Table S2

Mutant	Simulation result	Predicted	Observed
cdk1∆	No formation of Cdk1-Cln1,2 _{cyt} and Cdk1-Clb5,6 _{nuc}	Lethal. No budding and DNA replication	Lethal. The cells arrest as unbudded cells ⁽¹⁾
clb5 \varDelta clb6 \varDelta cdk1 \varDelta	No formation of Cdk1-Cln1,2 _{cyt} and Cdk1-Clb5,6 _{nuc}	Lethal. No budding and DNA replication	Lethal ⁽²⁾
cln1 \varDelta cln2 \varDelta clb5 \varDelta clb6 \varDelta	No formation of Cdk1-Cln1,2 _{cyt} and Cdk1-Clb5,6 _{nuc}	Lethal. No budding and DNA replication	Lethal. The cells arrest in G_1 phase $^{(3)}$
CLB5 stabilized	Wild type level of Cdk1-Cln1,2 _{cyt} , and slight increase of the Cdk1- Clb5,6 _{nuc} level	Viable. Budding like wild type, and slight anticipation of DNA replication	Viable. The strain rescues the replication defect of the <i>clb5</i> ⊿ strain ⁽⁴⁾
OE-CLB5 and stabilized	Decrease of the Cdk1-Cln1,2 _{cyt} level, and very high level (about 10X) of Cdk1-Clb5,6 _{nuc}	Decrease of budding, and abnormal increase of DNA replication. Possibly lethal	Lethal ⁽⁵⁾
<i>cln1∆ cln2∆</i> OE-SIC1 OE-CLN2	Increase of the Cdk1-Cln1,2 _{cyt} level, and similar timing of Cdk1-Clb5,6 _{nuc} formation	Viable. Increase of budding, and DNA replication comparable to wild type	Viable. The strain suppresses the defects of the <i>cln1∆ cln2∆</i> OE-SIC1 strain ⁽⁶⁾
<i>cln1∆ cln2∆</i> OE-WHI5	No formation of Cdk1-Cln1,2 _{cyt} , and very strong decrease of the Cdk1-Clb5,6 _{nuc} level (four orders of magnitude)	Lethal. No budding and DNA replication	Lethal. Severely delayed growth ⁽⁷⁾
cln1∆ cln2∆ OE-CLN2	Increased of the Cdk1-Cln1,2 _{cyt} level (about 15X), similar timing, but overall reduction (about 1/3) of Cdk1-Clb5,6 _{nuc} formation	Viable. Slight anticipation of budding, DNA replication should be ca. normal	Viable. The cells go through START immediately after cytokinesis ⁽⁸⁾
cln1∆ cln2∆ cln3∆	No formation of Cdk1-Cln1,2 _{cyt} , and very strong decrease of the Cdk1-Clb5,6 _{nuc} level (three/four orders of magnitude)	Lethal. No budding and DNA replication	Lethal. The cells arrest the growth in G_1 phase ⁽⁹⁾
cln1∆ cln2∆ cln3∆ OE-CDK1	No formation of Cdk1-Cln1,2 _{cyt} , and very strong decrease of the Cdk1-Clb5,6 _{nuc} level (three orders of magnitude)	No budding and very strong delay in DNA replication. Lethal	Lethal. The phenotype of the triple cyclins mutant is not recovered ⁽¹⁰⁾

cln1∆ cln2∆ cln3∆ OE-CLN2	Early formation of Cdk1-Cln1,2 _{cyt} , and decrease of the Cdk1-Clb5,6 _{nuc} level (one order of magnitude)	Viable. Anticipation of budding, and delay in DNA replication	Viable (11)
<i>cln1∆ cln2∆ cln3∆</i> CLN2 stabilized	Strong decrease of the Cdk1-Cln1,2 _{cyt} level, and decrease of the Cdk1-Clb5,6 _{nuc} level (one order of magnitude)	Viable. Decrease of budding, and delay in DNA replication	Viable. The phenotype of the triple cyclins mutant is recovered ⁽¹²⁾
<i>cln3</i> ⊿ OE-WHI5	Very strong decrease of the Cdk1-Cln1,2 _{cyt} level, and very strong decrease of the Cdk1-Clb5,6 _{nuc} level (three orders of magnitude)	Lethal. No budding, and very strong delay in DNA replication	Lethal. The cells arrest as unbudded cells ⁽¹³⁾
CLN2 stabilized	Slight increase of the Cdk1-Cln1,2 _{cyt} level, and similar timing of Cdk1-Clb5,6 _{nuc} formation	Viable. Increased budding, and DNA replication comparable to wild type	Viable ⁽¹⁴⁾
CLN3 stabilized <u>NOTE</u> . Lack of agreement on cell size likely originates from the fact that stable Cln3 mutants are more stable at the end of the cycle. The net result may thus be a larger Cln3 level in new-born cells, synthesis then proceeding as in wild type	Level and timing of Cdk1-Cln1,2 _{cyt} and Cdk1-Clb5,6 _{nuc} formation like wild type	Viable. Budding and DNA replication comparable to wild type	Viable. No arrest of the cell cycle in G ₁ phase, and small cell size ⁽¹⁵⁾
far1 Δ sic1 Δ	Slight anticipation of the Cdk1-Cln1,2 _{cyt} level, and decrease of the Cdk1-Clb5,6 _{nuc} level (one order of magnitude)	Viable. Slight anticipation of budding, and delay in DNA replication	Viable ⁽¹⁶⁾
OE-SIC1 and stabilized	Wild type level of Cdk1-Cln1,2 _{cyt} , and very strong decrease of the Cdk1-Clb5,6 _{nuc} level (three orders of magnitude)	Lethal. Budding like wild type, and very strong delay in DNA replication	Lethal. The cells arrest in G_1 phase (17)
OE-SIC1 OE-CLN2	Increase of the Cdk1-Cln1,2 _{cyt} level, and similar timing of Cdk1-Clb5,6 _{nuc} formation	Viable. Increase of budding, and slight delay in DNA replication	Viable. OE-CLN2 suppresses the toxicity of the OE-SIC1 strain ⁽¹⁸⁾
sbf∆ mbf∆	No formation of Cdk1-Cln1,2 _{cyt} and Cdk1-Clb5,6 _{nuc}	Lethal. No budding and DNA replication	Lethal (19)
sbf∆ mbf∆ OE-CLN2	Early formation of Cdk1-Cln1,2 _{cyt} , and no	Viable. Anticipation of budding, DNA	Viable. The strain rescues the <i>sbf</i> ⊿

<u>NOTE</u> . To get agreement with experimental data, we must assume that synthesis of Clb3,4 (not included in the model) must start at some point	Cdk1-Clb5,6 _{nuc} formation	replication delayed because synthesis of Clb3,4 (not included in the model) would be required to get (delayed) S phase	lethal phenotype ⁽²⁰⁾
OE-SBF <u>NOTE</u> . SBF and MBF are not differentiated in our model, and we consider OE-SBF increasing the rate of CLN1,2 transcription	Strong increase of Cdk1-Cln1,2 _{cyt} level, and slight anticipation of Cdk1-Clb5,6 _{nuc} formation	Viable. Strong anticipation of budding, and slight anticipation in DNA replication	Viable. The overexpression results in small cell size ⁽²¹⁾
sbf⊿ mbf⊿ sic1⊿	No formation of Cdk1-Cln1,2 _{cyt} and Cdk1-Clb5,6 _{nuc}	Lethal. No budding and DNA replication	Lethal ⁽²²⁾
sbf⊿ mbf⊿ sic1⊿ OE-CLN2	Early formation of Cdk1-Cln1,2 _{cyt} , and no Cdk1-Clb5,6 _{nuc} formation	Viable. Anticipation of budding, DNA replication delayed because synthesis of Clb3,4 (not included in the model) would be required to get (delayed) S phase	Viable ⁽²³⁾
OE-MBF			
<u>NOTE</u> . SBF and MBF are not differentiated in our model, and we consider OE-MBF increasing the rate of CLB5,6 transcription	Early formation of Cdk1-Cln1,2 _{cyt} , and very high level of Cdk1-Clb5,6 _{nuc}	Lethal. Anticipation of budding, and abnormal increase of DNA replication	Lethal ⁽²⁴⁾

References

1

a) Giaever G, Chu AM, Ni L, Connelly C, Riles L, et al. (2002) Functional profiling of the *Saccharomyces cerevisiae* genome. Nature 418: 387–391.

2

- a) Segal M, Clarke DJ, Reed SI (1998) Clb5-associated kinase activity is required early in the spindle pathway for correct preanaphase nuclear positioning in *Saccharomyces cerevisiae*. J Cell Biol 143: 135–145.
- b) Cross FR, Jacobson MD (2000) Conservation and function of a potential substratebinding domain in the yeast Clb5 B-type cyclin. Mol Cell Biol 20: 4782–4790.

3

a) Dirick L, Bohm T, Nasmyth K (1995) Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of *Saccharomyces cerevisiae*. EMBO J 14: 4803–4813.

4

a) Cross FR, YusteRojas M, Gray S, Jacobson MD (1999) Specialization and targeting of B-type cyclins. Mol Cell 4: 11–19.

5

- a) Cross FR, YusteRojas M, Gray S, Jacobson MD (1999) Specialization and targeting of B-type cyclins. Mol Cell 4: 11–19.
- b) Jacobson MD, Gray S, Yuste-Rojas M, Cross FR (2000) Testing cyclin specificity in the exit from mitosis. Mol Cell Biol 20: 4483–4493.

6

a) Cross FR, Archambault V, Miller M, Klovstad M (2002) Testing a mathematical model of the yeast cell cycle. Mol Biol Cell 13: 52–70.

7

 a) Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, Dewar D, Rupes I, Andrews B, Tyers M (2004) CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117: 899–913.

8

a) Cross FR, Archambault V, Miller M, Klovstad M (2002) Testing a mathematical model of the yeast cell cycle. Mol Biol Cell 13: 52–70.

9

- a) Richardson HE, Wittenberg C, Cross F, Reed SI (1989) An essential G1 function for cyclin-like proteins in yeast. Cell 59: 1127–1133.
- b) Schneider BL, Yang QH, Futcher AB (1996) Linkage of replication to start by the Cdk inhibitor Sic1. Science 272: 560–562.
- c) Tyers M (1996) The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at Start. Proc Natl Acad Sci USA 93: 7772–7776.

a) Leopold P, O'Farrell PH (1991) An evolutionarily conserved cyclin homolog from Drosophila rescues yeast deficient in G1 cyclins. Cell 66: 1207–1216.

11

a) Valdivieso MH, Sugimoto K, Jahng KY, Fernandes PM, Wittenberg C (1993) FAR1 is required for posttranscriptional regulation of CLN2 gene expression in response to mating pheromone. Mol Cell Biol 13: 1013–1022.

12

a) Lanker S, Valdivieso MH, Wittenberg C (1996) Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science 271: 1597–1601.

13

 a) Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, Dewar D, Rupes I, Andrews B, Tyers M (2004) CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117: 899–913.

14

a) YPD (Yeast Proteome Database) and SGD (*Saccharomyces* Genome Database): information without citation.

15

a) YPD (Yeast Proteome Database) and SGD (*Saccharomyces* Genome Database): information without citation.

16

a) Alberghina L, Rossi RL, Querin L, Wanke V, Vanoni M (2004) A cell sizer network involving Cln3 and Far1 controls entrance into S phase in the mitotic cycle of budding yeast. J Cell Biol 167: 433–443.

17

a) Verma R, Annan RS, Huddleston MJ, Carr SA, Reynard G, Deshaies RJ (1997) Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278: 455–460.

18

a) Huang KN, Odinsky SA, Cross FR (1997) Structure-function analysis of the *Saccharomyces cerevisiae* G1 cyclin Cln2. Mol Cell Biol 17: 4654–4666.

19

- a) Breeden L, Nasmyth K (1987) Cell cycle control of the yeast HO gene: cis- and trans-acting regulators. Cell 48: 389–397.
- b) Nasmyth K, Dirick L (1991) The role of SW14 and SW16 in the activity of G1 cyclins in yeast. Cell 66: 995–1013.
- c) Ogas J, Andrews BJ, Herskowitz I (1991) Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SWI4, a positive regulator of G1-specific transcription. Cell 66: 1015–1026.
- d) Edgington NP, Futcher B (2001) Relationship between the function and the location of G1 cyclins in *S. cerevisiae*. J Cell Sci 114: 4599–4611.

10

e) Betz JL, Chang M, Washburn TM, Porter SE, Mueller CL, Jaehning JA (2002) Phenotypic analysis of Paf1/RNA polymerase II complex mutations reveals connections to cell cycle regulation, protein synthesis, and lipid and nucleic acid metabolism. Mol Genet Genomics 268: 272–285.

20

- a) Nasmyth K, Dirick L (1991) The role of SW14 and SW16 in the activity of G1 cyclins in yeast. Cell 66: 995–1013.
- b) Ogas J, Andrews BJ, Herskowitz I (1991) Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SWI4, a positive regulator of G1-specific transcription. Cell 66: 1015–1026.
- c) Moll T, Dirick L, Auer H, Bonkovsky J, Nasmyth K (1992) SWI6 is a regulatory subunit of two different cell cycle START-dependent transcription factors in *Saccharomyces cerevisiae*. J Cell Sci Suppl 16: 87–96.
- d) Koch C, Moll T, Neuberg M, Ahorn H, Nasmyth K (1993) A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261: 1551–1557.
- e) Edgington NP, Futcher B (2001) Relationship between the function and the location of G1 cyclins in *S. cerevisiae*. J Cell Sci 114: 4599–4611.

21

- a) Breeden L, Mikesell G (1994) Three independent forms of regulation affect expression of HO, CLN1 and CLN2 during the cell cycle of *Saccharomyces cerevisia*e. Genetics 138: 1015–1024.
- b) Dirick L, Bohm T, Nasmyth K (1995) Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of *Saccharomyces cerevisiae*. EMBO J 14: 4803–4813.
- c) Toone WM, Aerne BL, Morgan BA, Johnston LH (1997) Getting started: regulating the initiation of DNA replication in yeast. Annu Rev Microbiol 51: 125–149.

22

- a) Wijnen H, Futcher B (1999) Genetic analysis of the shared role of CLN3 and BCK2 at the G(1)-S transition in *Saccharomyces cerevisiae*. Genetics 153: 1131–1143.
- b) Edgington NP, Futcher B (2001) Relationship between the function and the location of G1 cyclins in S. cerevisiae. J Cell Sci 114: 4599–4611.

23

a) Wijnen H, Futcher B (1999) Genetic analysis of the shared role of CLN3 and BCK2 at the G(1)-S transition in *Saccharomyces cerevisiae*. Genetics 153: 1131–1143.

24

 a) Bouquin N, Johnson AL, Morgan BA, Johnston LH (1999) Association of the cell cycle transcription factor Mbp1 with the Skn7 response regulator in budding yeast. Mol Biol Cell 10: 3389–3400.