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1. Assembly of the dataset. Seed PKS protein sequences were obtained from the PKSDB database 

[7]. Conserved N- and C-terminal regions defined from a preliminary alignment were fed 
separately through PSI-BLAST [S1], to find matches in the non-redundant protein database. The 
PSI-BLAST cutoff was chosen so as to include all proteins annotated as “synthases”, and 
subsequent iterations were performed until convergence. NCBI annotations of the resulting 
proteins were scanned manually, to determine primary literature references. All papers with two 
or more protein hits were included. The resulting 42 papers all reported studies of modular PKSs 
(Dataset S1, Section 1). All 225 PKS proteins obtained from these references were combined to 
form our raw dataset. 
 
200 aa of the C-terminal and 50 aa of the N-terminal regions of these proteins were aligned using 
MUSCLE multiple sequence alignment software [S2]. The alignment was run for 10 iterations, 
with a gap-opening penalty of -10. The dataset was then pruned in two steps. All obvious badly 
aligned proteins were removed. Of the result, all termini without interaction partners were 
removed. These included the pathway termini (the N-terminal region of the first protein and the 
C-terminal region of the last protein in a PKS pathway), which typically tended not to align. The 
resulting sequences were then re-aligned using the same parameters. The alignments showed 
conserved regions at the very ends of proteins, followed by gaps or unconserved linkers: a 19 aa 
C-terminal “head” region, and a 27 aa N-terminal “tail” region. The final dataset consisted of 149 
head-tail interaction partners. (The alignments shown in Figure 1 were rendered using Jalview 

[29].) 
 
 
2. Compatibility classes: clustering of head and tail docking domains. The CLANS tool [16] can 
be used to rapidly investigate phylogenetic relationships in large datasets. CLANS was used to 
perform a force-based clustering of head and tail domains, as defined in Section 1, using BLAST 
cutoffs of 2.0e-4 and 1.0e-4, respectively. Stringent cutoffs were chosen so as to resolve separate 
clusters; more lenient cutoffs tend to group all homologous domains into a single large cluster. 
The system was run in 2-dimensions; the attract and repel coefficients were set to 10, and the 
corresponding exponents were set to 2. The system was allowed to evolve till equilibrium. Heads 
and tails were assigned to clusters by hand, based on the CLANS output in 2-dimensions. The 
clusters reported here largely reproduce those predicted by other phylogenetic reconstruction 
algorithms. 
 
 
3. Compatibility sub-classes: Monte Carlo clustering of code words. We have two distinct goals 
from clustering. The first is to identify groups of amino acid code words that obey similar 
interaction rules; the second is to determine the “clusterability” of the data compared to that of a 
random dataset. We say that a dataset is “clusterable” when: (i) code words group into cliques, 
within which pairs are likely to be interactors, and between which pairs are likely to be non-
interactors; and (ii) cliques contain words of similar sequence. 
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We begin by including all CRoSS pairs with significance more than some cutoff, thus restricting 
our attention to a subset of sites on the head and tail domains. For any given domain instance, the 
residues at these sites define short amino-acid code words; the same code word typically occurs 
in multiple domain instances. The code words are represented by binary variables 
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i runs over head sites and j over tail sites, and α and β run over the 20 amino acids. The 
interaction data can be represented on a bi-partite graph (Figure 4B): the nodes are unique head or 
tail code words, indexed by r and s, respectively; the edges ers connect head nodes to tail nodes, 
representing all unique interactions (ers = +1) or non-interactions (ers = -1). In addition, the nodes 
are each labeled with an integer λr or λs, such that nodes with the same label belong to the same 
cluster. 
 
We next calculate two energy terms. The first term, an interaction energy, is defined as: 
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Here, δ(a,b) = 1 if a = b, and is 0 otherwise; 0 ≤ q ≤ 1 sets the relative contribution of desirable 
versus undesirable edges; and w > 0 sets the relative contribution of between-cluster to within-
cluster terms. For example, with q = 0.8 and w = 1.0, interaction edges (ers = +1) contribute an 
energy 0.8 if they occur within clusters, but 0.2 if they occur between clusters; non-interaction 
edges (ers = -1) contribute 0.2 within clusters, but 0.8 between clusters. This term thus tends to 
favor interactions within clusters, and non-interactions between clusters.  
 
The second term, an entropic contribution, is defined as a sum over clusters: 
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where cluster-specific amino-acid frequencies, normalized at each site, are given by 
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Essentially, we are measuring the log-odds that any given head or tail code word will appear in a 
cluster, given the average amino-acid frequencies for that cluster. This term tends to reward 
clusters which contain code words that are similar to one another in sequence.  
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For any given partitioning of the nodes into labeled clusters, the interaction and entropic terms are 
finally weighted and combined to give a total energy 
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We can now perform a Metropolis Monte Carlo simulation [22,S3] to cluster heads and tails. The 
system is initialized such that all head and tail nodes belong to distinct clusters; at each timestep, 
a random node is picked and added to an existing cluster, or is used to seed a fresh cluster. This 
move, which changes the energy from H to H’, is accepted if exp(H - H’) > ρ, where ρ is a 
random number uniformly distributed between 0 and 1. This simulation is repeated for Ntrial trials, 
always starting with a non-clustered initial condition, and run till approximate equilibrium. Each 
such run generates a possible partitioning of the nodes into labeled clusters. 
 
To generate the data shown in Figure 4, we performed Monte Carlo clustering using the three 
most significant CRoSS site pairs, which picks out three head sites and three tail sites. We used 
the following parameters: q = 0.8; w = 1.0; wint = 4.0; went = 0.5; Ntrials = 100. If two nodes were 
observed to be in the same cluster in more than Nmin trials, they were defined as being co-
clustered. The final clusters shown in Figure 4 are robust, remaining essentially unchanged as 
Nmin is varied from 10 to 35; the cluster H1b-T1b breaks into two pieces at Nmin ~ 30. 
 
In order to estimate the significance of the clusters detected above, we ran the same algorithm on 
randomized datasets. These datasets were generated by swapping edges from the true dataset at 
random, such that the number of positive and negative edges connected to each node remained 
unchanged. For each randomized dataset, the simulation was run for 10 trials to estimate mean 
equilibrium energies; this procedure was repeated for 50 such datasets. The results were as 
follows: 
 
True dataset:   〈 H 〉 = -169.4,   〈 Hint 〉 = -51.7,  〈 Hent 〉 = 75.0. 
Randomized datasets: 〈 H 〉 = -134.7 ± 9.3,  〈 Hint 〉 = -45.2 ± 2.6, 〈 Hent 〉 = 92.2 ± 7.3.  
 
The values of both interaction and entropic energies are significantly lower for the true dataset 
than for the randomized datasets, indicating that interactions are more enriched within cliques, 
and code words are more similar, than expected by chance. Based on these 50 trials, we can 
conservatively set an upper bound, p-value < 0.02. 
 
 
4. Mapping CRoSS residues to the docked domain NMR structure. An NMR structure for the 
docked complex between the C-terminus of protein 2 and N-terminus of protein 3 of the 
erythromycin PKS has been published by Broadhurst et al. [15], with PDB code 1pzr. We used 
the CSU contact analysis tool [S4] to determine pairwise distances between head and tail residues 
in the NMR structure. Since PKS proteins exist as homodimers, there are two copies each of any 
given head or tail residue, and therefore four distances associated with any given residue pair. Of 
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these, we selected the minimum pairwise distance. Figure 5A shows the residue pairs that are 
separated by a distance of 5Å or less in the NMR structure. On the same figure, we have 
highlighted the residue pairs selected by CRoSS, as well as those previously suggested or 
demonstrated as contributing to interaction specificity. Broadhurst et al. used an unstructured 
linker to connect the C- and N-termini, which were subsequently permitted to dimerize and dock 
with one-another. In Figures 5B and 5C, we omit the linker region for clarity. Figure 5B was 
generated using BALLVIEW [S5], and Figures 5C-5F were generated using CN3D [S6]. 
 
 
5. Measuring the predictive ability of the specificity code. In order to rigorously test the 
predictive power of our code, we must train it on one dataset, and test it against an independent 
dataset. This allows us to estimate how well the code is able to generalize to previously unseen 
data, in terms of true positive and false positive rates. We carried out this procedure separately for 
each level of the code. 
 
Compatibility classes: In the original analysis, we used the CLANS tool to cluster head and tail 
docking domains into compatibility classes (Text S1, Section 2). However, CLANS is a 
clustering algorithm which simultaneously manipulates a set of sequences, rather than classifying 
individual ones. As such, it cannot be trained on one dataset and tested on another. In order to 
measure the ability of our code to generalize, we adopted the following approach. We took the 
original CLANS classification as given, and asked whether, knowing the classification of one 
subset of domains, we could predict that of another. Our complete dataset consists of 128 
matched head-tail pairs (the diagonal interactors in Figure 2C), classified as H1-T1, H2-T2, or 
H3-T3. We split these at random into 96 training cases, and 32 test cases. Based on the examples 
in the training set, we built six position-specific weight matrices (PSWMs, giving the probability 
of finding a given amino acid at each site) for each of the six domain varieties H1, H2, H3 and 
T1, T2, T3. Next, we applied these PSWMs to classify all the domains in our test set, based on 
maximum likelihood. (For example, given any head domain, we calculated the probability that it 
could arise from each of the three PSWMs corresponding to H1, H2, and H3, and assigned it to 
the class that produced the highest probability.) A priori, we would predict that a matched head-
tail pair would interact, while a mis-matched head-tail pair would not. Now, of the 32x32 possible 
head-tail pairings within the test dataset, we will have 32 known interactors (the diagonal 
elements) as well as some number of known non-interactors (non-interacting pairs from the same 
PKS pathway). The true positive (TP) rate is the fraction of known interacting pairs that are 
matched, while the false positive (FP) rate is the fraction of known non-interacting pairs that are 
matched. By repeating this procedure for 1000 trials of randomly divided training and test sets, 
we found that the compatibility class code performs with TP = 0.97 ± 0.03, FP = 0.52 ± 0.2. 
 
Compatibility sub-classes: If we use the 3 most significant CRoSS residue pairs, our code word 
graph contains 34 head code words and 27 tail code words as nodes, with 55 interaction edges 
and 130 non-interaction edges connecting them. We can measure the performance of the sub-
class specificity code by asking how often the nature of a new edge can be predicted. To estimate 
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this, we split our edge dataset at random into 150 training edges, and 35 test edges, and ran the 
Monte Carlo clustering algorithm described above for 50 trials on the training set. A particular 
choice of the threshold Nmin induces a particular clustering on the nodes, allowing us to ask if the 
edges in the test set connect nodes within a cluster (predicted interactors), or between clusters 
(predicted non-interactors). If we define the values TP (true positives: the fraction of interactor 
edges in the test set that are predicted to be interactors) and FP (false positives: the fraction of 
non-interactor edges in the test set that are predicted to be interactors), then high Nmin gives TP = 
FP = 0, while low Nmin gives TP = FP = 1. Intermediate values of Nmin trace out a curve of TP vs. 
FP, known as the Receiver Operating Characteristic (ROC) [S7]. A random classifier would trace 
the curve TP = FP, while the ROC of a classifier that performed better than random would lie 
above this diagonal. A typical measure of performance is the area under the ROC curve, which 
should be greater than 0.5 for a better-than-random classifier. We calculated ROCs for 15 
different randomly split training and test datasets (Figures S2A and S2B). The classifier performs 
slightly better than random, with the improvement being greater at higher FP rates. The mean 
area under the ROC is 0.55 ± 0.02, and at FP = 0.5, we have TP = 0.6. This poor performance is 
due to the sparseness of the available dataset, in which removing even a few edges disrupts 
certain clusters. (If we use the 4 most significant CRoSS residue pairs, we find that the mean area 
under the ROC is 0.5 -- the code is unable to generalize, performing no better than random 
guessing on test data.) However, even at this level of performance the code can be usefully 
applied. For example, a typical application would be to infer the correct order of a novel PKS 
multi-protein chain, given the sequences of its docking domains. Consider a hypothetical five-
protein chain for which the termini are specified, so the three internal proteins can have six 
possible permutations. If the code performs at FP = 0.5 and TP = 0.6, we are able to predict the 
correct permutation in 42% of cases, or 2.5 times the random rate (Figure S2C). 
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