
Supplement S5: The Shared Inhibitor Motif 
 
 
In the main text we showed that competitive inhibition of Casp3 and Casp9 by XIAP can 
bring about positive feedback and bistability in the intrinsic apoptosis pathway (see Fig. 2B, 
grey line; Fig. 4F). Similar conclusions regarding positive feedback and bistability also hold in 
general if an inhibitory protein competitively inhibits two consecutive intermediates in signal 
transduction cascades. This ‘shared inhibitor motif’ is schematically depicted in Fig. S5. A 
stimulus, S, activates the upstream intermediate, U, which then in turn catalyzes the 
activation of the downstream intermediate, D. Both active intermediates, U* and D*, are 
subject to negative regulation by the shared inhibitor, I. As indicated in Fig. S5, the shared 
inhibitor can either be a stoichiometric inhibitor of the intermediates (black arrows in Fig. S5) 
or alternatively catalyzes their deactivation, e.g., dephosphorylation (black and grey arrows in 
Fig. S5).  
 

 
 

Figure S5: The Shared Inhibitor Motif 
 
 
In general, bistability can arise if the shared inhibitor binds the intermediates competitively at 
least to some extent. Furthermore, bistability requires that only the active downstream 
intermediate, D*, but not its precursor, D, binds to the inhibitor, I. In addition to these 
‘structural’ requirements, the downstream intermediate, D, needs to be significantly more 
abundant than the inhibitor, I, which in turn must exceed the upstream intermediate, U (see 
main text). Finally, the inhibitor, I, mediates particularly strong positive feedback if the 
downstream intermediate exceeds the dissociation constant (or the Michaelis-Menten 
constant) of the D*I-complex. 
It should be noted that shared inhibitors, which function enzymatically (black and grey arrows 
in Fig. S5), can be efficiently sequestered by the downstream intermediate, D*, and thereby 
mediate positive feedback and bistability even if the D*I is only transiently formed and then 
broken down by catalysis (as long as the Michaelis-Menten constant is low enough).  
 
Table S3 gives an overview on signal transduction pathways, where the ‘shared inhibitor 
motif’ has been reported to occur. Inhibitory proteins were subclassified into three groups, 
according to their biochemical mechanism of action: (i) stoichiometric inhibitors (Inh.), which 
reversibly sequester proteins away from their cellular targets; (ii) GTPase-activating proteins 
(GAP), that stimulate the intrinsic GTPase activity of small G proteins, and thereby catalyze 
their deactivation; (iii) Phosphatases (PP), which antagonize protein-phosphorylation 
cascades, are the most prominent group in Table S3.  



 
 

Table S3: The ‘Shared Inhibitor motif’ is a recurrent motif in cellular signal transduction 
 
 
Available experimental data suggest that bistability due to sequestration of a shared 
phosphatase can occur in vivo. Most phosphatases exhibit a single active site, i.e., they bind 
their substrates in a competitive manner. Additionally, they usually recognize only 
phosphorylated, but not non-phosphorylated, substrates, so that the structural requirements 
mentioned above are fulfilled. Quantitative measurements of protein abundance in the MAPK 
cascade revealed that the downstream intermediates in this system are (much) more 
abundant when compared to their upstream activators [1,2]. Finally, many phosphatases 
exhibit Michaelis-Menten constants in the sub-micromolar range [3,4], which suggests that 
strong feedback can be established (see above).  
 



The feedback mechanism proposed in this paper may, for example, contribute to bistability in 
the JNK cascade [5], since PP2A was shown to dephosphorylate both JNK and its upstream 
activator SEK1 (see Table S3). 
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