Supplementary Protocol S1 for

Dependency Map of Proteins in the Small Ribosomal Subunit

Kay Hamacher^{1,2}, Joanna Trylska^{1,2,3}, J. Andrew McCammon^{1,2,4}

¹ Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0365, USA

² Center for Theoretical Biological Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0374, USA

³ Interdisciplinary Centre for Mathematical and Computational Modelling, Warsaw University, Pawińskiego 5a, 02-106 Warsaw, Poland

⁴ Howard Hughes Medical Institute and Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0365, USA

Correspondence should be addressed to: Kay Hamacher, Center for Theoretical Biological Physics and Department of Chemistry and Biochemistry, MC 0374 University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0374, USA e-mail: hamacher_at_ctbp.ucsd.edu phone +1 (858) 534 - 7256 fax +1 (858) 534 - 7697

1 General Definitions

 $S = \{S2, S3, \dots, S20, THX\}$ is the set of all ribosomal proteins. G_M is the free energy as obtained from a SCPCP-calculation for a system containing the rRNA and the proteins of set M.

2 One Protein Removal

The algorithm in a pseudo-programming language reads

For each $i \in S$ Compute $\Delta G_{\text{bind}}^i = G_S - G_{S \setminus \{i\}} - G_{\{i\}}$ Construct a vector of ranks \vec{r} according to the respective ΔG_{bind}^i For each $i \in S$ $S^{(i)} = S \setminus \{i\}$ For each $j \in S^{(i)}$ Compute $\Delta G_{\text{bind}}^{(i),j} = G_{S^{(i)}} - G_{\{j\}}$ Construct a vector of ranks $\vec{r}^{(i)}$ according to the respective $\Delta G_{\text{bind}}^{(i),j}$ Construct the sets $I^{(i)}$ of all j that were pushed backwards in the ranking by $\Delta_r^{(i),j}$ places in comparison to \vec{r} . These sets are the (by i) influenced proteins.

The obtained $\Delta_r^{(i),j}$ are the weights on the arrows in figure 2 of the main manuscript. The arrows point from a protein *i* that (negatively) influences the ranking of a protein *j*.

3 Two Protein Removal

The algorithm in a pseudo-programming language reads

```
For each i \in S

S^{(i)} = S \setminus \{i\}

For each j \in S^{(i)}

S^{(i,j)} = S \setminus \{i,j\}

For each k \in S^{(i,j)}

Compute the tensor element \Delta G_{i,j}^k = G_{S^{(i,j)}} - G_{S^{(i,j)} \setminus \{k\}} - G_{\{k\}}

Set \Delta G_{ii}^k = \Delta G_{ij}^i = \Delta G_{ji}^i = 0

For each k \in S

Diagonalize the (20 \times 20)-matrix \Delta G^k and obtain

the eigenvalues \lambda_l and eigenvectors \vec{u}_l.

Obtain for l \in \{1, 20\} the most probable entry-value U_l in \vec{u}_l.

Construct the sets I_1^k and I_{20}^k whose elements are given by the a

index of the \vec{u}_l for which \left|\frac{\vec{u}_{1,a}}{U_1}\right| > 1.01 and \left|\frac{\vec{u}_{20}}{U_{20}}\right| > 1.10, respectively.
```

The sets I_1^k and I_{20}^k contain the proteins that influence k. In figure 4 of the main text we again draw arrows from a protein a to the influenced protein k. The set I_{20}^k contains also non-local effects as discussed in the main text.

For the diagonalization procedure we applied the SVD-algorithm in the version described by Press et al. This is necessary - as mentioned in the main text - because of the additional null mode. For a general application we note that the procedure becomes more accurate for larger systems (larger number of chains) as small deviations in ΔG^k (e.g. due to numerics or parametrization) tend to be less relevant the larger the matrices ΔG^k .

Note that the matrices ΔG_{ij}^k are symmetric and one can therefore save a factor of 2 in CPU-time by reducing the loop over j to j > i with $Si > Sj \iff i > j$ and setting $G_{ij} = G_{ji}$ afterwards.