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Abstract

Seventeen different integration complexes are studied. Genomic fea-
tures that might predict integration are screened. Among these, many
show association with integration targetting in one or more complexes.
The strongest effect for each complex is due to the local oligonucleotide
sequence as measured by a score based on the position weight matrix for
the surrounding 20 base pairs. Predictive models that combine this score
with other features are considered, and some substantially improve the
prediction of integration targetting beyond that of the twenty base pair
score.
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1 DataSets Used

Each dataset used in this analysis has one of two types of control:

match the integration sites were recovered using a restriction enzyme. The
control site matches the distance from the nearest restriction site in the
direction of transcription.

random The control site is merely a random draw from the genome.

The datasets, the element types of the integrastion cokmplexes (aka inte-
grants), their control types, and the number of integration sites studied are
listed here:

Element Control.Type Number.of.Sites
AAV-Fibro AAV random 434

ASLV-HeLa ASLV matched 194
ASLV-293T ASLV matched 640

HIV-Mac HIV matched 786
HIV-SupT1 HIV matched 587
HIV-293T HIV matched 1185

HIV-Jurkat HIV matched 914
HIV-IMR90 HIV matched 482
HIV-PBMC HIV matched 542

L1-Hela L1 random 92
L1-Hela/HCT L1 random 127
MLV-HeLa-S MLV matched 544

MLV-HeLa-NS MLV matched 917
SFV-CD34+ SFV matched 1751

SFV-Fibro SFV matched 962
SB-Hela Sleeping Beauty random 99

SB-Huh-7 Sleeping Beauty random 282
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2 Variables Used

The variables used describe genomic features that summarize characteristics of
the genomic sequence surrounding the integration (or control) site. For conve-
nience of discussion they are divided into categories.

The categories are:

Genes and Exons Indicator variables for whether the site falls into a gene or
an exon. This is abbreviated as gene.exon in some displays. There is one
for each of several gene annotation schemes labelled as follows:

ace Acembly or AceView http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/

ref RefSeq http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html

gen GenScan http://genes.mit.edu/chris

ens Ensembl http://www.ensembl.org

uni UniGene http://www.ncbi.nlm.nih.gov/UniGene/

Gene or Expression Density The number of genes or expressed genes per
base pair in the region surrounding the integration site. This is abbrevi-
ated as gene.density in some displays. There are gene density measures
for each of the annotation schemes listed above. The width of the region
varies from 100,000 base pairs (“100k”) up to 2,000,000 base pairs (“2M”)
for genes. The expression measures use regions ranging from 25,000 to
32,000,000 base pairs. The expression measures are

dens The density of probesets represented on the Affymetrix HU133a
GeneChip.

low.ex The density of probesets achieving the 50th percentile of expres-
sion

med.ex The density of probesets achieving the 75th percentile of expres-
sion

hi.ex The density of probesets achieving the 87.5th percentile of expres-
sion

Dnase I Site Density The number or density of DNAse I sites in regions sur-
rounding the integration ( or control) site. This is abbreviated as dnase
in some displays.

GC Content and CpG Islands The GC percent in the 5kb region contain-
ing the site (gcpct), whether the site is in a CpG island (is.cpg), the
number (or density) of CpG islands in the region surrounding the site.
This is abbreviated as cpg in some displays.

Transcription Start/Stop Features The relation of the site to transcrip-
tion start/stop position on the same strand using each of the annotation
schemes listed above. This is abbreviated as juxtapos in some displays.
The features are:
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start.dx distance to the nearest start position

boundary.dx distance to the nearest start or stop position

general.wd distance from the last start or stop position to the next.

signed.dx the estimated log-odds of integration (vs control) site based
on the signed distance to the nearest start site (negative values for
upstream, positive for downstream). Previous studies noted strongly
non-monotonic effects of the signed distance in MLV integration com-
plexes. To acomodate this, a fitted value was computed as follows:
The ranks of the signed distance were found and scaled to range from
-1 to 1. The rank that would correspond to the distance zero (i.e. the
start site) was noted. A cubic spline logistic (for random controls) or
conditional logit (for matched controls) regression is fitted to these
scaled ranks using one interior knot located at the rank corresponding
to distance zero. In order to avoid overfitting and resubstitution bias
in estimates of association with integration, a 10-fold crossvalidation
was performed with the log-odds estimated by fitting the model to
each training sample and estimating the odds for members of the
corresponding test set.

TRANSFAC scores The scores from each of a selection of the position weight
matrices (PWMs) for transcription factor binding sites. This is abbrevi-
ated as transfac in some displays.

Positional Weight in Flanking Sequence The loglikelihood for integration
versus control site at each position in twenty bases of flanking sequence
(10 upstream and 10 downstream) and their sum. In order to avoid over-
fitting and resubstitution bias in estimates of association with integration,
the score based on the sum of all twenty bases was computed using leave-
one-out crossvalidation (which is easily computed for this measure). (The
bias of the single base scores is negligible, so direct computation was used.)
This is abbreviated as score.20 in some displays. Further, rather than use
the relative frequency estimator for the proportions, the standard Bayes
estimator or multinomial proportions based on the no-information uniform
prior is used to estimate the“background”base proportions (for discussion
of this and related estimators, see [Jones and Vines, 1998]). The propor-
tions for the bases surrounding the integrants are estimated using the
background frequencies times 4 as the parameters of a Dirichlet prior, i.e.
p̂position,base = nposition,base+4π̂base

N+4 , where nposition,base is the count of sites
with that base in that position relative to the integration site, N is the
number of sites, and π̂base is the estimate of the “background” proportion
for that base.
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3 Measuring Association of Features with Inte-
gration

A natural measure of the attractiveness of a genomic location (i.e. for a given
chromosome, position, and strand) to integration events is the probablility that
an integration event would occur there in an experiment in which exactly 1
event occurred. Indexing chromosome by i, position by j, and strand by k and
referring to this location in shorthand as “(i, j, k)”, this quantity is denoted by

Pr(integration at (i, j, k)) = λijk

In an experiment in which N independent integration events occurred, the data
may be represented by the count of integration events occurring at each site,
nijk. The expected number of events at (i, j, k) is

E(nijk) = Nλijk

Associated with each location is a vector of genomic ‘features’, Xijk, that
may include indicators for factors such as whether the location resides in a gene
or in an exon, quantitative values such as the GC content of a defined region
surrounding the location, and functions of simpler features such as polynomi-
als and cross-products. For a given experiment, the probability that a single
integration event occurs at location (i, j, k) may be modelled as

log(λijk) = α + Xijkβ

Where β is a vector of coefficients that determine the effects of the genomic
features on the probability of integration and α is a normalizing constant. The
use of such log-linear models to study counts is well established in statistics
(see [Bishop et al., 1975] and is often approached via generalized linear models
(or GLMs) using a Poisson link (see [McCullagh and Nelder, 1999]). Although
well grounded in both theory and practice, the computational demands of this
approach are excessive when one is considering a collection of 6 billion counts
as for the human genome.

Fortunately, the parameters of interest, β, can be be estimated by computa-
tionally feasible, alternative methods that use well-known relationships between
log-linear, logistic, and conditional logit models; these methods involve drawing
random samples of locations from the genome and finding logistic (or conditional
logit) functions of the genomic features that discriminate between integration
events and random samples. The strategy is essentially that of the nested case-
control study (for a review see [Breslow, 1996]) in which all genomic locations
constitute the “cohort”, the integration sites are the “cases” or “events”, and the
randomly sampled genomic locations are the “nested controls”.

The equivalence of the regression coefficients estimated in the nested case-
control framework to the coefficients of interest, β, is illustrated here briefly. If
one genomic location is sampled so that the probability of sampling location
(i, j, k) is τijk = exp(ν + Xijkγ) then the probability that an event found at
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(i, j, k) is the actual integration event when one integration and one control site
have been sampled is

Pr ((i, j, k) is integration site) =
exp(α + Xijkβ)

exp(α + Xijkβ) + exp(ν + Xijkγ)

If all genomic locations are sampled with equal probability then γ = 0 and the
probability that an event found at (i, j, k) is the actual integration event when
one integration and one control site have been sampled is

Pr ((i, j, k) is integration site) =
exp(α̃ + Xijkβ)

1 + exp(α̃ + Xijkβ)

where α̃ = α−ν. The log-odds that the event at (i, j, k) is the actual integration
event is

log
(

Pr ((i, j, k) is integration site)
1− Pr ((i, j, k) is integration site)

)
= α̃ + Xijkβ

The linear logistic form used here is the basis for logistic regression analysis.
To this point, only one integration event and one control event have been consid-
ered. When N integration and M control events are sampled, similar expressions
are obtained but the coefficient corresponding to α increases by log(N), that for
ν increases by log(M), and and that for α̃ changes by log(N/M).

The regression coefficients β have useful interpretations. When Xijk is a
single binary feature (e.g. for being in a gene or not being in a gene) coded as
one or zero (e.g. for ’in a gene’ or ’not in a gene’), the regression coefficient
β estimates the difference in the log-odds associated with that feature in the
context of a choice between actual and randomly sampled integration events.
When a quantitative feature is used (e.g. the number of genes within 1 megabase
of (i, j, k)), the importance of a given value of the coefficient estimates the
difference in the log-odds for a one unit increase in the quantitative feature
(e.g. the difference due to having one more gene within 1 megabase of (i, j, k)).
In the context of modelling Nλijk, the expected number of integration events
of integration at a particular location given N events, exp(β) is the factor by
which the number of integration events increases due to the binary feature or
due to a one unit increase in a quantitative feature. Thus, the coefficients of
these models provide a basis for assessing the importance of a genomic feature
on integration or comparing the impacts of different features.

More general machine learning algorithms are available that do not require
a pre-specified form for the candidate features. Typically, the output of these
machine learners is an algorithm that predicts into which group a new obser-
vation should be classified. In some cases, a measure of certainty for the group
assignment (eg. posterior probability) is provided. Machine learning algorithms
such as random Forest TM[Breiman, 2001] offer greater flexibility than regres-
sion model that require an explicit functional form for the relationships between
predictor variables and the predicted category. However, when the form of the
regression model is a fair approximation to the optimal predictor, it will perform
much better when trained with small datasets.
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A commonly used measure of a predictor variable’s ability to discriminate
between two classes of events is the area under the Receiver Operator Char-
acteristic (ROC) curve. The ROC curve plots the true positive rate (i.e. the
fraction of integration events above above a fixed cutpoint) on the vertical axis
versus the false positive rate (i.e. the fraction of integration events above that
same cutpoint) for all possible cutpoints. The area under the curve is 1.0 when
all integration events have higher values for the feature than any control event
and 0.0 for the opposite case. When the area is 0.5 it is equally likely that either
has a higher value or that the two are tied. Two competing predictors can be
compared by assessing the area under the ROC curve for each of them. The
ROC curve area, z, for classifying an event as an integration or control event
based on a quantity xijk that represents a genomic feature at each location
(i, j, k) can be computed as

z =
∑
ijk

(λijk(#(rst : xijk > xrst) + #(rst : xijk = xrst)/2)/L)

where L is the number of genomic locations. So, the area under the ROC Curve
provides a summary of the impact of the feature on integration intensity.

It may be important to distinguish between events occurring and events
being recovered. Some methods for recovering integration sites have a known
bias (i.e. some methods tend to recover more events near — but not too near —
specific restriction sites). Suppose the recovery rate at location (i, j, k) is given
by µijk, then

λ̃ijk =
λijkµijk∑
rst λrstµrst

is the expected number of sites recovered at (i, j, k) when 1 is recovered some-
where. Often, it is possible to mimic that bias in sampling from the genome. In
that case,

τ̃ijk =
τijkµijk∑
rst τrstµrst

is the number of events expected at (i, j, k) when 1 is sampled. Given that the
control events are drawn with a similar bias, then

φ̃ijk =
λ̃ijk

τ̃ijk
= φijkρ

where ρ =
∑

rst λrstµrst/
∑

rst τrstµrst. So, regression models for log φ̃ will dif-
fer from those for log φ by a constant. Conclusions concerning the effects of
genomic features are unaffected by biased sampling so long as control sites sam-
pled with the same bias are matched to each integration site. When conditional
logit regression models are used to fit data in which control sites are matched ac-
cording to the distance from the corresponding restriction site, constants like ρ
drop out. ROC curve areas for such data will be computed conditionally on the
matched controls, i.e. the area reflects the proportion of sites whose predicted
value exceeds those of its matched controls.
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4 Association of Features with Integration Tar-
getting

In this section the association of each of the features with integration target-
ting is described. The area under the ROC curve for predicting integration vs
control targetting is taken as the measure of association. This measure can be
interpreted as the probability that a randomly drawn integration site will have
a value for its genomic feature that exceeds that of a random (or matched)
control. Thus, values very near 0.50 are consistent with having no predictive
value, values very near 1.0 occur when higher values of the feature predict inte-
gration, and values very near 0.0 occur when lower values of the feature predict
integration.

Two of the features are derived from fitting the data at hand. Ordinarily,
this would generate a bias in assessing the usefulness of those derived features.
To obviate that bias, cross-validation procedures are applied for the score.20
and signed.dx features. These procedures were described earlier.

Since there are a several hundred features and 17 datasets, a compact repre-
sentation of these associations is needed. An overview is given by a boxplot of
the improvement over chance performance as measured by the area under the
ROC curve; this improvement is the absolute difference between the area and
0.50. Values around 0.0 indicate no useful predictive information in the feature,
while values near 0.50 indicate that the feature is nearly perfect in separating
integration sites from random or matched controls. Each box indicates the first
and third quartiles of the values, while heavy line in the middle gives the median
value. The ’whiskers’ extend to the most extreme observation within 1.5 times
the interquartile range of the median. Individual points beyond the whiskers are
plotted separately. More detailed results are given later by using a false color
map to display the matrix of associations for each type of genomic feature using
rows of the matrix for features and columns for data sets. Here the results are
displayed according to the groupings of features described above. The overall
score for the positional weight matrix of the 20 bases flanking the integration
site (score.20.all) is presented separately from the 20 scores for each base
pair (score.20.1.bp).
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As is evident, the overall score for the positional weight matrix of the 20 bases
flanking the integration site yields nearly perfect prediction in two integration
complexes. The median value exceeds the best values of all of the features in
the other categories. Even the single base pair scores do well in comparison to
most of the other feature categories.

To get a more detailed view of these results, false color maps display the
matrices of associations for each type of genomic feature using rows of the matrix
for features and columns for data sets. Black represents ROC curve areas of 0.50
(no association), bright green corresponds to areas near zero, while bright red
corresponds to values near one as shown in this figure:
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In addition for each graph, a table is presented that breaks down the ROC
curve areas into several categories and counts the number of features that fall
into each category for each data set.
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4.1 Gene or Exon

The distribution of ROC curve areas is given in this table:

(0,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.6] (0.6,0.7] (0.7,0.8] (0.8,1]
AAV-Fibro 0 0 0 10 0 0 0

ASLV-HeLa 0 0 0 10 0 0 0
ASLV-293T 0 0 0 10 0 0 0

HIV-Mac 0 0 0 6 4 0 0
HIV-SupT1 0 0 0 6 4 0 0
HIV-293T 0 0 0 6 4 0 0

HIV-Jurkat 0 0 0 6 2 2 0
HIV-IMR90 0 0 0 6 4 0 0
HIV-PBMC 0 0 0 6 4 0 0

L1-Hela 0 0 0 10 0 0 0
L1-Hela/HCT 0 0 0 10 0 0 0
MLV-HeLa-S 0 0 0 10 0 0 0

MLV-HeLa-NS 0 0 0 10 0 0 0
SFV-CD34+ 0 0 0 10 0 0 0

SFV-Fibro 0 0 0 10 0 0 0
SB-Hela 0 0 0 10 0 0 0

SB-Huh-7 0 0 0 10 0 0 0
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uniGene.exon
uniGene.genes
genScan.exon

genScan.genes
ensGene.exon

ensGene.genes
refGene.exon

refGene.genes
acembly.exon

acembly.genes

In Gene or Exon
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4.2 Gene or Expression Density

The distribution of ROC curve areas is given in this table:

(0,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.6] (0.6,0.7] (0.7,0.8] (0.8,1]
AAV-Fibro 0 0 0 69 0 0 0

ASLV-HeLa 0 0 0 54 15 0 0
ASLV-293T 0 0 0 45 24 0 0

HIV-Mac 0 0 0 52 17 0 0
HIV-SupT1 0 0 0 11 22 36 0
HIV-293T 0 0 0 12 55 2 0

HIV-Jurkat 0 0 0 4 22 42 1
HIV-IMR90 0 0 0 40 29 0 0
HIV-PBMC 0 0 0 36 29 4 0

L1-Hela 0 0 0 57 12 0 0
L1-Hela/HCT 0 0 0 68 1 0 0
MLV-HeLa-S 0 0 0 7 14 47 1

MLV-HeLa-NS 0 0 0 25 44 0 0
SFV-CD34+ 0 0 0 63 6 0 0

SFV-Fibro 0 0 0 69 0 0 0
SB-Hela 0 0 0 69 0 0 0

SB-Huh-7 0 0 0 68 1 0 0
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low.ex.4M
dens.4M

high.ex.2M
med.ex.2M
low.ex.2M

dens.2M
high.ex.1M
med.ex.1M
low.ex.1M

dens.1M
high.ex.500k
med.ex.500k
low.ex.500k

dens.500k
high.ex.250k
med.ex.250k
low.ex.250k

dens.250k
high.ex.100k
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Gene or Expression Density
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Gene or Expression Density (continued)
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4.3 Dnase I Site Density

The distribution of ROC curve areas is given in this table:

(0,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.6] (0.6,0.7] (0.7,0.8] (0.8,1]
AAV-Fibro 0 0 0 9 0 0 0

ASLV-HeLa 0 0 0 8 1 0 0
ASLV-293T 0 0 0 6 3 0 0

HIV-Mac 0 0 0 8 1 0 0
HIV-SupT1 0 0 0 3 2 4 0
HIV-293T 0 0 0 5 4 0 0

HIV-Jurkat 0 0 0 2 2 5 0
HIV-IMR90 0 0 0 6 3 0 0
HIV-PBMC 0 0 0 5 3 1 0

L1-Hela 0 0 0 8 1 0 0
L1-Hela/HCT 0 0 0 9 0 0 0
MLV-HeLa-S 0 0 0 1 2 5 1

MLV-HeLa-NS 0 0 0 3 6 0 0
SFV-CD34+ 0 0 0 5 4 0 0

SFV-Fibro 0 0 0 9 0 0 0
SB-Hela 0 0 0 9 0 0 0

SB-Huh-7 0 0 0 8 1 0 0
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Dnase I Site Density
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4.4 GC Content and CpG Islands

The distribution of ROC curve areas is given in this table:

(0,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.6] (0.6,0.7] (0.7,0.8] (0.8,1]
AAV-Fibro 0 0 0 18 0 0 0

ASLV-HeLa 0 0 0 18 0 0 0
ASLV-293T 0 0 0 18 0 0 0

HIV-Mac 0 0 0 18 0 0 0
HIV-SupT1 0 0 0 12 6 0 0
HIV-293T 0 0 0 16 2 0 0

HIV-Jurkat 0 0 0 10 8 0 0
HIV-IMR90 0 0 0 18 0 0 0
HIV-PBMC 0 0 0 17 1 0 0

L1-Hela 0 0 3 14 1 0 0
L1-Hela/HCT 0 0 0 18 0 0 0
MLV-HeLa-S 0 0 0 7 10 1 0

MLV-HeLa-NS 0 0 0 13 5 0 0
SFV-CD34+ 0 0 0 15 3 0 0

SFV-Fibro 0 0 0 18 0 0 0
SB-Hela 0 0 0 18 0 0 0

SB-Huh-7 0 0 0 17 1 0 0
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GC Content and CpG Islands
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4.5 Transcription Start/Stop Features

The distribution of ROC curve areas is given in this table:

(0,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.6] (0.6,0.7] (0.7,0.8] (0.8,1]
AAV-Fibro 0 0 0 20 0 0 0

ASLV-HeLa 0 0 1 19 0 0 0
ASLV-293T 0 0 1 19 0 0 0

HIV-Mac 0 0 2 14 4 0 0
HIV-SupT1 0 1 3 12 1 3 0
HIV-293T 0 0 3 13 3 1 0

HIV-Jurkat 0 2 2 12 0 4 0
HIV-IMR90 0 0 3 13 4 0 0
HIV-PBMC 0 1 3 12 0 4 0

L1-Hela 0 1 5 13 1 0 0
L1-Hela/HCT 0 0 1 19 0 0 0
MLV-HeLa-S 0 3 3 9 2 3 0

MLV-HeLa-NS 0 0 4 12 4 0 0
SFV-CD34+ 0 0 4 13 3 0 0

SFV-Fibro 0 0 0 20 0 0 0
SB-Hela 0 0 0 20 0 0 0

SB-Huh-7 0 0 0 20 0 0 0
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general.wd.ace

signed.dx.ace
start.dx.ace
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Transcription Start/Stop Features
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4.6 TRANSFAC scores

The distribution of ROC curve areas is given in this table:

(0,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.6] (0.6,0.7] (0.7,0.8] (0.8,1]
AAV-Fibro 0 0 0 110 0 0 0

ASLV-HeLa 0 0 0 110 0 0 0
ASLV-293T 0 0 0 110 0 0 0

HIV-Mac 0 0 0 110 0 0 0
HIV-SupT1 0 0 0 105 5 0 0
HIV-293T 0 0 0 110 0 0 0

HIV-Jurkat 0 0 0 110 0 0 0
HIV-IMR90 0 0 0 110 0 0 0
HIV-PBMC 0 0 0 110 0 0 0

L1-Hela 0 0 2 108 0 0 0
L1-Hela/HCT 0 0 5 103 2 0 0
MLV-HeLa-S 0 0 5 70 35 0 0

MLV-HeLa-NS 0 0 0 97 13 0 0
SFV-CD34+ 0 0 0 110 0 0 0

SFV-Fibro 0 0 0 110 0 0 0
SB-Hela 0 0 0 110 0 0 0

SB-Huh-7 0 0 0 110 0 0 0
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TRANSFAC scores
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TRANSFAC scores (continued)
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4.7 Positional Weight in Flanking Sequence

The distribution of ROC curve areas is given in this table:

(0,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.6] (0.6,0.7] (0.7,0.8] (0.8,1]
AAV-Fibro 0 0 0 19 2 0 0

ASLV-HeLa 0 0 0 18 2 1 0
ASLV-293T 0 0 0 17 3 1 0

HIV-Mac 0 0 0 15 5 0 1
HIV-SupT1 0 0 0 17 3 0 1
HIV-293T 0 0 0 15 5 0 1

HIV-Jurkat 0 0 0 18 2 0 1
HIV-IMR90 0 0 0 15 5 0 1
HIV-PBMC 0 0 0 13 7 0 1

L1-Hela 0 0 0 5 8 5 3
L1-Hela/HCT 0 0 0 9 8 3 1
MLV-HeLa-S 0 0 0 16 4 0 1

MLV-HeLa-NS 0 0 0 17 3 1 0
SFV-CD34+ 0 0 0 18 1 1 1

SFV-Fibro 0 0 0 18 2 1 0
SB-Hela 0 0 0 14 4 2 1

SB-Huh-7 0 0 0 13 3 2 3
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Positional Weight in Flanking Sequence
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5 Details of Local Sequence Effects

The strongest association for each integration complex was the score based on
20 base pairs that flank the integration site. In some cases, near perfect dis-
crimination (ROC area greater than 0.98) is possible. Given this some deeper
exploration into which motifs are associated with integration seems in order.
First, here is a display of the weights used in the position weight matrix (PWM)
scoring. The score is obtained by adding the value read on the y axis for each
base seen according to the position indicated on the x axis. Positions with neg-
ative numbers indicate the number of bases ’upstream’ of the integration site
in the direction of transcription, while those with positive numbers indicate the
number of bases ’downstream’ of the integration site. When the oligonucleotide
base appears above the horizontal line the site is more attractive to the inte-
gration complex and when it appears below the line it is less attractive. When
viewing these with a pdf viewer, it helps to enlarge the zoom in on the image.
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Similar motifs appear in several of the integration complexes. To make it
easier to determine the similarity of scores for the different integration com-
plexes, a sample of random genomic sites is scored using each of the PWMs
and the correlations of those scores are displayed in false color in the following
figure. Green corresponds to negative correlations (meaning that when one in-
tegration site is favored the other integration complex tends to be disfavored)
and red corresponds to positive correlations (both complexes tend to be favored
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or disfavored in tandem). The integration complexes are subjected to hierar-
chical clustering of the correlations, which is shown on the figure, and ordered
according to cluster membership.
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As is evident, the integration complex scores form distinct groups. Look-
ing back to the earlier figure, the similarites in PWMs that account for these
correlations are usually apparent. The HIV integration complexes all cluster to-
gether, and favoring G and disfavoring T bases at position 1 and favoring C and
disfavoring A at position 5. Many other effects are evident both upstream and
downstream in the HIV complexes. The L1-Hela and L1-Hela/HCT complex
scores favor A downstream. The SB-Hela and SB-Huh-7 scores strongly favor
TA immediate downstream of the integration site. The SFV complexes prefer
G or C immediately downstream, and weakly favor C further downstream in
several positions. The ASLV and SFV scores tend to correlate weakly with the
HIV scores and similarites at positions -3, 1, and 5 are apparent.

6 Association of Local Sequence and Other Fea-
tures

Given that the score for the 20bp flanking region (“score.20”) showed the
strongest association with integration targetting, it is worth considering whether
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the other features are merely redundant. One way to do this is to check whether
some of those features are highly correlated with score.20. Here is a histogram
of the correlations of the features with score.20 for each of the data sets.

Score.20 vs Other Features
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Evidently, the correlations range from -0.218 to 0.263. Most correlations are
quite small, so we suspect that there is limited redundancy with the score for
the 20bp flanking region. Thus, a predictor of integration targetting constructed
from score.20 and other features could substantially improve upon a score
based on score.20 alone.

7 Incremental Effects of Features

It was obvious above that the local nucleotide sequence is the single most im-
portant determinant of integration targetting. However, the median (cross-
validated estimate of the) ROC curve area is only 0.82, so there are evidently
other factors at play in determining the integration site for most integration
complexes.

Here, the incremental effects of the features examined above on the ROC
curve area are studied. The method operates as follows: for each feature a
(conditional logit or logistic) regression is fit to the data that includes the score
for the 20bp flanking region (“score.20”) and one or more additional terms to
represent one of the other features. If the feature is a zero-one indicator (such
as acembly.genes), then it is included as is. If the feature is a quantitative
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measure (such as ace.100k), then it is replaced with the basis vectors for a
cubic spline of the ranks of the values. In the case of continuous measures, this
allows the logarithm of integration intensity to depend on the value of the feature
in a (possibly) non-linear fashion. The fitted value of the integration intensity is
then use to calculate the under under the ROC curve and the difference of this
area minus the area for the curve based only on score.20 is taken as a measure
of the improvement due to the feature. Note that since the criterion optimized
by the regressions does not have a one-for-one relation with the area under the
ROC curve, it is possible that no improvement or even negative ’improvement’
will occur.

A brief overview of the effects of different feature categories in improving
prediction is obtained from boxplots of the improvement in area under the ROC
curve area when each feature is fitted along with the twenty base pair score.
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Evidently, there are many features that can improve the prediction of inte-
gration targetting by at least a modest amount. Overall, the gene or expression
density features seem most promising.

To get a more detailed view, these ’improvement’ values are displayed in
grayscale with white corresponding to no (or negative) improvement, pure black
corresponding to an improvement of 0.10, and shades of gray corresponding to
intermediate values.

Here is the color key:
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7.1 Gene or Exon

The distribution of ROC curve increments is given in this table:

≤ 0.01 (0.01,0.02] (0.02,0.03] (0.03,0.04] (0.04,0.05] >0.05
AAV-Fibro 10 0 0 0 0 0

ASLV-HeLa 10 0 0 0 0 0
ASLV-293T 10 0 0 0 0 0

HIV-Mac 6 1 3 0 0 0
HIV-SupT1 6 1 0 2 1 0
HIV-293T 7 1 2 0 0 0

HIV-Jurkat 6 0 1 1 2 0
HIV-IMR90 6 4 0 0 0 0
HIV-PBMC 6 1 0 2 1 0

L1-Hela 10 0 0 0 0 0
L1-Hela/HCT 10 0 0 0 0 0
MLV-HeLa-S 10 0 0 0 0 0

MLV-HeLa-NS 10 0 0 0 0 0
SFV-CD34+ 10 0 0 0 0 0

SFV-Fibro 10 0 0 0 0 0
SB-Hela 10 0 0 0 0 0

SB-Huh-7 10 0 0 0 0 0
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7.2 Gene or Expression Density

The distribution of ROC curve increments is given in this table:

≤ 0.01 (0.01,0.02] (0.02,0.03] (0.03,0.04] (0.04,0.05] >0.05
AAV-Fibro 69 0 0 0 0 0

ASLV-HeLa 48 21 0 0 0 0
ASLV-293T 39 30 0 0 0 0

HIV-Mac 44 22 3 0 0 0
HIV-SupT1 5 8 10 16 16 14
HIV-293T 7 17 41 4 0 0

HIV-Jurkat 1 6 12 17 17 16
HIV-IMR90 55 14 0 0 0 0
HIV-PBMC 16 21 14 8 6 4

L1-Hela 69 0 0 0 0 0
L1-Hela/HCT 66 3 0 0 0 0
MLV-HeLa-S 7 7 10 12 12 21

MLV-HeLa-NS 32 32 5 0 0 0
SFV-CD34+ 69 0 0 0 0 0

SFV-Fibro 69 0 0 0 0 0
SB-Hela 69 0 0 0 0 0

SB-Huh-7 69 0 0 0 0 0
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7.3 Dnase I Site Density

The distribution of ROC curve areas is given in this table:

≤ 0.01 (0.01,0.02] (0.02,0.03] (0.03,0.04] (0.04,0.05] >0.05
AAV-Fibro 9 0 0 0 0 0

ASLV-HeLa 7 2 0 0 0 0
ASLV-293T 5 4 0 0 0 0

HIV-Mac 9 0 0 0 0 0
HIV-SupT1 3 1 1 2 1 1
HIV-293T 4 4 1 0 0 0

HIV-Jurkat 2 1 1 2 3 0
HIV-IMR90 9 0 0 0 0 0
HIV-PBMC 3 2 1 2 1 0

L1-Hela 9 0 0 0 0 0
L1-Hela/HCT 9 0 0 0 0 0
MLV-HeLa-S 0 1 2 2 2 2

MLV-HeLa-NS 2 4 3 0 0 0
SFV-CD34+ 9 0 0 0 0 0

SFV-Fibro 9 0 0 0 0 0
SB-Hela 9 0 0 0 0 0

SB-Huh-7 9 0 0 0 0 0
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7.4 GC Content and CpG Islands

The distribution of ROC curve increments is given in this table:

≤ 0.01 (0.01,0.02] (0.02,0.03] (0.03,0.04] (0.04,0.05] >0.05
AAV-Fibro 18 0 0 0 0 0

ASLV-HeLa 11 7 0 0 0 0
ASLV-293T 18 0 0 0 0 0

HIV-Mac 18 0 0 0 0 0
HIV-SupT1 16 2 0 0 0 0
HIV-293T 16 2 0 0 0 0

HIV-Jurkat 13 4 1 0 0 0
HIV-IMR90 18 0 0 0 0 0
HIV-PBMC 15 2 1 0 0 0

L1-Hela 18 0 0 0 0 0
L1-Hela/HCT 17 1 0 0 0 0
MLV-HeLa-S 8 4 2 3 1 0

MLV-HeLa-NS 12 3 3 0 0 0
SFV-CD34+ 17 1 0 0 0 0

SFV-Fibro 18 0 0 0 0 0
SB-Hela 18 0 0 0 0 0

SB-Huh-7 18 0 0 0 0 0
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7.5 Transcription Start/Stop Features

The distribution of ROC curve increments is given in this table:

≤ 0.01 (0.01,0.02] (0.02,0.03] (0.03,0.04] (0.04,0.05] >0.05
AAV-Fibro 20 0 0 0 0 0

ASLV-HeLa 17 3 0 0 0 0
ASLV-293T 19 1 0 0 0 0

HIV-Mac 14 4 2 0 0 0
HIV-SupT1 13 1 1 2 2 1
HIV-293T 14 1 5 0 0 0

HIV-Jurkat 11 2 1 0 2 4
HIV-IMR90 14 4 2 0 0 0
HIV-PBMC 11 2 1 1 4 1

L1-Hela 20 0 0 0 0 0
L1-Hela/HCT 17 2 0 1 0 0
MLV-HeLa-S 8 4 3 3 2 0

MLV-HeLa-NS 13 7 0 0 0 0
SFV-CD34+ 20 0 0 0 0 0

SFV-Fibro 20 0 0 0 0 0
SB-Hela 20 0 0 0 0 0

SB-Huh-7 20 0 0 0 0 0
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7.6 TRANSFAC scores

The distribution of ROC curve increments is given in this table:

≤ 0.01 (0.01,0.02] (0.02,0.03] (0.03,0.04] (0.04,0.05] >0.05
AAV-Fibro 109 1 0 0 0 0

ASLV-HeLa 103 7 0 0 0 0
ASLV-293T 110 0 0 0 0 0

HIV-Mac 110 0 0 0 0 0
HIV-SupT1 105 5 0 0 0 0
HIV-293T 110 0 0 0 0 0

HIV-Jurkat 110 0 0 0 0 0
HIV-IMR90 110 0 0 0 0 0
HIV-PBMC 110 0 0 0 0 0

L1-Hela 110 0 0 0 0 0
L1-Hela/HCT 110 0 0 0 0 0
MLV-HeLa-S 86 19 5 0 0 0

MLV-HeLa-NS 104 6 0 0 0 0
SFV-CD34+ 110 0 0 0 0 0

SFV-Fibro 110 0 0 0 0 0
SB-Hela 110 0 0 0 0 0

SB-Huh-7 110 0 0 0 0 0
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TRANSFAC scores (continued)

As is evident from inspection of the above graphs, there are many features
that offer at least modest improvement of area under the ROC curve beyond
what score.20 offers. Plausibly, combining several of the features would lead
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to a substantial improvement in the ability to predict integration preferences.

8 Combined Effects of Features

While some patterns have emerged from the results above, it is unclear how
the features will behave in combination. Logistic or conditional logit regres-
sion methods can be used to fit selected features, but fitting a large number of
features with datasets of practical size leads to results that are uninterpretable
even when the computational difficulties can be resolved. Consideration of cho-
sen subsets of features is practical, but given the number of features to be ex-
plored there are more than 1070 such combinations. The possible combinations
of features is sometimes referred to as the model space. Methods are available
that allow for searching over the model space to select models that fit well ac-
cording to model selection criteria such as the Bayesian posterior probability
or its approximation the Bayes Information Criterion (BIC) which balances the
likelihood under a particular model against the number of variables it uses.
By either collecting models sampled according to their posterior probabilities
[George and McCulloch, 1993] or by collecting fewer models with the highest
posterior probabilites [Raftery et al., 2005], summaries of the behavior of the
different features can be obtained that integrate across the model space.

For example, each model has a Bayesian posterior probability associated with
it, so summaries of the impact of differing classes of features can be obtained by
summation of the posteriors for models that include one or more members of a
given class. Classes with posterior probabilities much below 1.0 for a particular
integration complex can be dismissed as unimportant.

For those classes that have high posterior probability, the posterior proba-
bilities of features within that class and the posterior means of their regression
coefficients can highlight important individual features.

Another approach is given by machine learning procedures, such as the ran-
dom ForestTMalgorithm [Breiman, 2001], that have a high degree of flexibility
in forming classification rules from large collections of features.

8.1 Regression via Bayes Model Averaging

The regression modelling was carried out using the R package BMA[Raftery et al., 2005]
using bic.glm (for random genomic controls) and a version of bic.surv ( for
matched random controls) slightly modified to perform conditional logit analy-
sis. When bic.glm or bic.surv is used with 30 or fewer regressor variables it
uses a branch-and-bound strategy [Lawless and Singhal, 1978] to prune models
of low posterior probability out of the more than one billion possible models
back to a manageable number of models. Each of these models is fitted, and the
posterior probability, coefficients, and standard errors of each model are saved.
When used with 31 or more variables it starts by fitting all variables then per-
forming a backward deletion to prune down to thirty variables, then it applies
the other procedures. With more than 200 variables here, this strategy will fail.
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The computing time needed would be excessive, and the elimination procedure
may prune out variables that would do well in smaller models. To cope with
this a Bayesian linear regression procedure that performs a stochastic search
in the model space is used to order the variables according to their posterior
probability under the linear regression heuristic. The best thirty of these are
used in bic.glm or bic.surv. In addition, the consistent effects of many gene
or expression density features led us to perform a data reduction in which the
first principal component of the ranks of the gene or expression density variables
was extracted, and this variable (pc1) was added to the list of candidate vari-
ables so that weak effects distributed over many variables couold be included in
a parsimonious manner. The initial linear model stochastic search conditioned
on inclusion of both variables. In order to obtain comparable results across the
full collection of features, a transformation was applied to all variables (except
the gene or exon features which are coded with zero or one indicators); the rank
of each feature are rescaled to range from -1 to 1. Thus, the quartiles are -0.50
and 0.50, a one unit difference apart. A coefficient of 0.50 implies that one unit
difference would change the log-odds of integration by 0.50 (or increase the odds
by about 65 percent).

The overall effect of adding variables to score.20 is summarized in the
following table. K-fold cross-validation (with k = 10) is used to obtain honest
estimates of the area under the ROC curve that would be obtained with fresh
observations; each training sample is used to select the variables to be included
and to fit the model, while the fitted values are computed for the corresponding
test set and the ROC curve area is computed using all test sets together.

score.20 BMA.fit Improvement
AAV-Fibro 0.64 0.65 0.02

ASLV-HeLa 0.72 0.74 0.01
ASLV-293T 0.77 0.79 0.02

HIV-Mac 0.83 0.88 0.05
HIV-SupT1 0.81 0.92 0.10
HIV-293T 0.84 0.90 0.06

HIV-Jurkat 0.83 0.92 0.09
HIV-IMR90 0.82 0.85 0.03
HIV-PBMC 0.83 0.91 0.08

L1-Hela 0.99 0.99 0.00
L1-Hela/HCT 0.82 0.80 −0.02
MLV-HeLa-S 0.81 0.90 0.09

MLV-HeLa-NS 0.79 0.84 0.05
SFV-CD34+ 0.80 0.83 0.03

SFV-Fibro 0.78 0.79 0.01
SB-Hela 0.84 0.83 −0.01

SB-Huh-7 0.99 0.99 −0.00

The HIV and MLV integration complexes show substantial improvement
with the additional variables. In the other integration complexes, the improve-
ment is more modest. In a few cases there is negative ’improvement’; this may
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be a consequence of optimizing the log-likelihood criterion and then testing with
the ROC curve criterion.

To determine the similarity of scores developed using BMA for the different
integration complexes, a sample of random genomic sites is scored using each
of the rules and the correlations of those scores are displayed in false color in
the following figure. Green corresponds to negative correlations (meaning that
when one integration complex is favored the other integration complex tends
to be disfavored) and red corresponds to positive correlations (both complexes
tend to be favored or disfavored in tandem). The integration complexes are
subjected to hierarchical clustering of the correlations, which is shown on the
figure, and ordered according to cluster membership.
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Note that the ordering of the rows and columns may have changed compared
to the earlier image that was based only on score.20. So, it is necessary to
study the labels to make comparisons. Overall, the image is very similar to
that seen earlier which was based only on score.20. Given the strong effects
of that variable this is not a surprise. The correlations within the HIV group
of integration complexes now are all slightly reduced compared to the earlier
figure. The ASLV complexes now are slightly more correlated with the MLV
complexes and the negative correlations of “AAV-Fibro” complex with the HIV
complexes are now essentially nil.

The posterior probability associated with each class of features is presented
in the table below.
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gene.exon gene.density cpg dnase juxtapos transfac score.20
AAV-Fibro 0.03 1.00 0.08 0.00 1.00 1.00 1.00
ASLV-HeLa 0.07 1.00 0.99 0.00 1.00 1.00 1.00
ASLV-293T 0.10 1.00 1.00 1.00 0.00 0.98 1.00

HIV-Mac 1.00 1.00 1.00 1.00 0.00 1.00 1.00
HIV-SupT1 1.00 1.00 1.00 1.00 0.00 1.00 1.00
HIV-293T 1.00 1.00 1.00 1.00 0.36 1.00 1.00

HIV-Jurkat 1.00 1.00 1.00 1.00 1.00 0.98 1.00
HIV-IMR90 1.00 1.00 1.00 0.92 0.00 0.99 1.00
HIV-PBMC 1.00 1.00 1.00 1.00 1.00 1.00 1.00

L1-Hela 0.00 0.00 0.12 0.00 0.81 0.00 1.00
L1-Hela/HCT 0.13 0.93 0.02 0.28 0.88 0.13 1.00
MLV-HeLa-S 0.00 1.00 1.00 1.00 0.99 0.00 1.00

MLV-HeLa-NS 0.51 1.00 1.00 1.00 1.00 1.00 1.00
SFV-CD34+ 1.00 1.00 1.00 1.00 1.00 0.89 1.00

SFV-Fibro 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SB-Hela 0.03 0.00 1.00 0.00 0.11 0.74 1.00

SB-Huh-7 0.29 0.96 0.67 0.36 0.00 0.44 1.00

The only class that shows high posterior probability in every integration
complex is the single variable score.20 – the score based on the positional
weight matrix of the 20 base pairs flanking the integration site.

The integration complexes “SB-Huh-7” and “L1-Hela” show low posterior
probabilities for almost all of the other classes. However, this might be ex-
pected since score.20 is an accurate predictor of integration by itself for these
complexes.

The integration complexes“SB-Hela”and“L1-Hela/HCT”that showed nega-
tive“improvement”of the model with multiple variables over that with score.20
alone (in terms the the area under the ROC curve) only show high posterior
probability in one or two classes besides the score.20 class.

The class gene.density has high posterior probability in all integration
complexes but “SB-Hela and “L1-Hela”. The class gene.exon has low posterior
probability in about half of the integration complexes, while very high posterior
probability is shown in at least a majority of the integration complexes. This is
also true of the juxtapos class. The other classes show high posterior probability
for the majority of integration complexes.

Another view of the impact of each class of features is obtained by examining
the influence each feature has on the log-odds of integration. The predicted log-
odds of integration for location (i, j, k) are proportional to

log φijk = Xijkβ

where Xijk is the vector of feature values for that location and β is the vector of
regression coefficients corresponding to those features. This can be decomposed
by partitioning X and β rendering

log φijk = X
(gene.exon)
ijk β(gene.exon) + · · ·+ X

(transfac)
ijk β(transfac)

The contributions, X
(r)
ijkβ(r), can be evaluated separately. In the following table,

the variance of the contribution from each feature type is estimated using a
sample of control locations drawn at random from the genome for each of the
17 integration complexes.
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score.20 cpg dnase gene.density gene.exon juxtapos transfac
AAV-Fibro 0.26 0.00 0.00 0.23 0.00 0.17 0.06

ASLV-HeLa 0.80 0.06 0.00 0.38 0.00 0.12 0.08
ASLV-293T 1.23 0.09 0.05 0.07 0.00 0.00 0.02

HIV-Mac 2.51 0.29 0.30 0.27 0.14 0.00 0.09
HIV-SupT1 2.19 1.08 0.61 0.77 0.20 0.00 0.22
HIV-293T 2.78 0.59 0.22 0.37 0.10 0.00 0.04

HIV-Jurkat 2.56 0.77 0.09 1.34 0.19 0.09 0.03
HIV-IMR90 2.04 0.24 0.03 0.45 0.09 0.00 0.06
HIV-PBMC 2.37 0.44 0.50 0.44 0.20 0.10 0.12

L1-Hela 762.45 0.01 0.00 0.00 0.00 0.39 0.00
L1-Hela/HCT 2.65 0.00 0.03 0.16 0.00 0.25 0.00
MLV-HeLa-S 1.44 0.49 0.47 0.22 0.00 0.04 0.00

MLV-HeLa-NS 1.62 0.17 0.12 0.17 0.00 0.06 0.07
SFV-CD34+ 1.60 0.19 0.10 0.10 0.03 0.03 0.01

SFV-Fibro 1.48 0.05 0.03 0.04 0.04 0.03 0.04
SB-Hela 2.95 0.29 0.00 0.00 0.00 0.00 0.06

SB-Huh-7 226.13 0.06 0.01 0.22 0.02 0.00 0.01

As can be seen the largest variance for each integration complex is that due to
score.20, while gene.density, cpg, and dnase all had at least one component
that had a variance of at least 0.50. Note that with a variance of 0.5 that two
locations differing only on that component and by just one standard deviation
would have relative odds of exp(

√
2) ≈ 2.03 — a moderate difference in odds.

We turn now to a consideration of the individual features in each class.
The regressor variables used were transformed by taking ranks of the values
in each data set and then scaling them to have unit variance. This allows the
magnitudes of the regression coefficients to be compared as a means of assessing
the importance of each variable in integration targetting. For score.20 the
coefficients are all large.; the smallest value is 0.88 for AAV-Fibro and the next
smallest is 1.55 for ASLV-HeLa.

In what follows, the other regression coefficient posterior means are repre-
sented graphically in false color with increasing intensity of green indicating
more negative values and increasing intensity of red indicating more positive
values. The scale is shown in the follow figure. A small number of values exceed
the range and are shown in the brightest colors.
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8.1.1 Gene or Exon
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8.1.2 Gene or Expression Density
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8.1.3 Dnase I Site Density
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8.1.4 GC Content and CpG Islands
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8.1.5 Transcription Start/Stop Features
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8.1.6 TRANSFAC scores
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TRANSFAC scores (continued)

As HIV complexes showed the most improvement, it is probably not sur-
prising that they also showed many stronger effects. Many gene or expression
density variables showed positive effects for HIV and few showed negative ef-
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fects, although the window widths and annotation that showed the effects varied
for the different HIV complexes. To a lesser extent, this was also true of MLV.
Also, being in a refSeq or Ensembl gene showed a positive effect for each HIV
complex.

Having nearby (±500 bases) dnase I sites was not influential although having
dnase I sites in a broader region was for both HIV and MLV.

The negative effect for gcpct on HIV integration is a surprise; in earlier
displays this effect was nil or very small. Evidently, a suppressor variable re-
lationship underlies this. CpG densities show some positive and some negative
effects.

The features that relate to the transcription start sites show few effects. In
particular, the signed.dx features that all showed positive associations with
MLV and HIV integration are mostly nil in this context.

The TRANSFAC scores are mostly nil. Those that are not nil are roughly
evenly divided between positive and negative effects and show no obvious pattern
of concordance.

8.2 Fitting via RandomForests TM

The random Forest TMalgorithm as implemented in the R package randomFor-
est[Liaw and Wiener, 2002] was used to fit the data from each integration site.
This was done separately using just the score.20 and pc1 variables, adding
just the TRANSFAC scores to those two, adding the other features to those
two, and using all features together.

Each fit produces a ’vote’ on the category (integration site vs control site)
that can be used to calculate the area under the ROC curve. The fit for each
site is done by using a collection of training samples that do not include the site
in question (known as “out-of-bag” prediction), so overfitting is not an issue.

The table below shows the area under the ROC curve for score.20 alone
and for each of the votes from the randomForest classifiers: and pc1 which uses
the principal component score for gene density as well as score.20,and others
which uses score.20 and pc1 and all features besides the TRANSFAC scores,
and PWM which uses the TRANSFAC scores, and All Features.
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score.20 20 and pc1 and others and PWM All Features
AAV-Fibro 0.64 0.54 0.65 0.60 0.63

ASLV-HeLa 0.72 0.68 0.66 0.65 0.65
ASLV-293T 0.77 0.71 0.73 0.71 0.71

HIV-Mac 0.83 0.80 0.84 0.82 0.84
HIV-SupT1 0.81 0.83 0.88 0.85 0.88
HIV-293T 0.84 0.82 0.88 0.86 0.88

HIV-Jurkat 0.83 0.84 0.90 0.87 0.90
HIV-IMR90 0.82 0.78 0.82 0.80 0.81
HIV-PBMC 0.83 0.81 0.90 0.84 0.89

L1-Hela 0.99 0.96 0.98 0.93 0.96
L1-Hela/HCT 0.82 0.71 0.72 0.71 0.72
MLV-HeLa-S 0.81 0.83 0.87 0.84 0.86

MLV-HeLa-NS 0.79 0.76 0.82 0.79 0.81
SFV-CD34+ 0.80 0.73 0.81 0.77 0.80

SFV-Fibro 0.78 0.70 0.77 0.72 0.75
SB-Hela 0.84 0.80 0.90 0.80 0.82

SB-Huh-7 0.99 0.98 0.98 0.98 0.98

In many instances, the randomForest vote produces poorer results than
score.20 all alone. This is probably a reflection of the limited ability of ran-
domForest to capture weak monotone effects in datasets of the size used here.
Usually, the best randomForest is based on score.20, pc1, and the “other” fea-
tures alone. While the TRANSFAC scores sometimes yield higher ROC curve
areas than score.20 and pc1 alone, they never do better than the “other” fea-
tures. “All Features” is usually a close second to “and others” suggesting that
the TRANSFAC features add no useful information. Further, these results are
almost always less than those for the Bayes Model Averaging predictions —
sometimes by a substantial margin.

Finally, we combined the randomForest results with the Bayes Model Av-
erage results by using the votes and the BMA prediction as regressors in a
conditional logit model (for ’match’ed controls) or logistic regression model (for
’random’ controls). Using the fitted values, the ROC curve area is again com-
puted. This is done without further crossvalidation. The results shown here
compare the Bayes Model Average predictions to the combination (combo). The
p-value is based on the difference in ROC curve areas[DeLong et al., 1988].
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BMA combo p.value
AAV-Fibro 0.65 0.69 0.0002

ASLV-HeLa 0.74 0.73 0.5194
ASLV-293T 0.79 0.79 0.2389

HIV-Mac 0.88 0.89 0.0005
HIV-SupT1 0.92 0.92 0.2117
HIV-293T 0.90 0.91 0.0002

HIV-Jurkat 0.92 0.93 0.0005
HIV-IMR90 0.85 0.86 0.0059
HIV-PBMC 0.91 0.92 0.0001

L1-Hela 0.99 0.99 0.0058
L1-Hela/HCT 0.80 0.83 0.0503
MLV-HeLa-S 0.90 0.91 0.1701

MLV-HeLa-NS 0.84 0.85 0.0002
SFV-CD34+ 0.83 0.84 0.0000

SFV-Fibro 0.79 0.80 0.0012
SB-Hela 0.82 0.89 0.0000

SB-Huh-7 0.99 0.99 0.0005

Rather small increases in ROC curve area are seen for most integration
complexes. The most substantial is seen for the “SB-Hela” complex. Further
analysis (not shown here) suggests that this is due to effects that manifest when
score.20 is not at its highest levels. This type of effect would be represented
as an interaction effect in a regression model. The randomForest algorithm
picks up such interaction effects automatically, while the regression models used
here did not allow for them. Further studies may attempt to the fit regression
models with interaction effects. However, the mostly modest increases seen in
ROC curve areas when fitting both randomForest votes and BMA predictions
suggests that interaction effects are usually minor.
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