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Abstract

This document provides additional data and analysis in support of the main text. The first section
analyzes several aspects of ConCavity’s performance and sensitivity to various inputs and parameters.
The second section presents additional figures and data for conclusions made in the main text.
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1 Additional Analysis

1.1 Sequence alignment quality’s effect on ConCavity performance.

Estimates of evolutionary conservation, such as the Jensen-Shannon divergence (JSD), rely on multiple
sequence alignments (MSAs) of homologous proteins. Alignment quality varies from protein to protein. For
some proteins in the dataset, there are a large number of diverse homologous sequences, while others have
only a few related sequences available.

To explore the effect of MSA quality on the performance of ConCavity, we partitioned the dataset based on
the fraction of gaps in the associated alignments. We consider the fraction of gaps because many of the lower
quality alignments contain a large number of sequence fragments that only partially cover the structure’s
sequence, e.g., a single domain.

For the 244 structures in the LigASite apo dataset with alignments containing fewer than 40% gaps, the area
under the precision-recall curve (PR-AUC) for predicting ligand binding residues is on average 0.139 higher
for the three ConCavity methods than their corresponding Structure counterparts. For the 88 alignments
with more than 40% gaps, the average improvement is 0.102. The 40% threshold was selected because there
was a clear drop in average performance at this level, and performance is quite similar within finer partitions
of these two groups. Table 1 gives the performance of each method on these two sets.

This demonstrates that though alignment quality is important, considering evolutionary conservation can
provide improvement over structure-alone, even when a high quality alignment is lacking. Fragmentary
sequences provide useful information, but are not as reliable as fully aligned homologous proteins. There are
cases where poor conservation estimates result in worse predictions than when considering structure alone.
Since better estimates of the evolutionary constraints on residue positions lead to better ligand binding site
predictions, ConCavity will likely become even more accurate as conservation estimation methods improve
and more protein sequences become available.
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Table 1. ConCavity’s ligand binding residue identification (PR-AUC) improvement over
Structure by alignment quality on LigASite apo.

Residue PR-AUC Improvement
Method <40% Gaps ≥40% Gaps

ConCavityL 0.097 0.065
ConCavityP 0.141 0.095
ConCavityS 0.177 0.146

Each version of ConCavity improves over the corresponding structure-based method on both sets of
alignments. The improvement is smaller for alignments of lower quality (as measured by gap percentage).
ConCavityL’s overall improvement is lower than that of the other methods, because Ligsite+ is the best
performing of the structure-based methods.

1.2 Sensitivity of ConCavity’s performance to alignment source and conserva-
tion estimation algorithm.

ConCavity provides a general framework for combining properties of amino acid residues, e.g., evolutionary
sequence conservation, with properties of the space around the surface of a protein, e.g., being in a concave
pocket. In the main text, we demonstrated that ConCavity performed well for a range of structure-based
surface pocket identification algorithms. We now show that ConCavity’s performance is not tied to a single
method for estimating evolutionary sequence conservation.

The alignments used to estimate evolutionary sequence conservation for all results reported in the main text
come from the HSSP database. These alignments often contain a large number of sequences and sequence
fragments. We demonstrated in the previous section that even very gappy alignments from HSSP provide
performance improvement when used in ConCavity. To explore the effect of alignments with different prop-
erties on performance, we estimated sequence conservation using JSD on alignments from the ConSurfDB [1]
for all proteins in the LigASite holo dataset. These alignments are generated using PSI-BLAST, MUSCLE,
and a number of sequence filters. In general, they contain fewer sequences and are less gappy than their
HSSP counterparts. The average PR-AUC for ConCavity using conservation estimates based on the HSSP
alignments is 0.659 and on the alignments from ConSurf is 0.672; this difference in performance is not
significant (p=0.234).

There are many methods other than JSD for estimating evolutionary sequence conservation. We now consider
ConCavity’s performance when a different, state-of-the-art [2] method, Rate4Site [3], is used on the Con-
SurfDB alignments. ConCavity has a PR-AUC of 0.672 with the JSD method on the ConSurfDB alignments.
When Rate4Site is used, its performance experiences only a small change (PR-AUC of 0.665).

Thus ConCavity’s strong performance is not specific to a particular type of multiple sequence alignment or
a given method of estimating evolutionary sequence conservation.
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1.3 ConCavity outperforms a direct approach to integrating information from
sequence conservation and 3D structure.

Clusters of conserved residues in 3D have been found to overlap with binding sites [4, 5]. These results
suggest that simply giving high scores to residues found to be near in 3D to other highly conserved residues
might be sufficient to identify ligand binding sites. We implemented and evaluated a method based on this
observation that combines sequence conservation with structural information. Briefly, the method, which we
call 3D Neighborhood, places the protein in a regular grid, performs a 3D Gaussian blur (σ = 1.0Å) of the
conservation scores of each residue, and assigns each residue the maximum overlapping grid value after this
blur. Thus residues near in space to other conserved residues receive high scores.
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Figure 1. Comparison of 3D Neighborhood to other prediction strategies. ConCavity’s
integration of sequence and structure performs significantly better than the approach taken in 3D
Neighborhood.

Figure 1 compares the performance of 3D Neighborhood to ConCavity, Structure, and Conservation on the
LigASite apo dataset. 3D Neighborhood provides some improvement over considering conservation alone,
but it is not competitive with ConCavity. Combining sequence conservation with higher-level structural
analysis, such as pocket finding, provides significant improvement over combining conservation with the raw
locations of residues in space.
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1.4 Effect of ConCavity Parameter Settings on Performance

The ConCavity method allows the user to set a number of parameters which constrain the pockets predicted.
The results presented in the main text were created by setting the target predicted pocket volume to 2% of
the protein volume. This section presents the motivation for this choice and explores the effect of using more
accurate estimates. We also demonstrate that the ratio of protein volume to ligand volume varies among
different types of proteins. We encourage users to experiment with their own application-specific settings.
(Note that this analysis is based version 4.0 of the LigASite database.)
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Figure 2. Comparison of ligand volume to protein volume. There is significant variation in the
ratio of ligand volume to protein volume across the proteins of the LigASite holo dataset. Our decision to
set the target prediction volume as 2% of the protein volume reflects the linear trend observed here.
Table 2 shows the effect of having knowledge of the actual ligand volume prior to prediction.

2% of the protein volume is a reasonable target volume. Figure 2 shows a point for each structure
in the LigASite holo dataset. The volume of the bound ligand(s) is plotted on the y-axis and the volume of
the quaternary structure of the protein is plotted on the x-axis. A few proteins with extremely large ligands
or structures are not found within the range of this plot. There is significant variation in the ratio, but there
is a linear trend. The volume of the ligand(s) is unknown in real-world prediction tasks, so for simplicity,
we use 2% of the protein volume as a simple heuristic for setting the target volume in ConCavity.

Sensitivity of ConCavity’s performance to the input target prediction volume. Table 2 investi-
gates the sensitivity of ConCavity to the accuracy of the target prediction volume. ConCavityLigand uses the
volume of the actual bound ligand as the target volume. The average volume of the predictions of ConCavity
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is 1786.2Å3, and the average volume of the predicted pockets for ConCavityLigand is 1880.8Å3. In the pocket
and residue PR-AUC evaluation, there is very little difference in the two methods’ performance. However, in
the Jaccard pocket-ligand overlap statistic, ConCavityLigand, with the more accurate estimate of the ligand
volume, achieves better performance. However, this may simply be the result of its predictions being larger
on average than ConCavity’s. The PR-AUC evaluations take into account the scores assigned to pocket grid
points and residues, while the overlap evaluation does not. The equivalent performance of the methods in
PR-AUC evaluations suggests that both give similar positions high scores, and these scores dominate the
ranking of grid points and residues. Overall, this indicates that our simple heuristic is reasonable, but that
better estimates of the target volume could provide modest improvement in certain prediction tasks.

Table 2. Effect of accuracy of target volume on ConCavity’s performance.

Residue Grid Value Jaccard
Method PR-AUC PR-AUC coefficient

ConCavity2% 0.637 0.280 0.252
ConCavityLigand 0.644 0.279 0.276

This table compares the average residue precision-recall AUC, the average grid value precision-recall AUC,
and the average Jaccard coefficient of prediction-ligand overlap for two versions of ConCavity. (See the
main text for more details on these statistics.) The first method uses 2% of the protein volume as the
target volume for prediction, and the second uses the volume of the actual bound ligand(s). There is very
little difference between the performance of the methods in the PR-AUC evaluations. The more accurate
estimates provide some improvement in the ligand overlap evaluation.

Enzymes and non-enzymes have different ratios of ligand volume to pocket volume. We divided
the proteins of the LigASite holo dataset into enzymes and non-enzymes, and calculated the volume of
bound ligands to the protein volume (Figure 3). The non-enzyme proteins bind ligands that are larger (as
a fraction of their volume) than the enzyme proteins. For comparison with our 2% of the protein volume
heuristic, we fit lines using linear regression to the two sets of proteins. Since ConCavity allows users to
specify target volumes for the predicted pockets, a user can use knowledge of the protein under study (e.g.,
enzyme/non-enzyme) to tune these parameters.
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Figure 3. Comparison of ligand volume to protein volume for enzyme and non-enzyme
proteins. In the proteins of the LigASite holo dataset, ligands found bound in non-enzyme protein
structures are larger as a fraction of the overall protein volume than those bound by enzymes. For
comparison with our 2% of protein volume heuristic, we fit (by linear regression) lines to the enzyme and
non-enzyme data points.
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2 Supporting Data and Results

For the sake of clarity, we did not present results for all methods in each test we performed in the main text.
This section gives several tables and figures that provide additional data in support of the results given there.
Table 3 lists ligand overlap statistics for all methods’ predicted pockets; results for Ligsite+ and ConCavityL

were presented in the main text. Figures 4 and 5 show that the conclusions made in the main text about
the performance of Ligsite+ and ConCavityL on multi-chain proteins hold for Pocketfinder+ and Surfnet+

based methods as well. Specifically, methods based on structure alone perform very poorly as the number
of chains in the protein structure increases, and that ConCavity performs well, no matter the number of
chains. Figure 6 provides PR curves for the PR-AUC values reported in the comparison of performance on
apo and holo structures in the main text.

Table 3. Comparison of the overlap between pockets predicted by each method and bound ligands in holo
protein structures from the LigASite database.

Fraction with Prediction Ligand Prediction ∩ Prediction ∪ Jaccard
Method Ligand Overlap Vol. (Å3) Vol. (Å3) Ligand (Å3) Ligand (Å3) coefficient

ConCavityL 0.95 1806.9 1977.2 647.6 3136.5 0.257
ConCavityP 0.95 1806.0 1977.2 693.8 3089.4 0.257
ConCavityS 0.95 1806.8 1977.2 686.5 3097.4 0.253

Ligsite+ 0.92 1806.8 1977.2 426.9 3357.1 0.197
PocketFinder+ 0.93 1807.0 1977.2 436.0 3348.2 0.167
Surfnet+ 0.93 1766.3 1977.2 426.3 3317.2 0.166

The first column gives the fraction of proteins for which a method’s predictions overlap a ligand. The
second column (Prediction Vol.) lists the average volume of the predicted pockets for each protein, while
the third column (Ligand Vol.) lists the average volume of ligands observed in the PQS file. The next
columns give the average volumes of the Intersection and Union of the predictions and ligands and the
Jaccard coefficient (Intersection / Union). The ConCavity and structure-only methods predict pockets of
similar sizes—all use a similar pocket threshold—but the ConCavity methods’ predictions overlap more of
the bound ligands. The higher Jaccard coefficients for all ConCavity versions imply that they better
manage the tradeoff between precision and recall.
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Figure 4. Ligand-binding site identification performance by number of chains in structure for
methods based on Pocketfinder. (A) gives the average area under the precision-recall curve
(PR-AUC) for predicting ligand binding residues on each set of structures; (B) gives the average PR-AUC
for ligand binding pocket identification; and (C) gives the average Jaccard coefficient of the overlap of the
predicted pockets with bound ligands. (See the main text for more details on these statistics.) Methods
based on structure alone have an increasingly difficult time distinguishing among ligand-binding pockets
and non-ligand-binding gaps between chains as the number of chains in the protein increases. This trend is
clear in each type of evaluation. Conservation’s performance does not exhibit this effect (A). The
integration of sequence conservation and pocket prediction in ConCavity improves performance in each
chain based partition in each evaluation. ConCavity sees only a modest decrease in performance on
proteins with multiple chains. Conservation alone could not be included in (B) and (C), because it does not
make pocket predictions. Note that the y-axes in the figures do not all have the same scale. The number of
structures per chain group: 1 chain: 143, 2 chains: 112, 3 chains: 18, 4 chains: 35, 5+ chains: 24.
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Figure 5. Ligand-binding site identification performance by number of chains in structure for
Surfnet-based methods. (A) gives the average area under the precision-recall curve (PR-AUC) for
predicting ligand binding residues on each set of structures; (B) gives the average PR-AUC for ligand
binding pocket identification; and (C) gives the average Jaccard coefficient of the overlap of the predicted
pockets with bound ligands. See Figure 4 for more discussion.
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Figure 6. Comparison of ligand-binding site identification performance on apo and holo
versions of the dataset. The performance on holo structures is given by the solid lines and the apo
performance is represented by the dashed curves. Both of the methods with a structural component
(Structure and ConCavity) perform worse on the apo structures. This is expected because the structural
changes that occur upon binding of the ligand often define the binding site more clearly in the holo
structure. However, the drop in performance is relatively small. The curves are similar for Surfnet+- and
Pocketfinder+-based methods.
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