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Abstract

Systematic identification of protein-drug interaction networks is crucial to correlate complex modes of drug action to
clinical indications. We introduce a novel computational strategy to identify protein-ligand binding profiles on a genome-
wide scale and apply it to elucidating the molecular mechanisms associated with the adverse drug effects of Cholesteryl
Ester Transfer Protein (CETP) inhibitors. CETP inhibitors are a new class of preventive therapies for the treatment of
cardiovascular disease. However, clinical studies indicated that one CETP inhibitor, Torcetrapib, has deadly off-target effects
as a result of hypertension, and hence it has been withdrawn from phase III clinical trials. We have identified a panel of off-
targets for Torcetrapib and other CETP inhibitors from the human structural genome and map those targets to biological
pathways via the literature. The predicted protein-ligand network is consistent with experimental results from multiple
sources and reveals that the side-effect of CETP inhibitors is modulated through the combinatorial control of multiple
interconnected pathways. Given that combinatorial control is a common phenomenon observed in many biological
processes, our findings suggest that adverse drug effects might be minimized by fine-tuning multiple off-target interactions
using single or multiple therapies. This work extends the scope of chemogenomics approaches and exemplifies the role that
systems biology has in the future of drug discovery.
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Introduction

Identification of protein-ligand interaction networks on a

proteome-wide scale is crucial to address a wide range of

biological problems such as correlating molecular functions to

physiological processes and designing safe and efficient therapeu-

tics [1]. Recent protein-ligand interaction studies have revealed

that protein targets involved in entirely different pharmacology

can bind similar small molecule drugs [2–4]. Large scale mapping

of polypharmacology interactions indicates that drug promiscuity

is a common phenomenon across the proteome [5]. It has been

found that approximately 35% of known drugs or leads were

active against more than one target. Moreover, a significant

number of promiscuous compounds (approximately 25%) have

observed activity in completely different gene families. Such drug

promiscuity presents both opportunities and challenges for

modern drug discovery. On one hand, it is possible to develop

high-efficacy drugs by inhibiting multiple targets [6] or to

reposition existing drugs to treat different diseases [7,8]; on the

other hand, the off-target effect may result in adverse drug

reactions that account for around one-third of drug failures during

development [9]. As a result, there is increasing interest in the

identification of multiple targets associated with a phenotype [6]

and in developing combinatorial therapies to boost clinical efficacy

[10]. Chemogenomics has emerged as a new discipline to

systematically establish target relationships based on the structural

and biological similarity of their ligands [3,11–18]. However, the

success of chemogenomics depends on the availability of

bioactivity data for the receptors and their associated ligands.

For new drug targets, such data are either insufficient or

unavailable. Further, the adverse drug reaction may involve

receptors that are not well characterized. Complementary to

chemogenomics methods, we have developed a chemical systems

biology approach to identifying off-target binding networks

through their ligand binding sites. The method requires 3D-

structure information for the protein but not the ligand, thereby

extending the scope of existing chemogenomics approaches.

Moreover, the identified off-target binding network is integrated

with the reconstructed biological pathways so that the effect of the

drug on the biological system can be understood at the system

level. In brief (see Methods for further details), our chemical

systems biology approach proceeds as follows: 1) The ligand

binding site of the primary target is extracted or predicted from a

3D experimental structure or homology model and characterized

by a geometric potential [19]. 2) Off-target proteins with a similar

ligand binding site to the primary target are identified across the

human structural genome using a Sequence Order Independent

Profile-Profile Alignment (SOIPPA) [20]. The atomic details of the

interactions between the drug and the putative off-targets from

step 2 are characterized using protein-ligand docking methods.
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Based on a normalized docking score the high-ranking off-targets

are further investigated. 4) The identified panel of off-targets is

subject to structural and functional cluster analysis and incorpo-

rated into a network that includes multiple metabolic, signal

transduction, and gene regulation pathways. The first and second

steps have been implemented in the software package SMAP,

available from http://funsite.sdsc.edu.

In this paper, we apply this strategy to identify and analyze a

panel of unknown off-targets for Cholesteryl Ester Transfer

Protein (CETP) inhibitors. CETP inhibitors represent a new

preventive therapy for cardiovascular disease through raising HDL

cholesterol. However, clinical studies have revealed that one of the

CETP inhibitors, Torcetrapib, has deadly off-target effects as a

result of hypertension [21–25] and consequently was withdrawn

from phase III clinical trial. In contrast to Torcetrapib, another

CETP inhibitor JTT-705 does not have unwanted side-effects that

increases blood pressure [25]. In addition, JTT-705 is able to block

cell proliferation and angiogenesis through Ras and P38 kinase

pathways [26]. As will be shown, the multiple off-targets of these

CETP inhibitors identified here are involved in both positive and

negative control of stress regulation and immune response through

an interconnected metabolic, signal transduction and gene

regulation network. Our predictions are strongly correlated to

the observed clinical and in vitro observations, providing a

molecular explanation for the difference in side-effect profiles of

these two CETP inhibitors. These findings suggest that adverse

drug reactions might be modulated by the fine-tuning of the off-

target binding network and exemplify the role of systems biology

in the future of drug discovery.

Results

CETP off-target binding network computed for the
human structural genome

The ligand binding site of CETP (PDB id: 2OBD) is assumed to

be a long tunnel interacting with two cholesteryl oleates (2OB) and

two 1,2-dioleoyl-Sn-glycero-3-phosphocholines (PCW) molecules

in the native state (Fig. S1), however, the exact location of inhibitor

binding is unknown. Docking studies using the software Surflex

[27], eHits [28] and AutoDock [29] indicate that the CETP

inhibitors are able to bind to all four sites, with a slight preference

for the pocket occupied by PCW. Thus, all four sites were used to

search for the off-target binding sites of CETP inhibitors.

Although only approximately 15% of human proteins have

known 3D structures deposited in the Protein Data Bank (PDB)

[30] , the structural coverage of the human proteome increases to

57% if homologous proteins are included (e-value less than 1.0e-3

and aligned sequence lengths greater than 30 residues using a Blast

[31] search). The structural coverage is reduced to around 40% if

the aligned length is greater than 120 residues (Fig. S2). After

removing structures with redundant sequences (sequence identi-

ty = 100%), 5,985 structures and models from the PDB were

selected for off-target search by SMAP. Besides bactericidal/

permeability increasing protein (PDB Id: 1ewf) that is classified in

the same fold and Pfam [32] family as CETP (FATCAT [33] p-

value = 1.26e-11, RMSD = 4.53), 273 off-fold structures are found

with similar binding sites to CETP (SMAP p-value less than 1.0e-

3). Reverse virtual screening of the 273 structures against JTT-

705, the smallest CETP inhibitor, was carried out with Surflex

[27] and eHits [28] (see Methods) to detect the binding capability

of these proteins. To reduce the impact of protein flexibility, the

complex structure, whenever available in PDB, is used for docking.

Proteins that have steric crashes with JTT-705 were removed from

the list and a panel of CETP off-targets consisting of 204 structures

was constructed for further study as shown in Table S1. The

majority of these off-targets have binding sites that match to one of

the two sites that are adjacent to PCW in CETP. Excluding

cytochrome P450s that bind drugs promiscuously, most of the

putative off-targets are involved in lipid/fatty acid transport or

binding, signal transduction pathways and immune response.

Based on both SMAP p-values and docking scores (p-value,1.0e-

3, Surflex score.3.50 and eHiTs score,24.50), six classes of

structure were consistently found at the top of the list: CD1B like

antigen recognition domains (CD1B); nuclear hormone receptor

ligand binding domains (NR); lipid transport proteins (LPTP); fatty

acid binding proteins (FABP); EF hand-like calcium binding

proteins (EF); and heme binding proteins (HEME). The first four

classes of proteins are able to bind cognate ligands similar to those

that bind to CETP, such as fatty acids, lipoproteins, and lipids

[34]. Although these putative off-targets do not have detectable

global structural similarities to CETP according to their CE Z-

scores (Fig. S3), they have local structural similarity and are related

to each other, forming an interconnected off-target network. As

shown in Fig. 1, 76% of the putative off-targets (154/204) form the

three largest clusters. The largest helix bundle cluster includes NR,

EF, HEME and other proteins (Fig. S4). In this paper, we focus on

the six selected classes of proteins and demonstrate how they

correlate to the clinical findings. Other putative off-targets are

subject to on-going computational and experimental studies.

Structural characterization of CETP off-targets
Most of the predicted ligand binding sites of CD1B, LPTP, and

FABP have a similar topology to that of CETP. The drug molecule

binds to a cavity formed by anti-parallel beta-sheets and capped by

other structural components such as a helix. The others, NR, EF,

and HEME all have alpha-helical architectures that are com-

pletely different from the secondary structure surrounding the

binding site of CETP. These differences illustrate the necessity of

tools like SMAP that can find local structural similarities even

when global similarity is non-existent. From a functional

perspective, it is not surprising that lipid binding proteins act as

off-targets for CETP inhibitors since they are required to bind

similar cognate hydrophobic ligands such as PCW. It is

noteworthy that glycolipid transfer protein, one of the lipid

binding proteins, has significant structural similarity to nuclear

Author Summary

Both the cost to launch a new drug and the attrition rate
during the late stage of the drug discovery and develop-
ment process are increasing. Torcetrapib is a case in point,
having been withdrawn from phase III clinical trials after 15
years of development and an estimated cost of US $800 M.
Torcetrapib represents a new class of therapies for the
treatment of cardiovascular disease; however, clinical
studies indicated that Torcetrapib has deadly side-effects
as a result of hypertension. To understand the origins of
these adverse drug reactions from Torcetrapib and other
related drugs undergoing clinical trials, we introduce a
systematic strategy to identify off-targets in the human
structural proteome and investigate the roles of these off-
targets in impacting human physiology and pathology
using biochemical pathway analysis. Our findings suggest
that potential side-effects of a new drug can be identified at
an early stage of the development cycle and be minimized
by fine-tuning multiple off-target interactions. The hope is
that this can reduce both the cost of drug development and
the mortality rates during clinical trials.

Off-Target Network and Drug Side Effects
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hormone receptors. For example, the FATCAT [33] p-value is

1.77e-3 when comparing one glycolipid transfer protein (PDB id:

1TFJ) with that of retinoid X receptor (PDB id: 1YOW), but the

RMSD is 9.82 Å for a rigid superimposition. However, if the

components of these structures are allowed to twist, the RMSD

drops to 2.57 Å when the helices surrounding the binding site are

well aligned (Fig. S5). The structural similarity between glycolipid

transfer protein and other all-helical proteins increases confidence

in our result that the lipid-activated nuclear receptor (NR) is one of

the major off-targets of CETP inhibitors.

Functional correlation of CETP with off-targets
We searched for possible functional correlations between CETP

and the putative off-targets using the iHOP [35] literature network

(http://www.ihop-net.org/UniPub/iHOP/in?dbrefs_1=NCBI_

LOCUSLINK__ID|1071). Several top-ranked off-targets ap-

pear in the same sentences with each other more than 3 times in

the literature. They include phospholipid transfer proteins,

nuclear receptors, including PPAR, major histocompatibility

complex class II that is similar to CD1B, apolipoprotein A-1,

and angiotension I converting enzyme.

The functional similarity between CETP and the off-targets is

further quantitatively measured using gene ontology (GO)

relationships found with the FunSimMat web server [36]

(http://funsimmat.bioinf.mpi-inf.mpg.de/index.php). From 204

off-targets, 148 structures had annotated GO terms and 94

structures had detectable similarities with a Resnik score [37]

larger than 0.0. Among these 94 structures, lipid transport/

binding proteins, CD1B, and nuclear hormone receptors were

ranked top, followed by globin-like, EF hand-like and other

proteins (Table S2).

Binding affinity similarity between CETP and off-targets
To further support our off-target predictions we conducted

docking studies on CETP and the identified off-targets, which also

provides insights into the molecular mechanisms of off-target

binding. It has been established that the binding affinity calculated

from docking programs is not necessarily reliable [38–40]. When

using an energy-based scoring function, the errors come

predominantly from the inaccurate parameterization of the

individual energy terms. We find that the docking scores for

CETP and its putative off-targets are linearly dependent on the

number of carbon atoms on the docked molecules because the

hydrophobic term dominates the scoring (Fig. S6). Based on this

observation we developed a procedure to minimize the systematic

error in the scoring function. Rather than considering the raw

docking score we used the z-score to represent the relative binding

affinity. The z-score is derived from a large number of random

drug-like molecules and is dependent on both the number of

carbon atoms in the ligand and the nature of the protein binding

site. A large negative z-score indicates a high probability of true

binding. Based on this procedure, the normalized docking scores

(NDS) of the six classes of off-targets are listed in Table 1. These

data indicate that binding of CETP inhibitors to putative off-

targets is indeed statistically significant. Furthermore, the vector

distance of the carbon atom size dependent average docking score

for CETP and the majority of off-targets is less than 1.0 (Table S3).

This implies that the ligands are able to bind to CETP and to the

Figure 1. The three largest clusters of the off-target network formed from their global structural similarities. Each node in the graph
represents one off-target as found in supplemental material Table S1. Two nodes are connected by an edge if their global structures are similar
(measured by a CE [104] z-score larger than 4.0).
doi:10.1371/journal.pcbi.1000387.g001

Off-Target Network and Drug Side Effects
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off-targets with similar binding affinities, since their predicted

binding affinity differences are less than 1.0, which is the standard

deviation of docking scores (see Methods). Finally, the correlation

of ligand binding profiles between CETP and its off-targets [4] are

relatively high (Table S3 and Fig. S7).

Importantly, the binding profiles for the three CETP inhibitors

(Torcetrapib, Anacetrapib, and JTT-705) are different from each

other across the panel of off-targets. JTT-705 is the most

promiscuous inhibitor. In contrast, Torcetrapib failed to dock

into some of the off-targets, and Anacetrapib is suitable to be

docked into the least number of off-targets. The difference

between their off-target binding profiles can be partly explained

by their different complexity [41] and sizes. The molecular

volumes of JTT-705, Torcetrapib and Anacetrapib are 407.31,

498.42, and 527.28 Å3, respectively. As shown in Table 1 the

estimated volume of the off-target binding pockets varies greatly.

Thus, the smallest ligand, JTT-705, can be accommodated in all of

these pockets, but the larger-sized Torcetrapib and Anacetrapib

are difficult to fit into the smaller sized pockets. It could be argued

that the failure in docking Torcetrapib and Anacetrapib into the

smaller sized pockets is because the induce fit of the receptor is not

explicitly modeled. However, for most of the NRs, both antagonist

and agonist conformations are tested. Thus it is less likely that the

unfitness of Torcetrapib and Anacetrapib for some of the off-

targets is a result of not specifically considering induced fit in the

docking calculation. The different off-target binding profiles of

these CETP inhibitors have significant implications for the

observed side-effects, as discussed subsequently.

Incorporation of the off-target binding network into
biological pathways

By incorporating the predicted off-targets into biological

pathways it is possible for us to correlate the predicted off-target

interactions with the observed pleotropic effects of Torcetrapib,

Anacetrapib and JTT-705. Among them, the negative effect of

Torcetrapib on blood pressure in phase III clinical trials could be

deduced. Also deducible was an explanation for the increased

death from infection and cancer [21]. Conversely, JTT-705 has

gotten encouraging safety results from phase II clinical trials and

no side-effects of hypertension have been observed thus far.

Similar positive results are observed for Anacetrapib during phase

I clinical trials. It should be noted that at this time that JTT-705

and Anacetrapib are in clinical trials involving only a small

number of patients during short term studies. Results from long

term studies are needed to confirm the absence of negative effects

for these two drugs. In addition, JTT-705 is found to be able to

block cell proliferation and angiogenesis through Ras and P38

kinase pathways [26]. To illustrate these findings, using a survey of

the literature, we constructed a hierarchical biological network

that connects drugs, off-targets, pathways and clinical observa-

tions. Using this network we could explore the implications of

administering CETP inhibitors on different pathways through

Table 1. Binding site volumes and normalized docking scores (NDS) of CETP inhibitors for CETP and six classes of putative off-
targets.

Target Class Protein PDB ID
Binding Site
Volume (Å3) Normalized Docking Score

Torcetrapib Anacetrapib JTT-705

CETP 2OBD$ 1084.2 25.6024* 24.6705* 21.9644#

NR Retinoid X receptor (agonist) 1YOW$ 1420.5 25.5803* 24.1922* 20.9344#

PPARd (agonist) 1Y0S$ 1313.2 23.8703* 23.8384* 21.5662#

PPARa (agonist) 2P54$ 1059.4 24.0828* 6.6785 23.0660*

PPARa (antagonist) 1KKQ$ 1012.6 23.8847* 23.8554* 20.9725#

PPARc (agonist) 1ZEO$ 726.5 23.9838* 6.0096 22.0316*

LXRa (agonist) 2ACL$ 1155.0 5.7793 6.3052 20.6900#

LXRb (agonist) 1UPV 1553.5 5.0882 5.5450 21.7543#

Vitamin D receptor (agonist) 1IE8$ 879.7 5.7622 6.1759 21.1761#

Vitamin D receptor (antagonist) 2ZMH$ 1055.8 5.1326 23.2234* 20.8868#

Glucocorticoid receptor (agonist) 1P93$ 819.0 5.5504 6.1432 22.0131*

Glucocorticoid receptor (antagonist) 1NHZ$ 990.5 22.1235* 23.2125* 21.1673#

LPTP Glycolipid transfer protein 1TFJ$ 987.4 20.9839# 22.1587* 21.3249#

Phosphatidylcholine transfer protein 1LN1 1860.1 27.3050* 29.1032* 21.0794#

Phosphatidylinositol transfer protein 2A1L* 2271.7 24.0881* 26.0708* 21.7366#

GM-2 activator 2AG9 955.0 24.0254* 23.8265* 23.6934*

FABP Fatty acid binding protein 2NNQ* 743.3 3.3521 6.8334 22.3356*

CD1B CD1B receptor 1GZP 1056.4 22.0899* 26.1531* 21.3424#

EF Troponin C 1DTL 1992.0 23.7771* 23.6403* 22.9955*

HEME Cytochrome complex 1PP9 2963.0 23.8702* 27.0825* 22.2745*

Human cytoglobin 1V5H 1022.2 23.4827* 21.8246# 22.3848*

The predicted binding affinities are grouped with different symbols: * represents strong binding affinity (NDS,22.0).
#relatively strong (0.0.NDS.22.0), and others represent less likely binding due to the steric crashes between the ligand and the protein (NDS.0.0), respectively.
$indicates that Cystine appears in the binding site and may form disulfide bonds with JTT705.
doi:10.1371/journal.pcbi.1000387.t001
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their interactions with corresponding off-targets (Fig. S8). The

network consists of several interconnected metabolic, signal

transduction, and gene regulation pathways. Each component of

the network is separately shown in Fig. 2, Fig. 3, Fig. 4, and Fig.

S9, and is discussed in detail in the following sections. It is notable

that several predicted off-targets, especially the nuclear hormone

receptors, are essential components in the network, involved in

both positive and negative controls of several cellular systems.

Nuclear hormone receptors are known as lipid-activated tran-

scription factors that play key roles in lipid metabolism,

inflammatory processes and the hormone system. The regulatory

controls of our predicted nuclear hormone receptors are on

pathways involved in hypertension, inflammation and cancer

development. Torcetrapib, Anacetrapib and JTT705 showed

different binding affinities to these receptors and thus different

clinical outcomes resulting from the combinational responses of

these receptors in related pathways.

Combinatorial control of nuclear hormone receptors in

hypertension. As shown in Fig. 2, the effects of the three CETP

inhibitors on blood pressure can be explained through their

influence on the Renin-Angiotension-Aldosterone System (RAAS),

the main system for blood pressure regulation. When the RAAS

system is too active, blood pressure becomes dangerously high.

Several nuclear receptors highly ranked in our off-target list are

involved in the regulation of this system, including proxisome

proliferator-activated receptor (PPAR), retinoid X receptor

(RXR), liver X receptor (LXR) and Vitamin D receptor (VDR)

[42]. As positive regulators, activation of PPAR, RXR and LXR

increases gene expression of angiotensinogenase and then up-

regulates RAAS, resulting in high blood pressure and increased

aldosterone secretion. In contrast, VDR has a negative control on

RAAS. Activation of VDR will balance the up-regulation effect of

PPAR, RXR and LXR on blood pressure.

According to the normalized docking scores (Table 1), Torce-

trapib, Anacetrapib and JTT-705 show distinctly different binding

profiles to these nuclear receptors, consistent with their differing

involvement in hypertension. To avoid inaccuracy in the docking

calculation, three different categories (strong, relatively strong and

weak) were used to estimate the binding affinity, instead of direct

comparison of individual docking scores. It is noteworthy that the

weak binding (large positive normalized docking score) is due

mainly to the steric crashes between the CETP inhibitors and the

receptor. As a result the inhibitors cannot fit into the binding

pockets of these receptors. Interaction between the three CETP

inhibitors and nuclear receptors are shown in Fig. 2 with different

colors illustrating the type of interaction. When the three CETP

inhibitors are docked as agonists to these nuclear hormone

receptors the stronger binding affinity to the panel of positive

regulators (PPAR, LXR and RXR) indicates stronger up-

regulation of RAAS and higher risk of hypertension; stronger

binding affinity to the negative regulator VDR implies a lower risk

of hypertension. It is clearly shown in Fig. 2 that JTT-705 has

relatively strong binding affinity not only to the positive regulators

but also as an agonist to the negative regulator, implying the ability

Figure 2. Effects of Torcetrapib, Anacetrapib and JTT-705 in regulating the RAAS system through the combinational control of
nuclear hormone receptors. The red, purple, and blue lines between inhibitors and off-targets indicate strong, relatively strong, and weak binding
affinities, respectively. The brown and black lines between off-targets and pathways or clinical indications represent positive and negative regulation,
respectively. A. Regulation control of nuclear hormone receptors on RAAS system. B. Binding profile of Torcetrapib on nuclear hormone receptors. C.
Binding profile of Anacetrapib on nuclear hormone receptors. D. Binding profile of JTT-705 on nuclear hormone receptors.
doi:10.1371/journal.pcbi.1000387.g002

Off-Target Network and Drug Side Effects
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of JTT-705 to exhibit a balanced positive/negative control over

RAAS and consequently a lesser chance to cause hypertension. In

contrast to JTT-705, Torcetrapib binds more strongly to the active

conformations of the positive regulators and leads to increased

blood pressure through up-regulation of RAAS. Limited by its

larger size, Anacetrapib can only bind to RXR and PPARd in

their active conformations and PPARa and VDR in their inactive

conformations (listed in Table 1), even though it is in the same

structural class as Torcetrapib. Thus, Anacetrapib has less effect

on both the positive and negative control of blood pressure and its

negative effect on blood pressure regulation may be less than

Torcetrapib. Even though the detailed mechanism for the side-

effect of hypertension caused by Torcetrapib is still unknown and

the different binding profiles of the three CETP inhibitors needs

experimental verification, our observations are consistent with the

current clinic trial data from the three CETP inhibitors and the

predicted off-targets provides information for future use in drug

optimization.

Combinatorial control of nuclear hormone receptors in

inflammation. The effects of CETP inhibitors on inflammation

are shown in Fig. 3. Activation of nuclear hormone receptors such

as PPAR, LXR, GCR and RXR regulates gene expression

associated with inflammation through different mechanisms

[34,43] and consequently reduces the inflammatory response.

For example, NF-kB plays a key role in regulating the immune

response to infection. PPARa/c, LXRa/b and GCR can block

the NF-kB pathway by directly binding to AP1 and NF-kB [44–

48], acting downstream of NF-kB binding to DNA [49], or by

competing for limited amounts of co-activators [50]. There are

other examples to show the PPAR induced trans-repression of

inflammatory response genes [51,52]. PPARc/d can also function

as transcriptional regulators of monocyte phenotypic differenti-

ation by promoting expression of target genes involved in M2

Figure 3. Effects of Torcetrapib, Anacetrapib and JTT-705 on inflammation through combinational control of nuclear hormone
receptors. The color and line schema are the same as those in Fig. 2. A. Regulation control of nuclear hormone receptors on inflammatory system. B.
Binding profiles of Torcetrapib on nuclear hormone receptors. C. Binding profile of Anacetrapib on nuclear hormone receptors. D. Binding profile of
JTT-705 on nuclear hormone receptors.
doi:10.1371/journal.pcbi.1000387.g003

Figure 4. Effects of Torcetrapib, Anacetrapib and JTT-705 on
cancer through combinational control of nuclear hormone
receptors. The color and line schema are the same as those in Fig. 2. A.
Regulation control of nuclear hormone receptors on cancer system. B.
Binding profiles of Torcetrapib on nuclear hormone receptors. C.
Binding profile of Anacetrapib on nuclear hormone receptors. D.
Binding profile of JTT-705 on nuclear hormone receptors.
doi:10.1371/journal.pcbi.1000387.g004

Off-Target Network and Drug Side Effects
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macrophage function thereby activating M2 macrophage so as to

generate anti-inflammatory products [53–55]. Thus, the overall

picture of activation of these nuclear hormone receptors involved

in inflammatory response suggests that they have interesting anti-

inflammatory effects. The binding profiles of Torcetrapib,

Anacetrapib and JTT-705 to these nuclear hormone receptors

(listed in Table 1 and shown in Fig. 3) indicate that JTT-705 has a

broader control over the inflammation system to reduce the

inflammatory response.

The regulatory effect of nuclear hormone receptors on

cancer. NF-kB regulates genes involved in cell proliferation and

cell survival and hence is an interesting drug target in cancer

treatment. Inhibition of NF-kB can potentially halts tumor

progression and eliminate tumors [56,57]. As discussed above,

activation of PPARa/c, LXRa/b and GCR will block the NF-kB

pathway and thus prevent cancer. Of the three CETP inhibitors

only JTT-705 is predicted to bind to these receptors and hence

have the ability to control cell proliferation and tumor progression

(Fig. 4).

Recent experiments have shown that PPARa and PPARc can

induce extracellular signal-regulated kinase (Erk) and/or p38

phosphorylation and then activate the MAPK/Erk signaling

pathway [58,59]. This pathway is involved in the action of most

nonnuclear oncogenes and participates in cancer development

[60]. Interestingly, JTT-705 was shown to block cell proliferation

through the activation of the p38 MAPK pathway [26], but the

mechanism for how JTT-705 induces p38 MAPK activation is still

unclear. Our results suggest a possible hypothesis (Fig. 5). JTT-705

could trigger the p38 MAPK pathway through its interaction with

PPARa/c and thus has the potential to prevent cell proliferation

and cancer.

Regulatory effects of other identified off-targets. Effects

of PPAR and RXR are also regulated by fatty acid binding

proteins (FABP) [61]. FABP can function as an intracellular

chaperone to transport fatty acids and drugs into the nucleus and

directly interact with PPAR [62]. The cooperation between FABP

and PPAR will enhance the activities of PPAR in gene

transcription regulation [63,64]. FABP can also interact with

hormone-sensitive lipases to potentially modulate their catalytic

activity and thereby integrates several signaling networks that

control inflammatory response potentially through the JNK/

inhibitor of kappa kinase (IKK) and IKK–nuclear factor-kB (NF-

kB) pathway [61]. According to the calculated docking scores, only

JTT-705 can bind to FABP and further regulate hypertension and

inflammation.

Another type of highly ranked off-target, CD1, can also be

directly related to the side- effect of infection through its function

as an antigen-presenting protein in the immune system. T cells will

recognize antigens presented by CD1 proteins and activate a cell-

mediated immune response against microbial infections [65].

Docking results show that all three drugs have a strong binding

affinity to CD1, suggesting an impact on antimicrobial immunity

and host response to infection.

Other putative off-targets such as ubiquinol-cytochrome-c

reductases, globin-like proteins, EF hand-like calcium binding

proteins (EFs), and LPTP are also directly or indirectly associated

with hypertension, inflammation, and/or cancer. Recent studies

suggest that ubiquinol-cytochrome-c reductase expression is

indirectly regulated by steroid hormones in response to hyperten-

sion [66]. Further, as one of the key protein components in the Q-

cycle [67,68] it contributes to the regulation of cell death and

repair [69] and may also be related to cancer and infection. It is

interesting that hemoglobin has been found in non-hematopoietic

organs such as the kidney acting as an anti-oxidative defense agent

[70]. It is also involved in the activation of KCl cotransporter

activity [71,72], which may affect the regulation of blood pressure.

EFs modulate vascular function through Ca2+ homeostasis and

nitric oxide. It has also been observed that the lack of S100A1 (an

EF protein) expression could lead to hypertension [73]. EFs also

have effects on transcription factors. They not only indirectly

regulate the activity of transcription factors through their

phosphorylation/dephosphorylation in response to Ca2+ levels

but also directly control the transcriptional activity of the tumor

suppressor p53 through interactions with its regulatory sequences

[74]. It is not surprising that LPTP is one of CETP’s off-targets

because they bind to the same or similar cognate ligands and are

involved in lipid metabolism. However, the biological functions of

phosphatidylinositol/phosphatidylcholine transfer proteins (PITPs)

have not been well characterized [75,76]. They may play a role in

Figure 5. The anti-proliferation effect of JTT-705 through
activation of PPARa/c and the p38 MAPK pathway. Solid lines
show relationships established with experimental evidence. Red dash
lines show our hypothesis for how JTT-705 induces the activation of the
p38 MAPK pathway. Color and line schema are the same as those in
Fig. 2.
doi:10.1371/journal.pcbi.1000387.g005
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dense-core vesicles exocytosis, which regulates heart rate and

blood pressure through the release of noradrenaline and

adrenaline [77]. Interactions between the three CETP inhibitors

and these predicted off-targets show potential additional contri-

butions to the side-effects of hypertension, inflammation and

cancer.

In summary, most of the putative off-targets for CETP

inhibitors are involved in interconnected lipid metabolism and

signaling networks which activate or mediate various biological

process such as hypertension, stress regulation [78], immune

response [79] and cell death [80]. Our predications are consistent

with current clinical studies on all three CETP inhibitors,

highlighting the interrelationship of multiple biological processes

involved in hypertension, infection and cancer. These results call

for further experimental validation.

Discussion

Roles of combinatorial control in modulation of side-
effects of CETP inhibitors

In vitro, in vivo and clinical studies indicate that CETP inhibitors

exhibit pleotropic effects in humans through the interaction with

unknown off-targets. We have identified a panel of proteins that

likely bind to CETP inhibitors leading to the observed clinical

indications. The putative off-target interactions are consistent with

existing experimental data and provide insights into the molecular

mechanisms of the side-effect profile of CETP inhibitors. Drug

promiscuity depends not only on the similarity of ligand binding

pockets in the related proteins but also the complexity of the drug

itself [41]. In general, smaller molecules are able to bind more

targets. The same trend has been predicted for CETP inhibitors;

the smallest JTT-705 is the most promiscuous and the largest,

Anacetrapib, is the least promiscuous. However, in contrast to

conventional wisdom that implies the more specific the binding the

lesser the side-effects, the most promiscuous inhibitor, JTT-705,

does not cause the side-effect of hypertension that is observed in

the more specific Torcetrapib. Considering the regulation of blood

pressure by NRs, it is possible that JTT-705 acts as an antagonist

of NRs to down-regulate aldosterone. However, our results suggest

that CETP inhibitors prefer binding to the agonist rather than the

antagonist conformation of the NR. Experimental evidence also

implies that JTT-705 actually activates NR to mediate Ras and

p38 kinase pathways [26]. Thus, it is more likely that the side-

effect of CETP inhibitors is modulated by a combination of

biological controls involved in many physiological processes such

as cell proliferation [81], inflammation and hypertension. In other

words, JTT-705 is involved in activation of NRs that contribute to

both positive and negative controls of aldosterone. Although

Torcetrapib is more specific and binds less off-targets than JTT-

705, it only activates those NRs that up-regulate RAAS resulting

in hypertension. To fully understand how small molecules can

modulate physiological or pathological processes through such

combinatorial control, it is necessary to simulate the dynamic

properties of the biological system. To this end, it is a critical first

step to identify all of the putative molecular receptors involved in

the biological process and to connect them into a logical integrated

protein-ligand interaction network.

Advantages and limitations of the methodology
The chemical systems biology approach developed here is

limited by available protein structures that currently only cover

approximately 50% of the human proteome, although the

structural coverage of the human proteome will steadily increase

with progress in structural genomics [82] and conventional

structure determination. As a result, some potential off-targets

may be missed because they are not included in the screening. In

addition to establishing functional relationships between proteins

using their sequences, structures and functional sites, there are

significant efforts to relate drug targets to their ligands through

chemical genomics analysis [12]. However, the chemical genomics

approach is restricted by the availability of bioactivity data. When

exploring off-targets that cover the whole human proteome, this

limitation becomes obvious since only a small number of target

families explored by pharmaceutical companies are in the

bioactivity database [5]. Thus our method is complementary to

existing chemical genomics approaches. Drug-target networks will

be greatly expanded by combining chemical genomics data and a

structural genome-wide off-target analysis. Several studies have

attempted to extend the target-based method to the domain-based

model through similar sequence motifs or global structures [83]. In

this study we further expand the scope of the chemical genomics

approach beyond sequence and fold similarity by searching for

similar ligand binding sites. Hence a ligand binding site-based

approach will provide an ever improving way to generate a

candidate list of proteins participating in interconnected biochem-

ical pathways and to establish their relationships to biological

processes. It is hoped that these approaches will eventually provide

the foundation for the in silico simulation of the influence of small

molecules on biological systems. In the interim it is noted that the

analysis of incomplete networks is still invaluable in making new

discoveries in biomedicine as exemplified by several recent studies

[3,11].

Besides SMAP used in this study, a number of web servers for

ligand binding site search are available, for example, SiteEngine

[84], SitesBase [85,86], CavBase [87–89], SuMo [90], PdbSiteS-

can [91], eF-Site [92,93], pvSOAR [94], and pevoSOAR [95].

Compared with these servers, SMAP has several distinguishing

features making it particularly suitable for identifying off-targets on

a structural genome-wide scale. First, SMAP does not require

prior knowledge of both the location and the boundary of the

ligand binding site. Instead, whole proteins are scanned to find the

most similar local patch in the spirit of local sequence alignment

such as the Smith-Waterman algorithm [96]. This feature makes

SMAP appropriate for practical problems since typically the

boundary of the ligand binding site is not clearly defined or

depends on the ligand in the complex structure. Second, SMAP

integrates geometric, evolutionary and physical information into a

unified similarity score akin to a sequence alignment score.

However, unlike conventional sequence alignment, the SMAP

alignment is sequence order independent; a necessary requirement

when comparing local binding sites. Third, because SMAP uses

the reduced structure representation, it is not sensitive to structural

uncertainty and flexibility. Thus SMAP can be applied to

homology models and handle flexible ligand binding sites. Finally,

we have developed a probability model to efficiently estimate the

statistical significance of the binding site similarity. The model

allows us to reliably identify similar ligand binding sites in a high

throughput fashion. Despite these advantages of SMAP, it is

expected that the best results will come from the combination of

different tools as demonstrated by many studies in bioinformatics

and molecular modeling.

Despite the success of ligand binding search algorithms in

protein function prediction and drug design [2,4,20,87,88,95,97–

99] currently no algorithm can retrieve all of the binding sites that

bind a cognate ligand such as ATP. However, in the context of

searching for off-targets of drug molecules, the actual number of

false negatives may be limited based on the nature of the drug.

False negatives in the ligand binding site search are due mainly to
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large conformational changes of the ligand and corresponding

physical and geometric changes in the binding site. Most existing

drugs are designed to selectively inhibit an exquisite target. They

are more rigid and less adaptable to the changing environment of

the binding site than the cognate ligand. For example, a protein

kinase ATP competitive inhibitor is designed to inhibit only the

ATP binding site of the protein kinase, not that of other

superfamilies such as P-loop hydrolases. On the other hand,

although rational drug design may take the same cognate ligand

binding site into account, it rarely explores the cross-reactivity

between binding sites that are not naturally designed for the same

cognate ligand but are able to bind the same drug. Studies by

others have shown that the drug binding site can be considered as

a negative image of the drug to screen compound database [100]

or vice versa to model the drug binding site [101]. Hence ligand

binding site similarity search is a valuable tool to identify off-

targets that accommodates only the drug molecule but not

necessarily all proteins that bind to the same cognate ligand across

gene families. In general, the chemical systems biology approach

developed in this paper is specific in identifying potential off-

targets for drug-like molecules and could be used in concert with

experimental design employing in vitro screening, in vivo screening

and clinical trials.

Implications for drug discovery and development
Even with the current limited structural coverage of the human

proteome, our predications are able to provide a testable

hypothesis as to the suitability of a lead compound prior to

conducting a clinical trial. Thus our findings have implications for

drug discovery and development. In contrast to the conventional

drug discovery process in which drug leads are optimized to

reduce promiscuous binding, the possible combinatorial control of

aldosterone regulation by CETP inhibitors suggests that adverse

drug effects can be minimized through fine tuning of multiple off-

target interactions. Although it is desirable for a drug to bind the

primary target in a highly specific way, this is difficult to achieve

considering the inherent similarity among protein binding pockets

within and across gene families. Moreover, many biological

process involve combinatorial control to provide redundancy and

homeostasis [102]. In such cases it becomes very difficult to

modulate the systems behavior by inhibiting or activating only one

single target protein. Thus, a multiple-target approach [6] and

combination therapy [10] have been actively pursued to boost

clinical efficacy in the treatment of diseases such as cancer and

diabetes. However, these combined approaches are rarely

systematic with the purposeful intent of developing therapeutics

that bind to a primary target to treat the disease, but at the same

time are considered to bind to desirable off-targets that modulate

side-effects. In some cases this combined goal is achieved

serendipitously as would seem to be the case for JTT-705. Instead

of using a single molecule, it may be more feasible to use multiple

components to treat a disease state and at the same time to reduce

drug side-effects. Different from conventional combination

therapy where all of components target disease related proteins,

here only a subset of the molecules are directly therapeutic, other

molecules serve the purpose of reducing side-effects by targeting

non-disease related proteins. We speculate that many drugs which

failed due to off-target effects can be rescued by this target-off-

target combination therapy. For example, it is expected that the

side-effect of Torcetrapib can be reduced by introducing molecules

that binds to molecular components involved in the negative

control of aldosterone regulation. Such therapies can be only

rationally designed by exploring the system properties of the

biological network.

Methods

Binding site similarity search on a genome scale
5,985 structures or models that cover approximately 57% of the

human proteome were searched against CETP (PDB id: 2obd)

ligand binding sites using the sequence order independent profile-

profile alignment (SOIPPA) algorithm [20]. A new statistical

model was introduced to the original approach to estimate the

significance of the alignment score [103]. In brief, the alignment

score for a given alignment length is fitted to an extreme value

distribution (EVD):

P swSð Þ~1{exp {exp {Zð Þð Þ ð1Þ

Where:

Z~ S2{m
� ��

s ð2Þ

where S is the raw SOIPPA similarity score. m and s are fitted to

the logarithm of N, which is the alignment length between two

proteins:

m~a�ln Nð Þ2zb�ln Nð Þzc ð3Þ

s~d�ln Nð Þ2ze�ln Nð Þzf ð4Þ

Six parameters a, b, c, d, e, and f are 5.963, 215.523, 21.690,

3.122, 29.449, and 18.252 for the McLachlan similarity matrix

used in this study, respectively.

Using this statistical model, 276 off-targets are identified with p-

values less than 1.0e-3.

Reverse screening of the human structural proteome
The putative 276 off-targets are subject to further investigation

using more computationally intensive protein-ligand docking.

After removing three structures with the same fold as CETP,

JTT-705, the smallest CETP inhibitor, is docked to the remaining

273 structures using two commonly used fast docking programs,

Surflex 2.1 [27] (default setting) and eHits 6.2 [28] (fastest setting).

69 structures with a Surflex docking score smaller than 0.0 or an

eHits score larger than 0.0 are considered to be difficult to fit JTT-

705 due to significant steric crashes (and hence the other two

inhibitors based on size) and are removed from the putative off-

target list. The remaining 204 structures are subject to further

investigation using the docking software AutoDock4.0 [29] and

other more computationally intense methods as described below.

Global structure similarity network of off-targets
An all-against-all global structural similarity analysis between

the 204 putative off-targets was computed using CE [104]. A

graph is constructed with each of the structures as a node. An edge

is formed between two nodes if their CE z-score is larger than 4.0

(a superfamily level similarity) [104].

Volume of the binding pocket
The volume of the binding pocket is computed using the CASTp

server [105] (http://sts-fw.bioengr.uic.edu/castp) with default settings.

Normalized docking score
Drug-like molecules are downloaded from ZINC (http://zinc.

docking.org) [106]. From this database, six sets of molecules are
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randomly selected with a fixed number, 5, 10, 15, 20, 25 and 29

carbon atoms, respectively; each set includes 100 molecules. These

molecules are docked to CETP and its putative off-targets using

eHiTs [28] and AutoDock4.0 [29]. The correlation of the docking

score to the number of carbon atoms is derived from linear

regression for each of the protein receptors. From the linear fitting

curve, the average docking score for molecules with a certain

number of carbon atoms can be estimated.

Based on the fitted average docking score, a normalized docking

score DS is calculated as a z-score:

DS~ Si{mið Þ=s ð5Þ

Where Si is the raw docking score for the molecule with i carbon

atoms, mi is the fitted average docking score for the number of

carbon atoms i, s is the standard deviation, which is not dependent

on the size of molecules and is approximately 1.0 in all cases.

Vector distance of the average docking score
The vector distance of the average docking score D between

CETP and its off-targets is calculated from the average values of

the docking scores for randomly selected molecules with fixed

numbers of 5, 10, 15, 20, 25 and 29 carbon atoms as follows:

D~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
N

SCETP{Soff

� �2

,
N

vuut ð6Þ

where SCETP and Soff are the average values of carbon atom size

dependent docking scores to CETP and its off-targets, respectively.

Conclusion
In this case study, we identify a panel of off-targets of CETP

inhibitors using a chemical systems biology approach. All of the

identified off-targets belong to different protein superfamilies from

the primary target, but are structurally and functionally related,

being mainly involved in lipid metabolism, immune response and

signaling networks. Among them, CD1, nuclear hormone

receptors and lipid transport proteins are the most likely off-

targets with highly consistent results from multiple resources

including functional correlation, ligand binding site similarity,

hydrophobic scales, and predicted binding affinities. Moreover,

the elucidated off-target effects from these proteins are strongly

correlated to clinical and in vitro observations. Their combinatorial

control of biological process plays a key role in the modulation of

the adverse drug effect of CETP inhibitors. This study

demonstrates that a chemical systems biology approach, which

systematically explores protein-ligand interactions on a genome-

wide scale and incorporates them into biological pathways, will

provide us with valuable clues as to the molecular basis of cellular

function. At the same time, it will help to transform the

conventional single-target-single-drug drug discovery process to a

new multi-target-multi-molecule paradigm.
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