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Identification of Genome-Scale Metabolic Network Models Using Experimentally Measured Flux Profiles

Sensitivity analysis of OMNI results
The objective function for the OMNI problem can be separated into growth (or biomass production) rate and intracellular flux terms
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where MI is the set of measured intracellular fluxes. The weights wi for each measured flux are in proportion to the inverse of the experimental standard deviation for the corresponding flux. The additional factor ( is used to allow biasing the OMNI search towards solutions that improve growth rate predictions. The results presented in the paper were obtained with (=0.8 corresponding to weighing the growth rate discrepancy as 80% of the overall objective and all the internal fluxes as 20% of the overall objective. In order to investigate the effect of the ( parameter on the OMNI results we performed OMNI optimization with two additional values of ( (0.9 and 1.0). These results, presented in Table S.3, show that except for the pgiE1 strain the results for the 80% and 90% growth rate bias are very similar. However, in general when the intracellular flux measurements were ignored entirely (100% case), the OMNI bottleneck sets changed quite significantly.
Table S.1 Bottleneck reactions identified by OMNI with different weights used in the objective function. Results are shown for cases where the growth rate is weighted as 80%, 90% or 100% of the total objective. Correspondingly the intracellular fluxes are weighted as 20%, 10% and 0% of the total objective in each case.
[image: image2.emf]Strain K 80% growth 90% growth rate 100% growth rate 80% 90% 100% 80% 90% 100%

pgiE1 1 No improvement No improvement PGK  100.0 100.0 31.4 100.0 100.0 31.4

pgiE1 2 MTHFC NADH6  ENO FUM  SUCD4 NADH6  95.1 84.9 5.0 84.3 32.3 5.0

pgiE1 3 DRPA NADH6 FRD3 No improvement EDD PGL PGK 85.8 84.9 0.3 63.3 32.3 0.3

ppcE1 1 TKT2  TKT2  PGK  85.9 86.3 17.5 94.5 94.5 17.5

ppcE1 2 AKGDH TKT2  AKGDH TKT2  PGK HEX1  76.8 77.4 0.7 92.1 92.1 0.7

ppcE1 3 NADH6 FRD3 AKGDH  NADH6 NADH8 AKGDH  PGL THD2 ENO  57.7 57.6 0.7 55.9 55.9 0.7

ppcE2 1 TKT2  TKT2  PGK  82.2 89.9 11.7 92.7 92.7 11.7

ppcE2 2 AKGDH TKT2  AKGDH TKT2  ENO NADH6  71.7 78.8 5.8 89.4 89.4 5.8

ppcE2 3 NADH6 NADH8 SUCOAS  NADH6 NADH8 AKGDH  ENO NADH6 RPE  58.7 58.6 0.1 42.1 40.5 0.1

tpiE1 1 PGL  PGL  FUM  75.8 75.8 74.7 75.7 75.7 74.7

tpiE1 2 EDD PGL  EDD PGL  FUM PGL  29.2 32.5 28.5 69.8 69.8 28.5

tpiE1 3 NA EDD PPM TKT2  FUM GND TALA  29.2 32.2 16.1 69.8 73.8 16.1

tpiE2 1 PGL  PGL  FUM  73.5 73.5 71.9 73.0 73.0 71.9

tpiE2 2 EDD PGL  EDD PGL  FUM PGL 32.4 34.9 19.9 66.5 66.5 19.9

tpiE2 3 CYTBO3 EDD PGL  No improvement FUM PGL NADH6  31.3 34.9 1.7 50.3 66.5 1.7

Objective (% of parental) GR error (% of parental) Bottlenecks


Using part of the flux data to test model predictions

We also investigated the possibility of using an approach where only part of the flux data for each strain is used to find an optimal model with OMNI and the ability of this model to predict remaining fluxes is determined separately. For this purpose we first identified optimal bottleneck sets for each strain using only the growth rate in the objective function ignoring intracellular fluxes (this corresponds to the 100% case reported in Table S.1). Then we restricted the fluxes through the identified bottleneck reactions to zero and computed the discrepancy between predicted and experimentally determined intracellular fluxes:
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This calculation was performed using the OMNI algorithm with K = 0 so that the alternative optimal solution closest to the experimental flux distribution is used to calculated the flux discrepancy We also evaluated the same discrepancy for the parental strain model with no bottleneck reactions and this value was used as baseline value for each strain. The results of the calculations described above (Table S.2) indicate that for all but four bottleneck sets the model predicts intracellular fluxes worse than the parental model. This indicates that if the model is trained using the growth rate data only it will usually fail to predict the correct intracellular flux patterns. 
An alternative approach to partitioning the data would be to use a subset of the measured intracellular fluxes in training the model in addition to the growth rate data. However, the intracellular fluxes in each flux distribution are dependent on each other due to the process used to estimate them from the primary experimental measurements on mass isotope distributions of proteinogenic amino acids [1]. For this reason there does not appear to be a reasonable way to split any one flux profile into training and testing sets. As described in the main paper the most appropriate approach would be to have multiple independent flux profiles for each strain measured under different cellular conditions and use some of the flux profiles for training metabolic network models and others to test the trained models. However, we do not currently have such large scale flux data sets for the strains under consideration here. 
Table S.2. Discrepancies between predicted and measured intracellular flux profiles for models trained using only growth rate data.
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pgiE1 0 None 53.1 100.0 32.6

pgiE1 1 PGK  335.7 632.3 10.2

pgiE1 2 SUCD4 NADH6  63.9 120.3 -1.6

pgiE1 3 EDD PGL PGK 293.7 553.1 -0.1

ppcE1 0 None 289.9 100.0 24.4

ppcE1 1 PGK  650.9 224.5 4.3

ppcE1 2 HEX1 PGK  703.0 242.5 -0.2

ppcE1 3 PGL THD2 ENO  542.5 187.1 -0.2

ppcE2 0 None 237.7 100.0 17.0

ppcE2 1 PGK  607.2 255.4 -2.0

ppcE2 2 ENO NADH6  384.2 161.6 1.0

ppcE2 3 ENO NADH6 RPE  417.9 175.8 0.0

tpiE1 0 None 156.3 100.0 29.0

tpiE1 1 FUM  199.5 127.7 21.6

tpiE1 2 FUM PGL 131.6 84.2 8.3

tpiE1 3 FUM GND TALA  146.2 93.6 0.6

tpiE2 0 None 155.6 100.0 25.3

tpiE2 1 FUM  208.4 133.9 18.2

tpiE2 2 FUM PGL 145.6 93.6 5.0

tpiE2 3 FUM PGL NADH6  146.5 94.1 0.4
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