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Transcription rates from an equilibrium calculation

We rederive the well known result that an equilibrium calculation, which is commonly used

in enzymatic reactions, yields the same transcription rate as the statistical mechanics ap-

proach [1] we use. We show that this approach not only leads to useful insight about the

model but can also be used to compare directly to experimental results, since the model uses

measurable equilibrium reaction rates. We illustrate this by first evaluating the transcrip-

tion rate using the statistical mechanics approach and then comparing to the equilibrium

approach for a simple system. Consider an example with a single gene that is autoregula-

tory, i.e. the transcription rate is enhanced when it is bound by its own protein product,

X. There are then four possible states of the system. With the logic shown in Table S1, the

transcription rate is given by

T ∝ (δ1 + δ2[X])[R]

1 + δ1[R] + (δ3 + δ2[R])[X]
(S1)

In Eq. (S1), δi are related to the binding free energies, and [R] is the RNAP concentration.

Denote by G0, GX , GR and GXR the four states of the gene; unbound, bound by the

transcription factor X, bound by the RNAP and bound by both X and RNAP. These states

are subject to a normalization

G0 + GX + GR + GXR = 1 (S2)
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The following reaction scheme defines the network

X + G0

k1f­
k1b

GX

R + G0

k2f­
k2b

GR (S3)

R + GX

k3f­
k3b

GXR

At thermodynamic equilibrium, one has

K1 =
[GX ]

[G0][X]
K2 =

[GR]

[G0][R]
K3 =

[GXR]

[GX ][R]
(S4)

where Ki = kif/kib are the equilibrium constants. From Eqs. (S3,S4) and Eq. (S2), we

compute the fractional probability P of the gene being bound by RNAP,

P ∝ [GR] + [GXR] =
K2[R] + K1K3[R][X]

1 + K2[R] + K1[X] + K1K3[X][R]
(S5)

which is functionally similar in form to Eq. (S1). Both methods are equivalent as the only

physical requirement is thermal equilibrium for these reactions. Although the statistical

mechanics approach is more intuitive, the equilibrium approach allows us to define a reaction

scheme, which can be described in terms of measurable kinetic constants. It is also clear

that such a scheme is required to carry out a stochastic simulation.

Parameter dependence of the stem cell box switch behavior

Next we investigate how the model parameters determine the dynamics of the stem cell box.

More precisely, we probe the parameter range for which one obtains a switch-like behavior.

In other words, is the switch-like behavior robust? The curves of the steady state values of

the concentrations of OCT4, SOX2, NANOG and the OCT4–SOX2 complex in Figs. 3 and 4

in the main text as functions of the environmental factor A+ and signal B− exhibit bistable
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switch-like behavior with two saddle-node bifurcations (SN). These curves were obtained

using the parameter sets given in the Table S2. We study the parameter dependence by

asking as to how the switch-like behavior changes as the parameters around the nominal

parameter set displayed in Table S2 are varied. Thus, we follow the SN of the bifurcations in

Fig. 3 as functions of the various parameters. In effect, these are two-parameter bifurcation

plots. We therefore plot the locus of the thresholds of the environmental factor A0
+ , at

which the switch is turned on, as a function of the parameters. In each of the plots, that we

will subsequently display (Figs. S1-S4) the y-axis represents the particular parameter value

being varied, and the x-axis the thresholds A0
+ at which the SN occurs. We obtain either

of two cases: For each parameter value, there are two points corresponding to a bistable

switch with two turning points or a single threshold corresponding to an irreversible bistable

switch. If the threshold value is zero, which happens for extremely low parameter values, it

corresponds to the disappearance of the switch-like behavior altogether.

Binding strengths of the OCT4–SOX2 and OCT4–SOX2–NANOG complexes. In

studying the parameter dependence of the binding strengths of the protein complexes on the

three genes, we use the fact that the nature of the regulation on OCT4 and SOX2 is similar.

Hence, it is sufficient to study the parameter dependence of the binding at the NANOG

gene and either of the OCT4 and SOX2 genes. We therefore consider binding strengths

a3 and a2 which determine how strongly OCT4–SOX2–NANOG and OCT4–SOX2 bind to

OCT4, respectively, and e2 and e1, the binding strengths of the OCT4–SOX2–NANOG and

OCT4–SOX2 complexes on the NANOG gene respectively (see Eq. (1) in the main text.

From Fig. S1, one observes the threshold at which the switch-like behavior occurs reduces

as the free energy of binding decreases, or as a3, a2, e2 and e1 increase. This is intuitively

obvious, since the stronger that these complexes bind to OCT4, SOX2 and NANOG, the

higher the transcription rate, and hence a smaller threshold of the environmental factor is

required to turn the switch on. Although qualitatively similar results are obtained for the

binding strengths of the OCT4–SOX2–NANOG and OCT4–SOX2 complexes on OCT4 and
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NANOG, the threshold A0
+ of the environmental factor, which is required to turn the switch

on, is much smaller for the NANOG gene, as compared to the binding at OCT4 and SOX2.

This suggests that the OCT4–SOX2–NANOG complex binding to NANOG, can be much

weaker as compared to its binding at OCT4 and SOX2, and yet have significant effect on

the dynamics. This is because the regulation at NANOG is autoregulatory which turns out

to be crucial in kick-starting the stem cell box switch. As can be seen From fig. S1, the

values for a3, a2, e2 and e1 range over almost three orders of magnitude, i.e. from .01 to 10,

for which the switch-like behavior is exhibited1. Hence, the switch is extremely robust.

There is an additional interesting feature in the behavior of a3, e2, the binding strengths of

the OCT4–SOX2–NANOG complex on the OCT4 (SOX2) and NANOG genes respectively.

From Fig. S1, when a3 > 0.4 and e2 > 0.15 there is only one turning point. This means that

the switch is irreversible for this range of parameters. Hence in this situation, if the envi-

ronmental factor A+, is initially turned on to a large value, the stem cell box is turned on,

but if it is removed, the switch remains on. The irreversible switch is however only possible

if the OCT4–SOX2–NANOG complex binds strongly to OCT4 (SOX2) and NANOG. It is

therefore interesting to speculate that if this binding strength could be tuned with muta-

tional techniques, i.e. to vary between strong and weak, then the irreversible switch could

be turned into a reversible one and vice versa.

Formation and degradation of the OCT4–SOX2 complex. In Fig. S2 we show the

formation, dissociation and degradation rates, k1c, k2c and k3c respectively, of the OCT4–

SOX2 complex as functions the threshold A0
+, at which the switch is turned on. As k2c

and k3c increase, A0
+ also increases since the SOX2 and OCT4 transcription rates must be

increased to account for loss of the OCT4–SOX2 complex. The opposite effect occurs for k1c,

since as it increases, the rate of complex formation is increased and hence a lower threshold

is required to turn the switch on. For k1c > 0.5, the system becomes a irreversible switch.

1There is strictly only a lower limit, since if the complexes cannot bind to the genes, no regulation occurs.
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Degradation rates of OCT4, SOX2 and NANOG proteins. As can be seen from Fig.

S3, increasing the degradation rates of OCT4, SOX2 and NANOG effectively increase the

threshold of the switch, since a higher activation from the environmental factor is required to

account for loss of proteins through degradation. Degradation of the NANOG protein is par-

ticularly sensitive in that the threshold dramatically increases on increase of its degradation

rate. The switch-like behavior is lost when the degradation rate of NANOG reaches g3 > 1.5

and degradation rate for OCT4/SOX2 reaches g1 > 5. The degradation rate of NANOG

is much more sensitive to any of the other parameters due to its strong impact upon the

dynamics. Being autoregulatory, the degradation rate of NANOG is crucial in determining

its steady state value.

Basal transcription rates of the OCT4, SOX2 and NANOG genes. The basal

transcription rates have the effect of reducing the threshold of activation of the switch, since

transcription occurs even for a smaller environmental factor A+. Hence, as can be seen from

Fig. S4, A0
+ decreases with increased basal rates. Also deduced from Fig. S4 is the relative

importance of the basal transcription rate η5 for the NANOG gene. Again the autoregulatory

nature of NANOG requires a lower basal transcriptional rate to turn on the switch.

Parameter values for Figures 10, 11 in the main text. The same parameters as in

Table S2 are used to generate Figs. 10 and 11 in the main text except for the changes shown

in Table S3. To obtain Fig. 11 we first assume that the stem cell box is on (steady state

values of all the species for A+ = 100). A is then set to zero (removal of the environmental

factor) and the steady states of the system are evaluated as function of signal B−.

Equations and Parameters for Target Gene Regulation

To study the dynamics of the target genes, due to regulation by OCT4–SOX2 and NANOG,

we initially ignore the feedback from NANOG to OCT4 and SOX2. Hence, we assume the

input to the system, OCT4–SOX2, to be constant. The equations determining the regulation
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of the target gene product are then given by

d[N ]

dt
=

(η5 + e1 [OS] + e2 [OS] [N ])

(1 + η6 + f1 [OS] + f2 [OS] [N ] + f3 [B])
− γ3[N ], (S6)

d[TG]

dt
=

η7 + g1 [OS]

1 + η8 + h1 [OS] + h2 [OS][N ]
− γ4[TG],

where [TG] refers to the concentration of the target gene product. The parameters used

for Fig. 6 are given in Table S4 (with f3 = 0). The curves in Fig. 6, which refer to the

simple feedforward network where NANOG does not have autoregulation are obtained by

simulating the above equations for e2 = 0, f2 = 0, and with the same values as in Table S4,

for the remaining parameters. In Fig. 6C the expression for the self-renewal gene is plotted

for the parameters in Table S4, with the change, h2 = 0.001.

The equations, which are used to describe the regulation of the self-renewal target genes

(TG) with OCT4–SOX2 and NANOG as activators and differentiation TG’s with OCT4–

SOX2 and NANOG as repressors, are given below. These follow from the truth table given

in Table 3B and Table 3C respectively.

d[TG]self−renewal

dt
=

η9 + m1 [OS] + m2[OS][N ]

1 + η10 + n1 [OS] + n2 [OS][N ]
− γ5[TG]self−renewal, (S7)

d[TG]differentiation

dt
=

η11

1 + η12 + q1 [OS] + q2 [OS][N ]
− γ6[TG]differentiation,

The above equations are used in conjunction with the equations for the stem cell box, to

generate the curves in Fig. 8 in the main text.

Parameters for Integrated Model

In the integrated model we combine Eqs. (1,2), from which we generate Fig. 7 in the main

text. NANOG now feeds back to OCT4 and SOX2. For the combined model the parameters

for the OCT4, SOX2 and NANOG genes are the same as in Table S2. The target gene
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parameters are given in Table S5. For Fig. 7B in the main text, which shows the output of

self-renewal genes, the parameter h2 = 0.001 is used, and the remaining parameters are the

same as in Table S5.

For Fig. 8, in which we study the dependence of the self-renewal (Fig. 8A), and differentiation

(Fig. 8B) TG products as a function of the input environmental factor A+, we use the

parameters given in Table S6 (these correspond to Eq. S7.). The target gene parameters are

given in Table S5.

The parameters used to generate Fig. 9 are the following: The target gene parameters for

all sets of curves are given in Table S5. For Fig. 9A, the stem cell box parameters are the

same as in Table S1, except for the changes given in Table S7. For Fig. 9B, which displays

the TG expression for strong binding of NANOG to the OCT4 and SOX2 genes, we use the

parameters given in Table S8. The only parameter which is changed is h2 = 0.01.

For Fig. 12, which shows the irreversible bistability for NANOG over-expression, we use the

same parameters as in Table S2, except for the following changes, η5 = 35, η6 = 0.035. The

target gene parameters are given in Table S5.

In all of the figures generated which are referred to in this section the parameter f3 = 0.

Dependence of Target Gene expression assuming an incoherent

feedforward architecture.

Next we comment on the dependence of the target gene expression assuming an incoherent

feedforward architecture, on network parameters. The motivation is to study the response of

the amplitude filter curve as a function of the binding strengths of the transcription factors

at the target gene. We use the parameters given in S4. From Eq. (2) in the main text,

for the rate of change of the target gene product, the two key parameters are g1, h2, the

strength of binding of the OCT4–SOX2 complex, and the OCT4–SOX2–NANOG complex

to the target genes, respectively. We noted earlier that as the free energy of binding of
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the OCT4–SOX2–NANOG to the target gene increases, or as h2 decreases, the target gene

gets increasingly expressed. This is seen in the third panel in Fig. S5, which shows that

as h2 decreases, the target gene repression increases and we loose the sharp cutoff of the

steady state value of the protein level with respect to OCT4–SOX2 protein levels. In the

middle panel, g1, is varied, which determines the rate of transcription of the target gene.

Increasing the amount of the input OCT4–SOX2 complex has the effect of simply increasing

the total amount of target gene protein level. Finally, in the uppermost panel, we vary

e2, the binding affinity of the OCT4–SOX2–NANOG complex to the NANOG gene, which

essentially tunes the amount of autoregulation. Decreasing the amount of autoregulation

leads to less expression of NANOG, and hence less repression of the target genes.
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Tables

X R Rate

0 0 1
1 0 δ3[X]
0 1 δ1 [R]
1 1 δ2[R][X]

Table S1: Logics and rates for a single autoregulatory gene.

η1 a1 a2 a3 η2 b1 b2 b3 η3 c1 c2 c3 η4

10−4 1 0.01 0.2 10−7 0.0011 0.001 0.0007 10−4 1 0.01 0.2 10−7

d1 d2 d3 η5 e1 e2 η6 f1 f2 f3 k1c k2c k3c

0.0011 0.001 0.0007 10−4 0.005 0.1 10−7 0.001 9.95·10−4 0.01 0.05 0.001 5

Table S2: Parameter values used for Figs. 3 and 4 in the main text. All the parameters used
to compute the transcription rates of the genes in the Materials section in the main text, i.e.
free energies and RNAP concentrations (αi, [R]), are converted into the parameters listed in
Eqs. (1,2) in the main text. The degradation constants are γi = 1, i = 1, 2, 3.

a3 c3 b3 d3 e1 f2 f3

0.5 0.5 0.001 0.001 0.01 0.001 0.05

Table S3: Parameters that are changed from the values given in Table S2 when generating
Figs. 10 and 11 in the main text.
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η5 e1 e2 η6 f1 f2 γ3

10−5 10−4 10−3 10−7 9.01 · 10−4 10−3 0.05
η7 g1 η8 h1 h2 γ4

10−5 0.1 10−7 0.0019 0.05 10−2

Table S4: Parameters used in target gene expressions including the NANOG autoregulation.

η7 g1 η8 h1 h2 γ4

10−4 0.1 10−7 10−3 1 0.01

Table S5: Parameters for Fig 7 in the main text.

η9 m1 m2 η10 n1 n2 γ5 η11 η12 q1 q2 γ6

10−4 0.1 0.1 10−7 10−3 10−2 0.05 1 0.001 0.001 0.01 10−2

Table S6: Parameters for Fig 8 in the main text.

a3 c3 b3 d3 e2 f2

0.05 0.05 5.5 · 10−4 5.5 · 10−4 0.025 9.25 · 10−4

Table S7: Parameters for Fig 9A in the main text.

a3 c3 b3 d3 e2 f2

1 1 1.5 10−3 1.5 · 10−3 0.025 9.25 · 10−4

Table S8: Parameters for Fig 9B in the main text.
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Figure S1: Two parameter bifurcation plots for binding strengths of protein complexes to
the genes. The y-axis represents the value of the parameter, in this case a3, a2, e2 and e1,
and the x-axis the threshold A0

+ of the environmental factor, at which the switch turns on.
For example, if a3 = 4.0, then the turning point would occur at A0

+ =' 75. For low values
of a3 <= 0.4, e2 <= .15, the switch is reversible (there are two turning points). For higher
values of a3, e2, the switch is irreversible, suggesting that the stem cell box remains in the
ON state even after removal of the environmental factor A+.
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Figure S2: Two parameter bifurcation plots for formation and degradation rates, k1c, k2c, k3c

of the OCT4–SOX2 complex. Increasing k1c beyond 0.5, leads to a irreversible switch.
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Figure S3: Two parameter bifurcation curves for degradation rates of OCT4, SOX2 and
NANOG proteins.
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Figure S4: Two parameter bifurcation curves for basal transcription rates of OCT4, SOX2
and NANOG genes.
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Figure S5: Target gene expression curves when varying parameters. Top panel: e2 represents
the strength of binding of OCT4–SOX2 and NANOG onto the NANOG gene, and therefore
it represents the amount of autoregulation due to positive feedback. As we decrease the
feedback, NANOG expression reduces, and hence the expression of the differentiation target
genes increases. Middle panel: g1 determines how strongly OCT4–SOX2 binds to the target
gene. Hence for lower values of g1, the target gene expression decreases. Lower Panel: h2

represents the repression due to the OCT4–SOX2, NANOG complex binding to the target
gene gene. Reducing the affinity of binding of the complex leads to a release of the expression
of the differentiation target genes.
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