
Protocol S1

We carried out mathematical analysis of the feedforward network endowed with STD in its
synapses in order to understand the parametric robustness of the results in Figure 2. Following
the network simulations in the main text, we analyzed mathematically two different situations:
presynaptic neuron firing rate is sinusoidally modulated, and presynaptic neuron firing is very
irregular and can be modeled as a Gaussian white noise. For yet another mathematical approach
to this issue see [55].

Analytic transfer function We analyzed the case when the train of spikes arriving at a
typical synapse is very variable and can be modeled by a fluctuating rate r(t) = r0 + ση(t),
where r0 is the average rate of incoming spikes, σ is the standard deviation of fluctuations in
the rate and η(t) is a Gaussian white noise of unit variance. When presynaptic neurons fire
asynchronously with rate r(t), the synaptic dynamics defined by (see Materials and Methods)
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=
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({ti} are the times of presynaptic spikes and δ(t− ti) is the impulse (delta) function centered at
the time of spike occurrence) can be written in a mean-field formulation as (see [54])

dD

dt
=

1−D(t)
τD

− (1− Γ)D(t)[r0 + ση(t)] (1)

dGsyn

dt
= −Gsyn(t)

τs
+ gsynD(t)[r0 + ση(t)] (2)

In voltage clamp, Gsyn(t) is proportional to the postsynaptic current Ipost so we wanted to derive
the transfer function from the input rate to Gsyn(t). Notice that Eq. (1) can be rewritten in
terms of the effective time constant of synaptic resource depletion τe = τD/(1 + (1 − Γ)r0τD)
and the steady-state synaptic efficacy D∞ = τe/τD as

dD

dt
=
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− (1− Γ)D(t)ση(t) (3)

We computed the Fourier transform of Eqs. (3) and (2) to obtain
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These equations can be rewritten as:
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where in (5) we made use of (4) once. We now used equation (4) again into the integrand of (5)
and obtained:
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We now sought an expression for 〈G̃synη̃
∗〉, where 〈·〉 indicates average over many different

white noise realizations η(t). This can be done directly on equation (6), taking into account
that for a white noise process η(t) the lowest order non-vanishing moment are second-order
correlations 〈η̃η̃∗〉, and we neglected all higher order moments.
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This yields immediately the transfer function for this synapse at all frequencies, as a function
of the parameters of the synapse (τs, gsyn, τD, Γ) and the mean r0 and variance σ2 of presynaptic
afferent firing:

H(ω) = gsynτsσ
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(8)

where τe = τD
1+(1−Γ)r0τD

.
The module and phase of the transfer function are now easily derivable and read:
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(10)

Because τs ¿ τD, τe, Eqs. (9) and (10) can be approximated by
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From these easier expressions we extracted the inflection point of |H(ω)| and the maximum
of ∠H(ω) analytically. These were found to occur at the points
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Both the inflection point of |H(ω)| and the maximum of phase shift ∠H(ω) occur at fre-
quencies between 1/τD and 1/τe. This shows that in this range of frequencies the transfer
function module is approximately linear with frequency (the higher order correction to the lin-
ear approximation is already third order) and the phase of the transfer function is maximal and
approximately constant (the linear approximation to the phase has zero slope). It is therefore in
this frequency range that synaptic depression is acting as an approximate differential operator.
However, this operation will be masked by higher frequency oscillations, which have a larger
|H(ω)|, unless the input is low-pass filtered appropriately. This is what SFA accomplishes in
our simulations.

Response to sinusoidal input When the rate of spikes arriving at a typical synapse is
sinusoidally modulated at a frequency ω around a mean rate r0, the equations for the synapse
read

dD

dt
=

1−D(t)
τD

− (1− Γ)D(t)(r0 + σ cosωt) (15)

dGsyn

dt
= −Gsyn(t)

τs
+ gsynD(t)(r0 + σ cosωt) (16)

Again, Eq. (15) can be rewritten in terms of the effective time constant of synaptic resource
depletion τe = τD/(1 + (1− Γ)r0τD) and the steady-state synaptic efficacy D∞ = τe/τD as

dD

dt
=

D∞ −D(t)
τe

− (1− Γ)D(t)σ cosωt (17)

Equation (17) is a first-order linear ordinary differential equation, whose solution D(t) can
be formally written as:

D(t) = D0e
−t/τe−(1−Γ)σ sin(ωt)/ω + · · ·

+
D∞
τe

∫ t

0
e−t′/τee−

(1−Γ)σ
ω

[sin ωt−sin ω(t−t′)]dt′ (18)

To obtain a more tractable functional expression for D(t) from Eq. (18), we used the
approximation.

e−
(1−Γ)σ

ω
[sin ωt−sin ω(t−t′)] ' 1− (1− Γ)σ

ω

[
sinωt− sinω(t− t′)

]
(19)
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This allowed for the explicit calculation of the integral in Eq. (18), yielding

D(t) ' D0e
−t/τe−(1−Γ)σ sin(ωt)/ω + · · ·

+D∞e−t/τe

[
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1 + ω2τ2
e

)]
· · ·

+D∞

[
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1 + ω2τ2

e

]
(20)

where we used trigonometric equalities and we defined ϕ = arctan(ωτe).
The first two terms in (20) reflect transients in the response, so we focused on the third term,

the steady-state solution. We see that, in the steady state, D(t) has a phase offset with respect
to the input rate oscillations of π − ϕ and has an amplitude of the oscillations that decreases
with oscillation frequency ω. This does not correspond to a derivative operation, which requires
an amplitude that grows linearly with frequency.

We then looked at how the synaptic response Gsyn(t) reacted to these synaptic efficacy
modulations D(t), using Eq. (16). However, because τs is very small with respect to all other
time constants in the system and with respect to the range of stimulation frequencies ω of our
interest, we decided to simplify the analysis by equating the left-hand-side of (16) to zero. We
then obtained
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 (21)

where we defined the phase φ = arctan
{
ωτD/

[
1 + ω2τe(τe + τD)

]}

So, the leading order temporal modulation (in terms of σ/r0) is the third term in (21), and
it is a sinusoidal modulation with amplitude and phase given by

amplitude = gsynτsσ

(
τe

τD

)2 τD

τD + τe

√
1 + ω2(τ2

D + τ2
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(22)

phase = arctan
ωτD

1 + ω2τe(τe + τD)
(23)

These quantities are very close to the amplitude and phase of the transfer function calculated
from the synaptic response to a white noise input rate before (see Figure 3). In addition,
the derivation of these quantities allows for the identification of the source of this behavior:
The temporal modulation in the output is primarily determined by the sum of the mean rate
times the synaptic efficacy modulation plus the mean synaptic efficacy times the presynaptic
rate modulation. As these two temporal modulations are practically out of phase, they nearly
cancel out each other and the small amplitude of the sum depends primarily on the phase
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difference ϕ between the two, which grows for increasing stimulation fequency ω. This generates
the fluctuation amplitude that grows with ω in the final result (Figure 3). The approximate
differentiation performed by this network thus relies not only on the dynamics of its synapses,
but also critically on the summation of asynchronous inputs at the postsynaptic site.
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