from

awakening). Non-parametric statistics were obtained by random-

izing the labels (sham vs stimulation) and computing mean decay

rates with random labels. p-values were computed using these

shuffle statistic. Correction for multiple comparisons across

electrodes controlled the false-discovery rate (FDR).

Computational model
Single-cell model. We restrict our model to a single

compartment neuron. This simplification omits the effects of

fields on the dendritic arbors [47] yet is sufficient to describe effects

on spiking activity [19,48]. We used Izhikevich’s model [69,70]

with a set of parameters that reproduces the physiological spiking

behaviors of cortical neurons. The equations describing the

neuronal dynamics and the details on the network model can be

found in [69] and in our previous study [19].

Network model. The network model consists of Ne~720
excitatory neurons and Ni~180 inhibitory neurons arranged at

random on a 2D lattice. When a spike is elicited by neuron m the

synaptic input current to neuron n is given by the synaptic currents

of AMPA and NMDA channels (for excitatory pre-synaptic

neurons) and GABAA, GABAB channels (for inhibitory pre-

synaptic neurons). The synaptic conductances are described by a

first-order linear kinetics _ggx~{gx=tx (where x = AMPA, NMDA,

GABAA, GABAB) with tAMPA~1 ms, tNMDA~100 ms,

tGABAA
~6 ms, tGABAB

~150 ms. When a pre-synaptic neuron

fires an action potential, the synaptic conductance of the post-

synaptic neuron increases in average by sexc~0:0085 or sinh~0:05
for excitatory or inhibitory connections respectively. The synaptic

currents are then [70]:

Isyn(t,n,m)~ws(n)(gAMPA(Vexc{V (t,n))z

zgNMDA
½(V(t,n)z80)=60�2

1z½(V (t,n)z80)=60�2
(Vexc{V (t,n)))z

zgGABAA
(Vinh{V (t,n)z

zgGABAB
(Vinh{V (t,n))

ð1Þ

where ws(n) represents a modulatory homeostatic factor (see

below), the conductances are gAMPA~1, gNMDA~2, gGABAA
~1

and gGABAB
~0:1, Vexc~0 mV, Vinh~{90 mV are the reversal

potentials for excitatory and inhibitory synapses respectively.

Neuron receive excitatory input from a 565 neighborhood and

inhibitory input from a 363 neighborhood with periodic boundary

conditions. In any simulation run, parameters of the Izhikevich

model as well as synaptic strength sexc and sinh were chosen at

random following a normal distribution with standard deviation

equal to 5% of the average value.

Model for the generation of slow-wave oscillations. At

the network level, slow waves oscillations are thought to reflect a

periodic transition between an active ‘‘UP’’ state and a quiescent
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‘‘DOWN’’ state. To simulate elevated firing activity of the UP

state we increased the level of intrinsic excitability of neurons by

increasing the variable b in Izhikevich’s voltage equation [69]. If

firing rate in such an active UP state is very high then a variety of

factors may contribute to a gradual decay of neuronal excitability.

Thus, we made the dynamics of this variable b activity-dependent

to reflect a negative feedback. Specifically, in our model the

instantaneous firing rate of a neuron modulates the excitability of

that same neuron as follows:

b(t)~bmax{mR(t) ð2Þ

where bmax is the value of the parameter b in steady state

conditions (0:25 and 0:28 for excitatory and inhibitory neurons

Figure 5. Slow waves features in the computational model. A.1: Simulated local field potentials (LFP) in the computational model (low-pass
filtered, cutoff frequency 2.5 Hz). A.2: Human EEG signal during slow-wave sleep (low-pass filtered, cutoff frequency 2.5 Hz). B: Dependence on
excitatory connections strength of firing rate during the UP and DOWN states (B.1), power (B.2), main frequency (B.3) and coherence (B.4) of slow-
wave oscillations (n = 5 simulations per data point, error bars indicate standard deviation). C.1: Example of auto-correlation of slow waves in the
human EEG experiments (average of 5 subjects). C.2: Auto-correlation of simulated slow waves increasing the strength of excitatory connections. D:
Example of simulated slow waves oscillations in the case of high synaptic connection strength (sexc~0:01).
doi:10.1371/journal.pcbi.1002898.g005
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respectively); R reflects the neuron’s firing rate (low-pass filtered

spike train with time constant 0.9 s) and m is a proportionality

constant (set in the simulations to 6). Physiologically, such a

negative feedback on excitability with this time scale has been

variably ascribed to neuromodulators (acetylcholine, norepineph-

rine), ionic concentrations (potassium and calcium), ionic channels

(Ca2z-dependent potassium channels, persistent sodium channels)

or metabolic support.

UP/DOWN states can result from activity-dependent

slow recovery dynamics in a balanced excitatory/

inhibitory network. The negative feedback on excitability

down-regulates excitability so that the active UP state is eventually

exhausted and comes to an end. The network thus enters a

quiescent state with little, if any activity. This DOWN state persists

until b recovers, at which point any small perturbation can jump-

start the UP-state, propagating like an avalanche through the

network [71]. This network model reproduced the regular UP and

DOWN states transitions typical of slow-wave oscillations

(Figures 2.B.2). In the network model we take the post-synaptic

currents averaged across all neurons as a measure of local-field

potentials (LFP) – since physiological LFPs are thought to reflect

synaptic activity. With the present parameter settings the

frequency and bandwidth of the network LFP was in the range

of 0.5–1 Hz (Figure 5.A.1). This is the dominant band of slow-

wave activity (0.5–4 Hz) in the human EEG (Figures 5.A.2) and is

referred to as slow-wave oscillation [38]. For Figures 3 and 4 the

LFP was estimated in four subregions of the network (in arrays of

11611 neurons) and each LFP treated analogously to the multiple

electrodes in the EEG. From these LFPs power and spatial

coherence were calculated in the same way than the EEG data.

Power and coherence of slow-wave oscillations depend on

synaptic strength. In the model the firing rate during the UP

states and the power of slow-waves depend strongly on the

strength of excitatory connections, sexc (Figures 5.B.1–5.B.2). The

configuration of parameters chosen here simulated UP states with

an average firing rate of *5 Hz, compatible with slice experi-

ments (2–10 Hz, [27]). Stronger excitatory connections would

produce higher firing rate and stronger power of slow-waves, but

the parameters where chosen to replicate the irregular EEG

rhythms, as seen in Figure 5.A.2. In particular, while the frequency

of the oscillations does not depend strongly on the range of

excitatory connections (in the 0.5–1 Hz range, Figure 5.B.3), a

critical characteristic of slow-wave oscillations in human EEG data

is the short coherence time (*3 cycles, measured from the EEG

data, Figure 5.C.1). The strength of excitatory connections

(sexc~0:0085) was chosen to reproduce the short coherence time

of EEG data (Figure 5.B.4–5.C.2). Increasing the strength of

excitatory connections allows to reproduce the strongly regular

pattern typical of slow-wave activity induced in brain slices

(Figure 5.D).

Model of effect of electric field. Most somata of inhibitory

neurons remain largely unaffected by extracellular fields due to

their symmetric location between dentritic arbors [31]. In contrast,

somata of asymmetric pyramidal cells are incrementally polarized

by uniform extracellular fields proportionally to the applied field

magnitude E [47,48]:

DV~kEE ð3Þ

where kE is the sensitivity of the membrane to the field and

depends on cell geometry and field orientation. We simulated here

the effects of the field as a current injection to each excitatory

neuron. This approach have been already successful in describing

the effects of weak fields on gamma activity in rat hippocampal

slices [19] and on slow waves in ferret cortical slices [28]. A

capacitive term in Izhikevich’s model converts this current input

into a low-pass filtered membrane voltage response. Specifically, a

current IE results in a steady-state incremental polarization DV above

the resting membrane potential. With the present parameters the

relationship between injected current and induced polarization was

measured as DV~(0:64+0:02):IE where DV is in mV. We assume

that a 1 V/m electric field can polarize the soma by 0.2 mV

(kE~0:2 mm, typical value for rat hippocampal pyramidal cells).

With this we can estimate the relationship between electric field and

applied current as E~
1

0:2
:DV~5:(0:64+0:02):IE . All figures use

this conversion term when displaying values of electric field.

The total input current I to the n-th neuron is then given by:

I(t,n)~

P
m Isyn(t,n,m)zIE(t), for n excitatory,P
m Isyn(t,n,m), for n inhibitory:

�
ð4Þ

Model for homeostatic plasticity. There are different

known types of homeostatic plasticity, involving different possible

mechanisms [10]. The plasticity considered here affects the

excitatory synaptic connections based on the firing rate of the

Figure 6. Workflow to use the FEM analysis with the computational model. A: Example of distribution of the normal component of the
electric field under the electrodes considered in the FEM analysis (in this case Pz electrode). B: Radial field magnitudes in A were sorted and sampled
in 30 location (3.12 percentile extremes were excluded). C: The sampled electric fields are then used for each column of neurons in the 2D lattice of
the network model.
doi:10.1371/journal.pcbi.1002898.g006
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post-synaptic neuron n [72],

tw

Lws

Lt
(t,n)~{ws(t,n)(r(t,n){rt) , ð5Þ

where ws is a factor that modulates excitatory synapses only, tw is

the time constant of this long-term process (minutes), r(t) is the

instantaneous firing rate of the post-synaptic neurons computed as

the inverse of the inter-spike interval (ISI) and rt is the target firing

rate. This homeostatic rule states that inputs to a post-synaptic

neuron that is spiking faster than the target firing rate become

weaker, while inputs to neurons not firing enough become

stronger. The values of the constant were chosen as tw~400 s
and rt~1 Hz. These values were chosen to reproduce changes of

SWO power comparable with those measured during the night in

the human EEG experiments.

Finite Element Model of transcranial electrical stimulation
The FEM computations follow a previous study [18]. Briefly, an

anatomical MRI with 1 mm resolutions for an adult male was

segmented and different tissues (gray matter, white matter,

cerebrospinal fluid, skull, scalp, eye region, muscle, air, and blood

vessels) were assigned conductivity values from the literature.

Virtual electrodes were placed as in the human experiment and a

finite-element mesh was generated. To compute electric field

distribution in the brain the Laplace equations with Neumann

boundaries were solved in COMSOL Multiphysics 4.2 (Burling-

ton, MA) with electrodes drawing 0.26 mA. The radial component

of the resultant electric field was computed as the dot product of

field vectors with a unit vector that is normal to the cortical

surface. These radial components were collected in a volume of a

35 mm diameter around each EEG electrode (Figure 6.A shows

radial fields at mesh points of the FEM within such a volume).

These values were then sorted (Figure 6.B) and the resulting field

profile was applied along one direction of the 2D network lattice

(Figure 6.C). The top and bottom 3.12 percentile were exclude

and amplitudes scaled to an average of 0.93 V/m.

The fields computed by the FEM are significantly smaller than

what we used in the network simulations. However, there are a

number of parameters that may magnify the specific effect size.

The polarization of the cell membrane in response to applied fields

used here was based on in-vitro experiments in rat [48]. Human

cortical cells are larger, which may result in larger membrane

polarizations [31]. More importantly, we observed for the present

model that the effect of polarization on network firing rate is an

increasing function of the number of incoming synaptic connec-

tions (Figure 7). A realistic network architecture with hundreds if

not thousands synaptic inputs is thus expected to lead to a larger

effect size.

Supporting Information

Figure S1 Example traces of the analysis performed on the EEG

data. The decay of slow-wave oscillations was estimated by fitting

(in a log-scale) power and spatial coherence after the stimulation

(see Materials and Methods). A–B: Decay of the power of slow-

wave oscillations during the night (Fz electrode, green: sham

condition, red: stimulation condition) for two representative

subjects.

(TIFF)

Figure S2 Entrainment of slow oscillatory activity by applying

weak electrical stimulation. A: Coherence (mean vector strength,

maximum = 1) between model LFP and applied slow-oscillating

field as a function of field intensity and fractions of neuron

polarized in either direction. B.1: Relative change of the duration

of the DOWN state in the case of cathodal (blue) or anodal (red)

stimulation (0.31 V/m). B.2: Relative change of the duration of

the UP state in the case of cathodal (blue) or anodal (red)

stimulation (0.31 V/m). C.1: Entrainment of slow-wave oscilla-

tions immediately after the stimulation in the human EEG data

(shown here for Pz electrode). The dark gray bar indicate the 10 s

interval (delimited by the dashed magenta line) where the

distribution of phases of the oscillations across trials and subjects

is significantly different from being uniform. The same analysis

performed on the following 10 s does not produce results

statistically different from a uniform distribution (no preferential

phase). C.2: Distribution of phases relative to figure C.1
considering all the trials and all the subjects. The 5 stimulation

periods for all the subjects were aligned and the exponential decay

from the AC-coupled amplifier was removed. The residual was fit

Figure 7. The effects of electric fields on firing rate depend on synaptic connectivity. Normalized change in the average neuronal firing
rate as a function of the number of neurons in the network model (A) or the numbers of pre-synaptic excitatory inputs (B). C: Same than in B but
with constant total synaptic input. Effect of fields on firing rate depends on number of input synapses and not network size.
doi:10.1371/journal.pcbi.1002898.g007
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to as sinusoid in frequency, phase and amplitude. Entrainment

phase was only analyzed for the Pz electrode as this was the

electrode with the smallest stimulation artifact. Note that the EEG

recording equipment was AC-coupled resulting in a constant

phase delay. Thus absolute value of phase is not relevant here.

Nevertheless, a consistent phase across subjects despite anatomical

differences is indicative of the predicted entrainment to a preferred

phase.

(TIFF)
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