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This supporting information document contains four sections. The first section pro-
vides a derivation of the expansion in immunity variables of the model with coinfections
and reduced infectivity and demonstates its connection to the reduced model presented in
[S1]. In the second section we elucidate the expansion in immunity variables for a model
without coinfections. In the third section we present an extended analysis of accuracy for
Gog and Grenfell’s model [S1], as well as for order-1 and order-2 closures in models with
and without coinfections. The last section contains an additional analysis of the influenza
A drift model.

State space reduction in a model with coinfections
and reduced infectivity

In this section we derive the expansion in immunity variables for the full status-based
model with coinfections and reduced infectivity and show that the truncation of this
expansion at the first order leads to the model studied by Gog and Grenfell [S1]. Our
approach provides a generalization of that model since immunity variables allow us to
truncate the chain of equations at higher orders if a more detailed description of the
immunity structure of the population is desired.

The general status-based model with coinfection was formulated by Gog and Swinton
[S2]. However, it was constructed under the assumption of reduced susceptibility. The
assumption of reduced infectivity enters in the definition of the function C(A, i, B) that
determines the proportion of the host population that, after an infection with strain i,
changes its immune status from A to B, as well as in the properties of the function C∗

i (A, k)
(see below). The reduced infectivity assumption implies that C(A, i, B) is allowed to take
non-zero values only if:

1. i ∈ B;

2. A ⊆ B.

The difference between this and the assumptions on C made in [S2] is that C(A, i, B)
can take non-zero values if i ∈ A. Biologically, this implies that individuals are allowed
to change their immune status due to a mere exposure to a strain even if this strain
is already included in their immune status (see also the discussion in the main text).
Mathematically, this assumption implies that the equations for the class SA are different
from equations (1) in the main text of our paper in that the second sum is taken over all
subsets of the set of strains and the last sum is taken over all strains. Equations for Ii

remain the same.

ṠA = µ(δA,∅ − SA) +
∑

k∈K

∑

B⊂K

SBΛkC(B, k,A) −
∑

k∈K

ΛkSA, for all A ⊂ K, (S1)

İi = Λi

∑

B:i∈K\B

SB − (ν + µ)Ii, for all i ∈ K. (S2)
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Analogously to the derivation in the main text, we define the probability C∗
i1i2···i!(A, k)

of obtaining immunity against strains i1, i2, . . . , i! (all different) after an infection with
strain k for a host that had immune status A prior to the infection. But now, according
to the assumption of reduced infectivity, we assume that

C∗
i1i2···i!(A, k) =

∏

j=1,2,...,!:
ij !∈A∪{k}

σkij .

This implies that (a) the chance of obtaining immunity against strain i after the infection
with the strain k does not depend on the presence or absence of immunity against other
strains, and (b) if the host is already immune to strain k (i.e., k ∈ A), the chance of getting
immunity to strain i through cross-protection betwen strains k and i, is proportional to
σki. This is a biologically subtle point of the reduced-infectivity assumption (see the
discussion in the main text).

Analogously to the derivation in the main text, to obtain the reduced version of the
model (S1)–(S2), we introduce the immunity variables

ξi =
∑

A:i∈A

SA, ξij =
∑

A⊂K:
i,j∈A

SA, . . . ,

in terms of which we rewrite the system (S1)–(S2). The equation for Ii is transformed
straightforwardly once one recalls that

∑
A⊂K SA = 1.

İi = Λi

(
∑

B⊂K

SB −
∑

B:i∈B

SB

)
− (ν + µ)Ii = Λi (1 − ξi) − (ν + µ)Ii. (S3)

Differentiating the definition of ξi with respect to time and using (S1), we obtain

ξ̇i = µ
∑

A:i∈A

(δA,∅ − SA) +
∑

A:i∈A

∑

k,B

SBΛkC(B, k,A) −
∑

A:i∈A

∑

k∈K

ΛkSA, (S4)

We shall consider the three sums one after another. The first sum yields

∑

A:i∈A

(δA,∅ − SA) = −ξi

since the sum of δA,∅-terms gives zero. The second term can be transformed in the following
way,

∑

A:i∈A

∑

k,B

SBΛkC(B, k,A) =
∑

k

∑

B

SBΛkC
∗
i (B, k)

=
∑

k∈K




∑

B:i∈B

SBΛkC
∗
i (B, k) +

∑

B:i∈K\B

SBΛkC
∗
i (B, k)




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=
∑

k∈K




∑

B:i∈B

SBΛk +
∑

B:i∈K\B

SBΛkσki





=
∑

k∈K

(ξiΛk + (1 − ξi)Λkσki)

The transformation of the last sum in (S4) is also straightforward:

∑

A:i∈A

∑

k∈K

ΛkSA =
∑

k∈K

Λkξi.

Gathering all the terms above, we obtain:

ξ̇i =
∑

k∈K

Λkσki(1 − ξi) − µξi. (S5)

The equation for ξ̇ij is obtained analogously,

ξ̇ij =
∑

k∈K

Λk [σki(ξj − ξij) + σkj(ξi − ξij) + σkiσkj(1 − ξi − ξj + ξij)] −

− µξij for all i, j ∈ K, i &= j. (S6)

Continuing this chain, we would obtain the full system (S1)–(S2) expressed in terms
of immunity variables. Note, however, that equations for immunity variables of any
particular order are uncopuled from equations for immunity variables of higher orders.
Therefore, the chain of equations truncated at a particular order would exactly represent
the dynamics of the immunity variables up to that order. In particular, if we truncate
the chain of equations at order 1, we can express (S3), (S5) in terms of Ii and Si = 1− ξi.
This leads to the model studied by Gog and Grenfell [S1].

Ṡi = µ(1 − Si) −
∑

k∈K

ΛkσkiSi,

İi = ΛiSi − (ν + µ)Ii,

for all i ∈ K.

State space reduction in models with no coinfections

In this section we derive the expansion in immunity variables for a model with no
coinfections under the reduced-susceptibility assumption. At the end of the section we
also provide, without a derivation, the expansion in immunity variables for the model with
no coinfections and reduced infectivity. We start out from a model with no coinfection that
is analogous to the model with coinfections considered by Gog and Swinton [S2]. Here,
we have to slightly change the meaning of our notations. SA represents the proportion of
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currently non-infected hosts that possess immune status A ⊂ K and that, therefore, are
currently fully susceptible to all strains in the subset K\A (we refer to these individuals
as being in state A); and I i

A is the proportion of individuals in the host population that
are currently infected with strain i and had immune status A ⊂ K before the current
infection (which implies i &∈ A). Since all host individuals naturally fall in exactly one of
these classes, we have ∑

A⊂K

SA +
∑

i∈K

∑

A⊂K\{i}

I i
A = 1. (S7)

The proportion of hosts that recover to state B ⊂ K, having been in state A ⊂ K
when they were infected by strain i ∈ K, is given by C(A, i, B) that has the properties
described in the main text. The following is the full system of equations for the model
with no coinfections.

ṠA = µ(δA,∅ − SA) + ν
∑

k∈K

∑

B⊂K\{k}

Ik
BC(B, k,A)

−
∑

k∈K\A

ΛkSA, for all A ⊂ K, (S8)

İ i
A = ΛiSA − (ν + µ)I i

A, for all i ∈ K and A ⊂ K\{i}, (S9)

where

Λi = βi



(1 − m)
∑

A∈K\{i}

I i
A +

∑

j∈Mi

∑

A∈K\{j}

m

|Mj|
Ij
A



 . (S10)

Altogether, this system consists of 2n + n2n−1 − 1 equations, where n is the number of
strains.

We now rewrite this system in terms of the proportions of hosts infected with strain i,

Ii =
∑

A⊂K\{i}

I i
A,

and the immunity variables,

ξi =
∑

A⊂K:
i∈A

SA, ξij =
∑

A⊂K:
i,j∈A

SA, . . . ,

ηk
i =

∑

A⊂K\{k}:
i∈A

Ik
A, ηk

ij =
∑

A⊂K\{k}:
i,j∈A

Ik
A, . . .

where ξi1i2···i! describes the proportion of hosts that are currently not infected and have im-
munity against strains i1, i2, . . . , i! ∈ K; and ηk

i1i2···i! describes the proportion of hosts that
are currently infected with strain k and have immunity against strains i1, i2, . . . , i! ∈ K.
We will refer to immunity variables ξi1i2···i! and ηk

i1i2···i! as being of order '. As in the model
with coinfections, all immunity variables are symmetric with respect to the permutation of
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their subindices. Immunity variables with duplicate subindices i remain unchanged when
the duplicate subindex is removed, ξ···i···i··· = ξ···i······ and ηk

···i···i··· = ηk
···i······. When a strain

index k appears in both an η-variable’s superscript and subscript, the η-variable must be
zero, ηk

···k··· = 0. By definition, the immunity variables satisfy monotonicity conditions,

1 ≥ H ≥ ξi1 ≥ ξi1i2 ≥ . . .

and
1 ≥ Ik ≥ ηk

i1 ≥ ηk
i1i2 ≥ . . .

for all pairwise different k, i1, i2, . . . ∈ K. Here H = 1 −
∑

i∈K Ii is the proportion of
healthy (i.e., not infected) host individuals.

Recalling that
∑

A⊂K SA +
∑

i∈K Ii = 1, we easily obtain the equations for İi, η̇k
i , η̇k

ij

etc.,

İi = ΛiSi − (ν + µ)Ii for all i ∈ K, (S11)

η̇k
i = Λk(ξi − ξik) − (ν + µ)ηk

i for all i, k ∈ K; i &= k, (S12)

η̇k
ij = Λk(ξij − ξijk) − (ν + µ)ηk

ij for all i, j, k ∈ K; i, j, k pairwise different,(S13)

· · ·

where Si = H − ξi is the fraction of individuals that are currently healthy and susceptible
to strain i. The force of infection for strain i, expressed in terms of new variables, is

Λi = βi

(
(1 − m)Ii +

∑

j∈Mi

m

|Mj|
Ij

)
. (S14)

The derivation of the equations for ξ̇i, ξ̇ij etc. is more technical. Here, we restrict ourselves
to an explicit derivation of the equation for ξ̇i. For this purpose, we apply the time
derivative to the definition of ξi and use (S8), to obtain

ξ̇i = µ
∑

A⊂K:
i∈A

(δA,∅ − SA) + ν
∑

A⊂K:
i∈A

∑

k∈K

∑

B⊂K\{k}

Ik
BC(B, k,A) −

∑

A⊂K:
i∈A

∑

k∈K\A

ΛkSA. (S15)

The first term in (S15) accounts for the depletion, due to deaths, of healthy host individ-
uals that are immune to strain i,

µ
∑

A⊂K:
i∈A

(δA,∅ − SA) = −µξi.

The second term in (S15) can be simplified as follows,
∑

A⊂K:
i∈A

∑

k∈K

∑

B⊂K\{k}

Ik
BC(B, k,A) =

∑

k∈K

∑

B⊂K\{k}

Ik
BC∗

i (B, k)

=
∑

k∈K

∑

B⊂K\{k}:
i∈B

Ik
BC∗

i (B, k) +
∑

k∈K

∑

B⊂K\{k,i}

Ik
BC∗

i (B, k)

=
∑

k∈K

∑

B⊂K\{k}:
i∈B

Ik
B +

∑

k∈K

∑

B⊂K\{i,k}

Ik
Bσki =

∑

k∈K

ηk
i +

∑

k∈K

σki(Ik − ηk
i ).
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The last equality is satisfied because

∑

k∈K

∑

B⊂K\{i,k}

Ik
Bσki =

∑

k∈K

σki




∑

B⊂K\{k}

Ik
B −

∑

B⊂K\{k}:
i∈B

Ik
B



 .

Note that the second term in (S15) can be rewritten as
∑

k∈K

ηk
i +

∑

k∈K\{i}

σki(Ik − ηk
i ) + Ii,

showing that it accounts for the replenishment of healthy host individuals that are immune
to strain i due to (a) recovery of hosts that have previously been immune to strain i, but
have been infected with some other strain k; (b) recovery of hosts that, after having been
infected with some strain k, have gained cross-immunity to strain i; and (c) recovery of
hosts that have been infected with strain i. Finally, the third term in (S15) accounts for
the infection of individuals, immune to strain i, with some other strain k, and can be
rewritten as

∑

A⊂K:
i∈A

∑

k∈K\A

ΛkSA =
∑

k∈K\{i}

∑

A⊂K\{k}:
i∈A

ΛkSA =
∑

k∈K

Λk(ξi − ξik).

Collecting the three results above, we obtain the equation for ξ̇i expressed in terms of new
variables,

ξ̇i =
∑

k∈K

[
ν

(
ηk

i + σki(Ik − ηk
i )

)
− Λk(ξi − ξik)

]
− µξi for all i ∈ K. (S16)

The equation for ξ̇ij is obtained analogously,

ξ̇ij =
∑

k∈K

[
ν

(
ηk

ij + σki(η
k
j − ηk

ij) + σkj(η
k
i − ηk

ij) + σkiσkj(Ik − ηk
j − ηk

i + ηk
ij)

)
−

− Λk(ξij − ξijk)
]
− µξij for all i, j ∈ K, i &= j. (S17)

Observe that the equations for the immunity variables of order ' depend on the η-variables
of order ' and on the ξ-variables of order ' + 1, but not on any immunity variables of
higher orders. To truncate this hierarchy of equations at order ', in full analogy to the
model with coinfections, we need to approximate the ξ-variables of order ' + 1 by a
function of immunity variables of lower orders. Each approximation must, again, satisfy
the symmetry, monotonicity and redundancy conditions outlined in the main text.

We suggest the following simple closures:
(a) Order-1 independence closure:

ξ̂ij =

{ ξiξj

H
if i &= j

ξi if i = j
for all i, j ∈ K. (S18)
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(b) Order-1 interpolation closure:

ξ̂ij =
ξiξj

H

(
1 − σij + σji

2

)
+

σij + σji

2
min(ξi, ξj) for all i, j ∈ K. (S19)

(c) Order-2 independence closure:

ξ̂ijk =






1

3H
(ξijξk + ξikξj + ξjkξi) if i &= j &= k &= i

ξij if i = k or j = k
ξik if i = j

for all i, j, k ∈ K. (S20)

Models truncated at first order have n(n + 1) remaining variables, while models trun-
cated at second order have n(n2 + 3)/2 variables.

Finally, we provide, without a derivation, the reduced version of the model with coin-
fections under the assumption of reduced infectivity. First, the full model with this
assumption differs from the model with reduced susceptibility in that the class I i

A, where
i ∈ A, is no longer empty, since we assume that hosts can be infected with a variant
even if it is in their immune status. Such individuals will not, however, contribute to
infectivity with strain i and, therefore, the force of infection is still given by expression
(S10). Equation (S7) is transformed to

∑
A⊂K SA +

∑
i∈K

∑
A⊂K I i

A = 1, and instead of
(S8)–(S9) we have

ṠA = µ(δA,∅ − SA) + ν
∑

k∈K

∑

B⊂K

Ik
BC(B, k,A) −

∑

k∈K

ΛkSA, for all A ⊂ K, (S21)

İ i
A = ΛiSA − (ν + µ)I i

A, for all i ∈ K and A ⊂ K. (S22)

To obtain the reduced version of this model, we rewrite (S21)–(S22) in terms of

Ii =
∑

A⊂K

I i
A,

ξi =
∑

A⊂K:
i∈A

SA, ξij =
∑

A⊂K:
i,j∈A

SA, . . . ,

ηk
i =

∑

A⊂K:
i∈A

Ik
A, ηk

ij =
∑

A⊂K:
i,j∈A

Ik
A, . . . .

It can be shown that system (S21)–(S22) is equivalent to the following system.

İi = ΛiH − (ν + µ)Ii

η̇k
i = Λkξi − (ν + µ)ηk

i ,

η̇k
ij = Λkξij − (ν + µ)ηk

ij,

ξ̇i =
∑

k∈K

[
ν

(
ηk

i + σki(Ik − ηk
i )

)
− Λkξi

]
− µξi
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ξ̇ij =
∑

k∈K

[
ν

(
ηk

ij + σki(η
k
j − ηk

ij) + σkj(η
k
i − ηk

ij) + σkiσkj(Ik − ηk
i − ηk

j + ηk
ij)

)
−

− Λkξij

]
− µξij

...

for all i, j, k ∈ K, i &= j, where H = 1 −
∑

k∈K Ik and Λi is defined by (S14). As it is
common for models with reduced infectivity, the dynamics of the immunity variables of a
particular order does not depend on the immunity variables of higher orders. Therefore,
the truncation at a given order reproduces the true behavior of the immunity variables
up to that order.

Extended analysis of accuracy for reduced models

In this section we present the results of the same type of analysis as in the main text,
for additional strain space topologies and for the model with no coinfections. We use the
following topologies:

Topology 1. Linear four-strain system as described in the main text.
Topology 2. Circular four-strain system. The mutational neighborhood and the cross-

immunity matrix are given by

M1 = {2, 4}, M2 = {1, 3}, M3 = {2, 4}, M4 = {3, 1},

σ =





1 s 0 s
s 1 s 0
0 s 1 s
s 0 s 1



 .

Topology 3. Linear six-strain system. The mutational neighborhood and the cross-
immunity matrix are given by

M1 = {2}, M2 = {1, 3}, M3 = {2, 4}, M4 = {3, 5}, M5 = {4, 6}, M6 = {5},

σ =





1 s 0 0 0 0
s 1 s 0 0 0
0 s 1 s 0 0
0 0 s 1 s 0
0 0 0 s 1 s
0 0 0 0 s 1




.

Topology 4. Torus-like six-strain system (Figure S1). The mutational neighborhood
and the cross-immunity matrix are given by

M1 = {2, 3, 4}, M2 = {1, 3}, M3 = {1, 2, 6},
M4 = {1, 5, 6}, M5 = {4, 6}, M6 = {3, 4, 5},
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Figure S1: Topology 4.
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Figure S2: Qualitative accuracy mea-
sure ρ for the performance of four models
with coinfections on the Topology 2 sys-
tem: Gog and Grenfell’s model (circles),
order-1 independence closure (pluses),
order-1 interpolation closure (squares),
order-2 independence closure (triangles).
Plots in each row have the value of R0

that is indicated on the left; plots in each
column have the value of m that is indi-
cated at the bottom.

σ =





1 s s s 0 0
s 1 s 0 0 0
s s 1 0 0 s
s 0 0 1 s s
0 0 0 s 1 s
0 0 s s s 1




.

Model with coinfections

According to the procedure outlined in the main text, we numerically find solutions
for topologies 2, 3 and 4. The results are shown in Figures S2 – S7.
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Figure S3: Quantitative accuracy mea-
sure ∆ for the performance of four mod-
els with coinfections on the Topology 2
system. Details as in Figure S2.
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Figure S4: Qualitative accuracy mea-
sure ρ for the performance of four mod-
els with coinfections on the Topology 3
system. Details as in Figure S2.
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Figure S5: Quantitative accuracy mea-
sure ∆ for the performance of four mod-
els with coinfections on the Topology 3
system. Details as in Figure S2.
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Figure S6: Qualitative accuracy mea-
sure ρ for the performance of four mod-
els with coinfections on the Topology 4
system. Details as in Figure S2.
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Figure S7: Quantitative accuracy mea-
sure ∆ for the performance of four mod-
els with coinfections on the Topology 4
system. Details as in Figure S2.

Model with no coinfections

For the model with no coinfections, we numerically solve the following equations for
the time interval [0, T ] and for a range of parameters:

1. The full SIR system: equations (S8) and (S9).

2. The approximation based on the order-1 independence closure: equations (S11),
(S12), and (S16), where the ξij are substituted according to (S18).

3. The approximation based on the order-1 interpolation closure: equations (S11),
(S12), and (S16), where the ξij are substituted according to (S19).

4. The approximation based on the order-2 independence closure: equations (S11),
(S12), (S13), (S16), and (S17), where the ξijk are substituted according to (S20).

Initially, 99% of the host population are healthy and fully susceptible to all strains, while
1% is infected with strain 1. All other parameter values are the same as in the model
with coinfections. The results for topologies 1 – 4 are shown in Figures S8 – S15.

Additional analysis of the influenza A drift model

In this section we present results of additional simulations for our influenza A drift
model.

First, we show that, a model with homogeneous transmission coefficients exhibits a
succession of diagonal variants but no coexistence (Figure S16). Therefore, heterogene-
ity in transmission coefficients is necessary in our model to ensure coexistence of similar
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Figure S8: Qualitative accuracy mea-
sure ρ for the the performance of three
models with no coinfections on the
Topology 1 system: order-1 indepen-
dence closure (pluses), order-1 interpola-
tion closure (squares), order-2 indepen-
dence closure (triangles). Plots in each
row have the value of R0 that is indi-
cated on the left; plots in each column
have the value of m that is indicated at
the bottom.
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Figure S9: Quantitative accuracy mea-
sure ∆ for the performance of three mod-
els with no coinfections on the Topology
1 system. Details as in Figure S8.
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Figure S10: Qualitative accuracy mea-
sure ρ for the the performance of three
models with no coinfections on the
Topology 2 system. Details as in Figure
S8.
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Figure S11: Quantitative accuracy mea-
sure ∆ for the performance of three mod-
els with no coinfections on the Topology
2 system. Details as in Figure S8.
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Figure S12: Qualitative accuracy mea-
sure ρ for the the performance of three
models with no coinfections on the
Topology 3 system. Details as in Figure
S8.
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Figure S13: Quantitative accuracy mea-
sure ∆ for the performance of three mod-
els with no coinfections on the Topology
3 system. Details as in Figure S8.
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Figure S14: Qualitative accuracy mea-
sure ρ for the the performance of three
models with no coinfections on the
Topology 4 system. Details as in Figure
S8.
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Figure S15: Quantitative accuracy mea-
sure ∆ for the performance of three mod-
els with no coinfections on the Topology
4 system. Details as in Figure S8.
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variants. It is interesting to notice that in the model by Tria et al. [S3] heterogeneity
in transmission coefficients had an opposite effect – it was necessary to constrain viral
diversity. Although that model is qualitatively different from ours in many respects and
cannot be compared to our model directly, we think that the main reason for this discrep-
ancy is the fact that Tria et al. assume local cross-immunity structure (in their model
the strength of cross-immunity monotonically depends on the Hamming distance between
variant sequences) while we assume highly non-local cross-immunity structure. We con-
jecture that the effect of heterogeneity of transmission coefficients in Gog and Grenfell’s
model [S1] with strain-independent cross-immunity would coincide with that by Tria et
al.

The second simulation differs from the model described in main text only by the
shape of the cross-immunity structure between strains. We demonstrate that, if cross-
immunity structure is local, as shown in Figure 4B in the main text, constrained evolution
is impossible – the virus explores the whole strain space, unless, of course, some part of
it is unviable, i.e., transmission coefficients are equal to or less than unity, as in Gog in
Grenfell’s work [S1]. Here we use essentially the same local cross-immunity structure as
Gog and Grenfell [S1]:

σ(loc)
(i,j)(k,!) = exp

{
−1

2

(
|i − k| + |j − '|

a

)2
}

.

The results of this simulation are shown in Figure S17. Note that the sum of fractions of
infected hosts surpasses 1 and reaches its maximum near 5 before it starts dropping. This
implies that many hosts survive multiple coinfections. Obviously, this does not happen
in a model where coinfections are prohibited, despite an explosion in diversity that is still
captured (results not shown). Also note that the decline in the number of coinfections
in the second half of the simulation is probably due to the fact that the whole 20 by 20
strain space was explored within the simulation time.

The final set of simulations aims at demonstrating that the main qualitative result of
our paper – the one-dimensionality of influenza A drift – does not depend on the details of
the model. We simulate the influenza evolution in a setting with the immunity structure
and the distribution of transmission coefficients as described in the main text using now
Gog and Grenfell’s model (Figure S18) and the approximate model with no coinfections
with the order-1 interpolation closure (Figure S19). As expected, the evolution of the virus
is principally one-dimensional irrespectively of the model. However, it is instructive to
notice some similarities and differences between the simulation results in different models:

1. The sets of strains that cause epidemics coincide for both our models but slightly
differ from the set predicted by Gog and Grenfell’s model (for example, in the latter
model, strains (12,7) or (16,16) do not cause epidemics). In general, strains cause
less severe epidemics in Gog and Grenfell’s model than in either of our models. This
is consistent with the fact that Gog and Grenfell’s model overestimates the level of
immunity in the population.
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Figure S16: Approximate dynamics of
antigenic drift in influenza A, based on
the order-1 interpolation closure in a
model with coinfections. All transmis-
sion coefficients β(i,j) are equal to 3.
Other parameter values are the same as
in Figure 5 in the main text.

2. The epidemic peak times in our model with coinfections generally coincide with
those in Gog and Grenfell’s model, while the corresponding epidemics occur later
in the model where coinfections are excluded. This suggests that the evolution of
the virus proceeds slower in a system with no coinfections.

These observations provide additional evidence for the fact that, even though the coarse
qualitative behavior of status-based models based on different assumptions may be quite
similar even in complex settings, substantial quantitative differences in predictions of such
models do exist.
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Figure S17: Approximate dynamics of
antigenic drift in influenza A, based on
the order-1 interpolation closure in a
model with coinfections. σ = σ(loc). All
other parameters, including parameter a
and the landscape of transmission coeffi-
cients are the same as in Figure 5 in the
main text. Four snapshots are taken at
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and t = 67 (D). E. The sum of all pro-
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of time.
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Figure S18: Approximate dynamics of
antigenic drift in influenza A, based on
Gog and Grenfell’s model. All param-
eters, including the landscape of trans-
mission coefficients are the same as in
Figure 5 in the main text.
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Figure S19: Approximate dynamics of
antigenic drift in influenza A, based on
the order-1 interpolation closure in a
model with no coinfections. The initial
condition was given by all state vari-
ables being zero except for I(1,1)(0) =
0.01, corresponding to a healthy and
fully susceptible host population with
1% of hosts infected with strain (1, 1).
All other parameters including the land-
scape of transmission coefficients are the
same as in Figure 5 in the main text. B.
The total fraction of infected hosts as a
function of time.
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