
Supplementary Text S2:

Delay Differential Equations and the Master Equation

The SSA describes the evolution of a discrete nonlinear Markov process.
This stochastic process has a probability density function that is the solution
of a differential equation (the Chemical Master Equation). This master
equation can be used to write down an ODE that describes the deterministic
behaviour of the mean associated with the SSA or a stochastic differential
equation (SDE) that represents the intrinsic noise in continuous form. In
a similar manner the DSSA described in section 3 will have corresponding
representations as delay differential equations (DDEs) or stochastic delay
differential equations (SDDEs).

The discussion in this section is aimed at providing the theoretical back-
ground for constructing DDEs that faithfully represent the mean behaviour
of intrinsic noise (in a continuous form) arising from delayed reactions. Here
it is assumed that a well-stirred chemical reaction system contains N molec-
ular species {S1, . . . , SN} with number Xi(t) of the species Si at time t.
Among the M reaction channels, the first M1 reactions {R1, . . . , RM1

} are
assumed to have time delay {T1, . . . , TM1

}, respectively, and the last M−M1

reactions have no time delay. From the description of the DSSA in section
3, the state vector X(t) is a non-negative N -dimensional jump stochastic
process but is not a Markov process any more due to the time delay. Here
we are interested in the conditional probability function based on the initial
state X(t0) and the states involved with the time delay X(t) = Φ(t) (t ≤ t0),
given by

P (x, t) ≡ Prob{X(t) = x|X(t0) = x0, and X(t) = Φ(t), t ≤ t0}. (1)

For Discrete Chemical Kinetic models with time delay, the master equation
should be based on the current system state at time t for reactions without
time delay and the system state at t − Tj for the reaction channel Rj with
time delay Tj . In order to derive the time evolution equation of the prob-
ability function (1), we take a time increment dt that is so small that the
probability for two or more reactions to occur in dt is negligible compared
to the probability for at most one reaction. It is assumed that the reaction
time of a reaction without time delay is dt, while for a reaction with time
delay Tj the reaction time is dt + Tj . Then the probability of the system
being in state x at t + dt is given by
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P (x, t + dt) = P (x, t) −

M1∑

j=1

∑

xi∈I(x)

aj(xi)P (x, t;xi, t − Tj)dt

+

M1∑

j=1

∑

xi∈I(x)

aj(xi)P (x − νj , t;xi, t − Tj)dt (2)

−
M∑

j=M1+1

aj(x)P (x, t)dt +
M∑

j=M1+1

aj(x − νj)P (x − νj , t)dt,

where P (x, t;xi, t−Tj) is the probability that the system is both in the state
x at t and in the state xi at t−Tj , and I(x) is the set of all possible system
states. The second term on the right hand side is the probability that no
reaction will fire in [t − Tj , t + dt) for the reaction Rj with time delay Tj

and the system is in the state x at t + dt. Here we should consider all the
possible states xi at t − Tj because the system evolves in the time period
[t − Tj , t) based on the reactions of other reaction channels. For the case
of one reaction, the third term also considers all the possible system states
at t − Tj for the reaction with time delay Tj but the system should be in
the state x − νj at t. The last two terms are the probabilities for reactions
without time delay, in which only the system states at t should be included
in the master equation.

When dt → 0, this leads to the delay chemical master equation

∂

∂t
P (x, t) = −

M1∑

j=1

∑

xi∈I(x)

aj(xi)P (x, t;xi, t − Tj)

+

M1∑

j=1

∑

xi∈I(x)

aj(xi)P (x − νj , t;xi, t − Tj) (3)

−
M∑

j=M1+1

aj(x)P (x, t) +
M∑

j=M1+1

aj(x − νj)P (x − νj , t).

The value of aj(xi)P (x − νj , t;xi, t − Tj) is the probability that one
reaction Rj (with time delay Tj) fires at t − Tj and at the same time the
system states are x − νj at time t and xi at time t − Tj , respectively. Here
the probability P (x − νj , t;xi, t − Tj) measures the strength of coupling of
the system states at t and t − Tj . If the number of reactions in the time
period [t − Tj , t] is relatively small, this probability is critical to the system
behaviour and the DSSA must be employed. However, if the time delays
are large and there are a relatively large number of reactions in the time
interval [t, t−Tj), it is reasonable to assume that the coupling of the system
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states at t and t − Tj is weak and the probability can be approximated by

P (x − νj , t;xi, t − Tj) ≈ P (x − νj , t) × P (xi, t − Tj). (4)

Here we should re-emphasize that the above assumption is based on the
fact that there are a relatively large number of reactions firing in the time
period [t − Tj , t], which is the case being considered here. In this case all
the different DSSA variants discussed in Supplementary Text S1 can be
considered equivalent.

Based on assumption (4), we can obtain the mean of the propensity
functions for reactions with time delay, given by

aj(x(t − Tj)) =
∑

xi∈I(x)

aj(xi)P (xi, t − Tj). (5)

Then the delay chemical master equation can be simplified as

∂

∂t
P (x, t) = −

M1∑

j=1

aj(x(t − Tj))P (x, t) +

M1∑

j=1

aj(x(t − Tj))P (x − νj , t)

−
M∑

j=M1+1

aj(x)P (x, t), +
M∑

j=M1+1

aj(x − νj)P (x − νj , t). (6)

In the case that there is no delay equation (6) reduces to the well known
Chemical Master Equation associated with the SSA, namely

∂

∂t
P (x, t) =

M∑

j=1

aj(x − νj)P (x − νj , t) −

M∑

j=1

aj(x)P (x, t). (7)

If we multiply the delay chemical master equation (6) through by all
of the states at t, sum over all these system states, and then re-index the
summation on the right-hand side, we can obtain the equations for the mean
of X(t)

dX(t)

dt
=

M1∑

j=1

vjaj(X(t − Tj)) +
M∑

j=M1+1

vjaj(X(t)). (8)

When all molecular numbers are very large and fluctuations are not impor-
tant, we can get the delay reaction rate equation, given by

dX(t)

dt
=

M1∑

j=1

vjaj(X(t − Tj)) +
M∑

j=M1+1

vjaj(X(t)). (9)

Note, if there are no delays, (9) is an ODE describing the standard chemical
kinetics rate equations.

We note that we can use quasi steady-state assumptions [1, 2, 3] that
may encapsulate detailed chemical kinetics within Hill functions and use
these Hill functions in place of the simpler propensity functions. Then, this
will lead directly to the model that Monk considered.
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