Table S4. Top 20 most conserved k-mer co-occurrences in flies. Pairs of k-mers were considered (scored) only if the pair members differ in at least 3 nt and if they are co-conserved in at least 10 genes. The number of genes for which the pairs of k-mers are conserved within the 3'UTRs is indicated in the table. The p-value represents the statistical significance of the intersection between the conserved sets of k-mer 1 and k-mer 2.

Rank	k-mer 1	k-mer 2	#genes	p-value	Comments / Best functional enrichments
1	UGUGAUA	UAUUUAUU	29	<10 ⁻¹⁰	miR-2a/2b/2c/6/13a/13b site and ARE
2	UGUGAUA	AGCUUUA	24	<10 ⁻¹⁷	miR-2a/2b/2c/6/13a/13b and miR-277, transcriptional repressor
					activity $(p<10^{-8})$
3	UAUUUAUU	AGUAUUA	38	<10 ⁻¹⁹	ARE and miR-8
4	CACACAC	UAUAUAUA	120	<10 ⁻¹²⁷	Novel sites, organ development $(p < 10^{-9})$
5	UAUUUAUU	UGUAAAUA	44	<10 ⁻¹⁹	ARE and PUF
6	UAUUUAUU	UGCAUUU	43	<10 ⁻¹⁵	ARE and miR-277
7	CACACAC	UAUAUAC	106	<10 ⁻⁹⁷	Novel sites, organ development $(p < 10^{-9})$
8	UAUUUAUU	GUGAUAU	19	<10 ⁻⁸	ARE and novel
9	UGUGAUA	UAUUUAUA	21	<10 ⁻¹⁰	miR-2a/2b/2c/6/13a/13b site and ARE
10	UGCAUUU	UUGUUAA	35	<10 ⁻¹⁹	miR-277 and novel
11	CAGCAGC	ACAACAA	63	<10 ⁻⁵⁵	Novel sites, regulation of transcription $(p<10^{-9})$
12	UGCAUUU	UUGUUAU	32	<10 ⁻¹⁴	miR-277 and novel
13	UGCAUUU	UAUUUAU	32	<10 ⁻¹⁵	miR-277 and ARE
14	UGUAAAUA	UAAUUGUA	18	<10 ⁻¹³	PUF and novel
15	AGUAUUA	GUGAUAU	19	<10 ⁻¹²	miR-8 and novel
16	GCAUUUA	UUAGCAU	23	<10 ⁻²³	miR-277 and novel
17	UGCAUUU	CACACAC	65	<10 ⁻⁴⁰	$miR-277$ and novel, organ development $(p<10^{-9})$
18	UAUAUAC	AACCAAA	85	<10 ⁻⁷¹	Novel and miR-9a-like
19	AGUAUUA	UUUAGUU	38	<10 ⁻²¹	miR-8 and novel, neurogenesis $(p<10^{-7})$
20	CACACAC	UUUAGUU	79	<10 ⁻⁵⁸	Novel sites, organ development $(p < 10^{-9})$