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Supplementary Online Material 

Analysis of the symmetric game shown in Figure 1b 

The matrix shown in Figure 1b is a simplified version of the payoff matrix resulting from 

equations (1) under the approximation t(r+1)  t for t<<1. The full matrix is shown in 

(S1).
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Evolutionarily stable states in the symmetric case 

A symmetric game like that of (S1) can have pure and mixed evolutionarily stable 

strategies (ESSs). The pure strategies are those where both insertion sequences transpose 

either only selfishly or only cooperativity. Biologically, one can think of a mixed strategy 

is a strategy where individual ISs in one transposable element are able to initiate selfish 

and cooperative transposition at probabilities p and (1-p).

 It is straightforward to determine the evolutionarily stable states (ESSs) in a 

simple symmetric game like this. Relevant theorems can be found in [6, Appendix B,35, 

Chapter 15]. Because of the four parameters, the model can display a variety of different 

outcomes. Different regions in its parameter space correspond to well-characterized game 

theoretical models. For example, for =1 and )]1(2/[)1()1/( tstrtts , the game 

becomes the well-known Prisoner’s dilemma game, with selfish behavior as the only 

ESS. In studying the model’s behavior systematically as a function of its parameters, I 

need to distinguish several cases.

Case 1: =1 (Selfishness is genetically dominant) 
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In this case, it is easy to show e.g., using [35, Theorem 15.15] that there are only pure 

ESSs.

1t
tsr   selfishnesss is an ESS  (S2a) 

1t
tsr  both selfishness and cooperativity are ESSs (S2b)

Case 2: =0 (Cooperativity is genetically dominant) 

This is the case most favorable to the emergence of cooperativity. There are again only 

pure ESSs.. 
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t
str  cooperativity is an ESS (S3b)

Case 3: 0< <1.

Here, one can show that the pure ESSs exist under the following conditions
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tr   selfishness is an ESS  (S4a) 

1t
tsr   cooperativity is an ESS (S4b) 



28

When both (S4a) and (S4b) hold, then both selfishness and cooperativity can be pure 

ESSs and the initial state of the game’s evolutionary dynamics (selfishness or 

cooperativity) becomes important for the outcome. 

 The right-hand side parenthetical expression of (S4a) will be important 

throughout, so I introduce 
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The qualitative behavior of f(s, ) is shown in Figure S1. f(s, )<0 whenever >(1+s)/2. In 

this case (S4a) holds regardless of the value of r, and selfish transposition is a pure ESS. 

For <(1+s)/2, f(s, )>0, and the truth-value of (S4a) depends on both t and r.

 Mixed strategy ESSs are always unique in symmetric two-player games like this. 

Therefore, no mixed ESS is possible whenever (S4a), (S4b), or both hold. In fact, a 

mixed strategy ESSs can only exist if 0< <(1/2), i.e., whenever cooperativity shows 

incomplete genetic dominance. To see this, note that for >1/2, f(s, )<s. Assume that t

and r have values in this case such that (S4a) does not hold. It follows that 

r<[t/(t+1)]f(s, )<ts/(t+1), such that (S4b) holds. In other words, at least one of (S4a) and 

(S4b) holds for >1/2, preventing the existence of a mixed ESS. 

 A mixed ESS exists whenever <1/2 and neither (S4a) nor (S4b) hold. This is the 

case for s<r(t+1)/r<f(s, ). What is this ESS? To find it, one can take advantage of the 

fact that any mixed Nash equilibrium )1,( ppp of the game has to fulfill the condition 

21 )()( PpPp , where i)(Pp is the i-th element of the product of the payoff matrix P with 

p. This condition prescribes two linear equations for p, the frequency of selfish 

transposition in the ESS. The solution of this equation is 
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It is easy to verify that 0<p<1 exactly for the conditions under which a mixed ESS exists, 

i.e., for s<r(t+1)/t<f(s, ). It is also easy to check that )1,( ppp  is not just a Nash 

equilibrium, but indeed an ESS [e.g., 35, Theorem 15.17].    

 These considerations completely characterize the game defined in (S1). Figure S2 

shows a pictorial characterization of the different ESSs in different regions of parameter 

space. It displays the existing ESSs as a function of  (vertical dimension) and the ratio 

r(t+1)/t. The ESSs shown all follow from (S2-S4), and from the qualitative behavior of 

f(s, ) shown in Figure S1. Because all parameters will usually be much smaller than 

one, ttt /1/)1( , and one can approximate ratios r(t+1)/t r/t. I note in closing that the 

results above can also be obtained from an analysis of a replicator equation [e.g., 35, 

Theorem 15.17] with (S1) as the matrix of coefficients.   

Evolutionarily stable states in the asymmetric case. 

I will now examine the ESSs for the asymmetric version of the game whose payoff 

matrix is shown in Figure 1b. This asymmetric version can arise if two insertion 

sequences are different, as explained in the main text. Such an asymmetric game is 

characterized by two payoff matrices, PL for ISL and PR for ISR, whose structure is 

analogous to that of P. Specifically,
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I assume that only t and r can differ between ISL and ISR, because  results from the 

mechanics of the transposition process itself, and because s is a parameter influenced by 

the environment and not by the insertion sequence’s structure.
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 I will next explore the ESSs for this asymmetric game. Both ISL and ISR have a 

continuous set of possible strategies characterized by the likelihoods 0 pL 1 and 0 pL 1,

that ISL and ISR, respectively, undergo selfish transposition. The space of possible 

strategies is thus the unit square )1,0()1,0( , whose corners correspond to the pure 

strategies of selfish (pX=1) and cooperative transposition (pX=0) of ISX (X=L,R). A 

composite transposon’s strategy is represented as a point ),( RL pp in the unit square.  

 Asymmetric games like this can never have mixed ESSs (although mixed Nash 

equilibria can exist). The only four possible ESSs are pure ESSs that correspond to the 

corners of the square, where either transposon can only transpose selfishly or 

cooperatively. The task is to identify which of these ESSs occur for different parameter 

values. There may be parts of parameter space where two pure ESSs can coexist in the 

unit square. In this case, the initial condition of the evolutionary dynamics 

of ),( RL pp may determine which of these ESSs is attained.   

 The evolutionary dynamics in strategy space can be described by a system of two 

nonlinear differential equations [17.8, and 17.15 in 35].
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whose coefficients are defined as follows.  
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The matrices L and R are obtained from the payoff matrices PL and PR by subtracting a 

constant from each column that renders the diagonal elements equal to zero. As for the 

simpler, symmetric case, I will distinguish three cases. 

Case 1: =1 (Selfishness is genetically dominant) 
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I will first consider the case where either )1/( LLL tstr , or )1/( RRR tstr , or both. In 

this case, either L12L21<0, or R12R21<0, or both hold, and one can show [35, p 143-145] 

that no fixed point (unstable or saddle point) of the evolutionary dynamics (S8) exists in 

the interior of the unit square. No matter what the initial condition ),( RL ppp , the 

evolutionary dynamics will always lead to one of the corner ESSs. Which of these corner 

ESSs are attained? It is easy to verify [35, 17.1 and 17.2] that )0,0(p  , where both ISs 

always transpose cooperatively, and )0,1(p , as well as )1,0(p , where one of the ISs 

always transposes cooperatively, are never ESSs. In other words, all-selfish transposition 

)1,1(p is the only ESS in this case.  

 In the opposite case, where )1/( LLL tstr  and )1/( RRR tstr , there is an 

interior saddle point of the evolutionary dynamics (S8). It is given by  
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In this case, there are two ESSs, )0,0(p , and )1,1(p . Which of these is attained will 

depend on the initial condition of (S8).  

Case 2: =0 (Selfishness is genetically recessive) 

In this case, no interior fixed point of the evolutionary dynamics exists, regardless of the 

parameter values. Because both L12 and R12, as defined in (S9), are equal to zero, 

equation (S8) reduces to
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The equilibria of this system are )1,1(p , as well as the two edges of the unit square 

defined by ),0( xp  and )0,(xp , with 10 x . It follows from the definition of an 

ESS for asymmetric games [35, 17.1 and 17.2] that no point on a continuum of such 

(degenerate) equilibria can be an ESS. The only candidate ESS is thus )1,1(p , which is 

an ESS for 

)1(2
)1(

,
)1(2
)1(

R

R
R

L

L
L t

str
t

str   (S11)

Case 3: 0< <1.

Because of the generality and complexity of this case, I will first state the mathematical 

conditions for the existence of the various ESSs, and then illustrate the qualitative 

behavior of the game in Figure S3. An interior saddle point exists for <1/2 if 

)1/(),()1/( XXXXX tsftrtst for both X=L and X=R. This saddle exists for >1/2 

if )1/(),()1/( XXXXX tsftrtst for both X=L and X=R. Under the conditions 

where this saddle exists, its coordinates are, 

),( RL FFF
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One can show that the corners are ESSs under the following conditions 
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Figure S3 shows a systematic qualitative analysis of the different regions of parameter 

space and the ESSs that exist in them. These equilibria follow straightforwardly (if 

tediously) from (S13), (S12), and (S5).  

Summary of results from the asymmetric model. 

Selfish transposition of both ISL and ISR is the only ESS as long as 

2/)1(,2/)1( RRLL tsrtsr . Cooperative transposition of both ISL and ISR is an ESS 

only if RRLL strstr , . These conditions are exactly analogous to equations (2) and 

hold for all values of .

As in the symmetric model, there is a narrow gray zone in which the dominance 

of selfishness matters, characterized by stX<rX<tX(1+s)/2. For the biologically most 

realistic case of selfish dominance ( =1), selfish transposition is an ESS for both ISs 

already if rX>stX for both X=L and X=R. For rX<stX (both X=L and X=R), there are two 

coexisting ESSs, one where both ISs transpose only selfishly, the other one where both 

ISs transpose only cooperatively. An interior saddle point of the evolutionary dynamics 

separates their basins of attraction (Figure S3). As in the symmetric case, cooperative 

transposition faces an uphill fight, because most composite transposons may initially be 

composed of two identical ISs capable of selfish transposition. Again, cooperativity may 

have a chance only if XX str , in which case the basin of attraction of selfish 

transposition becomes very small.   
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A simple dynamical model of transposable element spreading. A complementary 

perspective on the results obtained thus far can be obtained from a population biological 

model of transposable element spreading. The sketch below is stripped of all the 

complexities of the previous sections and contains only the bare essentials. Its main 

purpose is didactical: it provides a different way of obtaining intuition about the 

evolutionary dynamics of transposable elements.  

 Consider an (infinitely) large population of bacteria that harbors, at low 

frequencies, two kinds of transposable elements, selfishly transposing elements and 

cooperatively transposing (composite) elements that allow transfer of selectable genes to 

new genomes. Denote their frequencies at some point in time at S and C, respectively. If t

is the rate at which transposition and horizontal transfer occur for both elements, if r is 

the rate at which composites get lost due to faulty transposition, and if s is the 

instantaneous probability that the selectable genes are required for survival, then one can 

write the following differential equation for the time derivatives of S and C, S and C

rCtCC
stSS )1(

Here, the spreading of the selfish element is promoted by its horizontal transfer (tS) and 

delayed by a factor (1-s) that reflects the fact that selfish spreading does not transfer the 

selectable genes. Notice that if s=1 (the selectable genes are always required), the selfish 

element cannot spread at all. The spreading of the composite is promoted by its 

horizontal transfer (tC) and inhibited by its loss through faulty transposition (-rC). The 

key question is under what conditions the relative frequency C/(S+C) increases over time.  

We observe that 
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Thus, C increases in frequency relative to S at all times iff (t-r)>t(1-s), or if r<st, i.e., 

under the same (biologically unrealistic) conditions as in the game theoretic model. 
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Supplementary Figures and Captions 

Figure S1: Qualitative behavior of the function )]1(2/[)1(1),( ssf from (S5). 

The function attains a maximum of (1+s)/2 at =0 (dominant cooperativity), a value of s

at =(1/2), a value of 0 at =(1+s)/2, and approaches negative infinity as  approaches 

one.
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Figure S2 (next page): Evolutionarily stable strategies if both ISs are so similar that 

they receive symmetric payoffs. The vertical dimension shows five different values or 

intervals of the parameter  for which the symmetric game shows qualitatively different 

behavior. The genetic dominance of selfish behavior over cooperative behavior increases 

with . For each of these five categories, the position along the horizontal arrow indicates 

the value of the ratio r(t+1)/t, where r is the probability of a DNA rearrangement 

eliminating an insertion sequence, and t is the joint probability of transposition/lateral 

gene transfer. If t<<1, then this ratio is well-approximated by r/t. Each of the five 

horizontal arrows is subdivided by tick-marks labeled by values at which the behavior of 

the model changes from one ESS to another. The possible ESSs are labeled as “C” (pure, 

cooperative ESS). “S” (pure, selfish ESS), and “M” (mixed ESS, as given by (S6)). Two 

symbols in a line-segment indicate that two pure ESSs coexist. The function f(s, ) is 

defined by equation (S5). 
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Figure S3 (next page): Evolutionarily stable strategies if the ISs receive asymmetric 

payoffs. The game is defined by the matrices (S7). The four different panels a)-d) 

distinguish between regions of parameter space with different values of , as shown. In 

each panel, the squares inscribed with capital letters A-F and open to the right and upper 

side, correspond to regions of parameter space characterized by different values of tL, rL,

tR, and rR. Specifically, the horizontal axis of each square indicates the value of 

LLL ttr /)1( . The vertical lines through the square indicate points where LLL ttr /)1(  has 

the values s, and f(s, ), as shown. Analogously, the vertical axis of each square indicates 

the value of RRR ttr /)1( , and horizontal lines through the square indicate points where 

RRR ttr /)1(  has the values s and and f(s, ), as shown. The axes are labeled with 

LLL ttr /)1(  and RRR ttr /)1(  only in panel a), but the same labeling is implied for the 

three other panels. The squares are open to the right because the expressions 

parametrizing the axes can become arbitrarily large if t<<r. The existence of particular 

corner ESSs are indicated to the right of the large squares. For example, “p=(0,0): D2”

means that all-cooperative transposition is an ESS only in parameter space region D2. a)

0< <1/2: Only region F harbors a fixed point (saddle) of the game dynamics. The small 

square to the right of the panel indicates the state space of the dynamical system. It 

indicates the corner ESSs and the position of the saddle as small dots. The illustration is 

merely a schematic to help understand the qualitative dynamic, and both the location of 

this saddle and the basin of attraction depend on actual parameter values. b)  =1/2. As 

approaches the value of ½ , the size of the regions F, A2, D1, E, and C1 from panel a) 

shrink to zero, because f(s, ) approaches s. c) ½<  <(1+s)/2: Region F, as in a) contains 

a saddle point. However, notice that the corner ESSs are different from a) in region F. 

They now are (0,0) and (1,1). d) (1+s)/2< <1/2. Region D contains a saddle that 

separates the basins of attraction of the two corner ESSs (0,0) and (1,1). 



39

L

LL

t
tr )1(

R

RR

t
tr )1(

A

D

B

C
s

s

p=(0,0): D2
p=(1,0): C1, C2, D1,F
p=(0,1): A1, A2, E,F
p=(1,1): B

pL

pR

A1 A2

D2 D1

B

E F C1

C2

),(sf

s

s ),(sf

p=(0,0): D
p=(1,0): C
p=(0,1): A
p=(1,1): B

p=(0,0): D1, D2, E, F
p=(1,0): C2
p=(0,1): A1
p=(1,1): everywhere but D2

pL

pR

A1 A2

D2 D1

B

E F C1

C2

),(sf

s

s ),(sf

D

s

s

p=(0,0): D
p=(1,1): B,D

B

pL

pR

a) 0< <1/2

b) =1/2

c) 1/2< <(1+s)/2

d) 1s)/2(1

Figure S3



40

b)

a)

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Minimal distance between IS pair

0.0001

0.0005

0.0050

0.0500

0.5000

P-
va

lu
e

1 2 3 4 5 7 8 11

Number of IS pairs in (0.5,10) kb

0.0

0.2

0.4

0.6

0.8

1.0

P-
va

lu
e

Figure S4

Figure S4: No significant enrichment of composite transposons in 376 completely 

sequenced bacterial genomes and plasmids. a) The horizontal axis shows the number 

of nearest neighbor insertion sequence pairs at a distance between 0.5 and 10kbp in the 

bacterial genomes examined. The P-value on the vertical axis is the likelihood that this 

number of insertion sequence pairs is greater than expected by chance alone, according to 

a randomization test described in Material and Methods. b) The horizontal axis shows the 

minimal distance between nearest neighbor IS pairs that are between 0.5 and 10 kb apart 

in a genome. The vertical axis shows the likelihood that this minimal distance is observed 

by chance alone. The upper and lower horizontal lines represent Bonferroni-corrected P-

values of P=0.05 (0.00064=0.05/78) and P=0.01 (0.000128=0.01/78). Both panels 

contain n=63 data points derived from insertion sequences in 28 different families. 




