S5 Novel sequence classification using the EXPERT dataset

Novel sequence classification experiments were repeated using manually defined subfamilies from the EXPERT set (Table S4). All sequences in each family were tested, except for those sequences whose original subfamily was emptied due to removal of similar sequences. Overall results are quite similar to those for the larger SCOP-PFAM515 set, in that the BLAST, sub-profile and SHMM methods all performed comparably. Coarse classifications such as enolase, crotonase and NHR L1, in which subtypes were both well-populated and well separated, proved relatively easy for all methods at all levels of identity. The exception was the Amine family, in which accuracy dropped below 20% for the most difficult threshold of 30% identity. We believe this is due to the high diversity within the Amine L1 subtypes (on average, each subtype has a pair of sequences with just 20% identity), in combination with high similarity between subtypes. Interestingly, Amine L2 gave better results. This was most likely due to the small number of sequences tested. The secretin subtypes were not well-separated, and only 31 sequences were left to test at the 30% threshold. All three methods did well at this low threshold (the SHMM method performed perfectly), but at higher thresholds of 40% and 50%, performance decreased. This reflects the removal of 'difficult' sequences (those having quite similar homologs in other subtypes) at the lowest threshold. The same effect is seen in the NHR L3 classification.

.3 Secretin	.5 54.5	97 64	42 31	.2 100.0	.8 83.9	.1 96.8	51 39	.1 66.7	.9 48.7	.1 56.4	68 78	.8 43.6	.8 44.9	.9 64.1	25 109	.8 73.4	.8 79.8		117 117	.3 92.3	.7 93.2	.1 94.0
NHR L3	67.5	0,	7	45.2	23.8	38.1	ц	45.1	54.9	45.1	U	26.8	36.8	30.9	125	52.8	60.8	72.0	244	53.3	60.7	77.1
NHR L2	38.9	49	174	57.5	19.0	40.2	252	60.3	57.5	69.0	256	82.4	83.6	84.4	319	94.4	96.2	97.2	379	97.9	98.7	99.5
NHR L1	21.3	41	397	73.3	73.6	68.0	405	94.1	95.8	93.8	408	96.6	96.3	96.1	408	100.0	99.8	99.5	408	100.0	99.8	99.5
Enolase	23.8	47	265	96.2	98.1	96.2	456	95.8	92.8	93.0	472	96.4	94.1	93.9	472	97.5	99.4	98.7	472	98.1	99.8	99.2
Crotonase	38.6	41	271	95.2	98.5	97.9	292	0.06	100.0	99.7	344	99.1	100.0	100.0	359	99.2	99.2	100.0	361	99.2	99.2	100.0
Amine L2	56.7	72	73	27.4	34.2	17.8	165	47.9	56.4	66.1	198	68.7	69.1	82.3	225	77.8	77.8	81.3	300	79.0	84.3	90.3
Amine L1	20.8	49	297	11.1	16.2	14.8	354	33.3	60.5	62.4	358	59.2	74.3	78.2	358	79.3	90.2	88.5	358	86.9	92.2	92.5
	Avg Min Subtype %ID	Max Cross-subtype %ID	30%	SHMM	Sub-profile	BLAST	40%	SHMM	Sub-profile	BLAST	50%	SHMM	Sub-profile	BLAST	60%	SHMM	Sub-profile	BLAST	20%	SHMM	Sub-profile	BLAST

having percent identity above the given threshold. Avg Min Subtype %ID is the average minimum percent identity within each subtype in the family. Max Cross-subtype %ID is the maximum percent identity between any two sequences in different subtypes. Numbers in the first row of each block indicate the number of sequences in each family tested at that threshold (in some cases, all sequences anntanhaa in the original subfamily were above the threshold and were removed; these cases were not tested). wer, arrer fe 5 5 ut acy TUVEL DEYMUL ۲ 2