
Supplementary material for

Fast pairwise local structural RNA alignments by pruning of the

dynamical programming matrix

Jakob H. Havgaard1, Elfar Torarinsson1,2, Jan Gorodkin1

1 Division of Genetics and Bioinformatic, IBHV, University of Copenhagen,

Grønneg̊ardsvej 3, 1870 Frederiksberg C, Denmark
2 Department of Natural Sciences, University of Copenhagen,

Thorvaldsensvej 40, 1870 Frederiksberg C, Denmark

1 The recursion

This section describes the recursion of the 2.1 version of foldalign. The recursion as showed here is
simplified in two ways. Affine gap penalties are not included, and one basepair long stems are allowed.
The notation used in the recursion can be seen in Table S1. Figure S1 shows a simplified overview of
the energy model. D(i,j,k,l) is the alignment score, σ(i,j,k,l) is the alignment state, µ1(i,j,k,l), µ2(i,j,k,l),
µ3(i,j,k,l), and µ4(i,j,k,l) are the lengths of the single stranded regions external to the last basepair, see
Figure S2. Sbp to SgrK are the scores for adding a set of nucleotides to the alignment.

D(i,j,k,l) = max

D(i+1,j−1,k+1,l−1)+Sbp(ni, nj , nk, nl, σ(i+1,j−1,k+1,l−1)) (a)
D(i+1,j−1,k,l) +SbpiI(ni, nj ,−,−, σ(i+1,j−1,k,l)) (b)
D(i,j,k+1,l−1) +SbpiK(−,−, nk, nl, σ(i,j,k+1,l−1)) (c)
D(i+1,j,k+1,l) +Sal(ni, nk, σ(i+1,j,k+1,l)) (d)
D(i,j−1,k,l−1) +Sar(nj , nl, σ(i,j−1,k,l−1)) (e)
D(i+1,j,k,l) +SglI(ni,−, σ(i+1,j,k,l)) (f)
D(i,j−1,k,l) +SgrI(nj ,−, σ(i,j−1,k,l)) (h)
D(i,j,k+1,l) +SglK(−, nk, σ(i,j,k+1,l)) (g)
D(i,j,k,l−1) +SgrK(−, nl, σ(i,j,k,l−1)) (i)
max {D′

(i,m,k,n) + D′

(m+1,j,n+1,l) + Cmblhelix} (j)
i<m<j
k<n<l

(S1)

The (a) case adds a basepair in both structures. Case (b) and (c) add basepair inserts in either of
the structures. Cases (d) and (e) add aligned unpaired nucleotides in either end of the alignment. Cases
(f), (g), (h), and (i) add an unpaired nucleotide aligned to a gap to the alignment. Case (j) joins two
substructures into one in each of the structures. The calculation of case (j) is heavily constrained as this
case is the O(N6) part of the algorithm. The equations for calculation the scores S for the different cases
are shown in the Contexts subsection.

The calculation is initialized by aligning two nucleotides in the hairpin state: (Rss is the single strand
substitution cost for nucleotide ni and nk. Lhp is hairpin-loop length cost. See Table S1).

D(i,i,k,k) = Rss(ni, nk) + Lhp(1, 1)
σ(i,i,k,k) is set to the hairpin start state

µ1(i,i,k,k) = 1
µ2(i,i,k,k) = 0
µ3(i,i,k,k) = 1
µ4(i,i,k,k) = 0

(S2)

Rss is the single strand substitution cost for the nucleotides ni and nk. Lhp is hairpin-loop length cost.
See also Table S1.

When the score D(i,j,k,l) is calculated, the score of single stranded nucleotides external to the last
basepair and the score of the last basepair may not be correct. It is corrected by this calculation:

D′

(i,j,k,l) = D(i,j,k,l) + S′(σ(i,j,k,l)) (S3)

1

The equation for calculating S′ can seen in the Contexts subsection.

Cmblend The cost of closing a multibranched loop
Cmblhelix The cost of adding a stem to the multibranch loop (not including the first stem)
Cmblnuc The cost of adding a single stranded nucleotide to a multibranched loop
CnGC The non-GC stem end cost
D The score of an alignment. Not corrected for external single stranded nucleotides
D′ The alignment score. Corrected for external single stranded nucleotides
I sequence One of the two sequences. Usually the longest
K sequence The other sequence. Usually the shortest
Lbl Bulge length cost
Lil Internal loop length cost. Includes the asymmetry cost.
Lhp Hairpin length cost
µ1 Length of the single stranded region upstream of the last basepair in the

I sequence
µ2 Length of the single stranded region downstream of the last basepair in the

I sequence
µ3 Length of the single stranded region upstream of the last basepair in the

K sequence
µ4 Length of the single stranded region downstream of the last basepair in the

K sequence
Rbp Base pair substitution score
Rss Single strand substitution score
s Stacking score
shp Hairpin end stacking score
sil Internal loop end stacking score
σ The state of an alignment

Table S1: Notation

1.1 Contexts

1.1.1 Base pair (a)

Sbp is the cost of adding a basepair to both structures. The Sbp score is only calculated if both ni and nj

basepair, and nk and nl basepair. The µ(i,j,k,l) lengths are set to zero if this case has the highest score in

2

Start

Hairpin-loop

Stem

Stem insert

Bf. left & both

Bulge Right Bulge Left

Internal-loop

External

End

Bifurcation

Bf. right

Figure S1: State chart. A simplified state chart of the foldalign energy model. The alignment
always starts in the “Start” state which is a hairpin-loop state. The alignment ends in the “End”
state. The “External” state recalculates the scores of the “Hairpin-”, “Bulge-”, and “Internal-”
loop states to an “External” state score when needed. Unpaired nucleotides in the bifurcation states
are scored in the same way as external states. The “Hairpin-loop” state aligns unpaired nucleotides in
the hairpin context. The “Stem” state aligns basepairs in both sequences. The “Stem insert” state aligns
a basepair in one of the sequences with two gaps in the other. “Bulge right” aligns bulges on the right
side of a stem. “Bulge left” aligns bulges on the left side of a stem. The “Internal-loop” state aligns two
internal-loops nucleotides. The “Bifurcation” state joins two substructures. The right structure must be
in the “Stem” or “Stem insert” state. The state of the left structure must be: “Stem”, “Stem insert”,
“Bifurcation”, “Bulge right”, or Bifurcation unpaired right (“Bf. right”). Bifurcation unpaired right aligns
unpaired nucleotides on the right side of a branch point. Bifurcation unpaired left & both (“Bf. left &
both”) aligns unpaired nucleotides on the left, right, and both sides of a branch point.

Sequence 1: Sequence 2:
AAA

A A
G - C
G - C

U UU

AAA
A A

G - C
G - C

UUU UUUU

Figure S2: µ. µ is the number of unpaired nucleotides external to the last basepair. µ1 is the number
of unpaired nucleotides upstream of the last basepair in the first sequence. µ2 counts the unpaired
nucleotides downstream of the last basepair in the first sequence. µ3 and µ4 are defined in the same way
but for sequence 2. In this example µ1 = 1, µ2 = 2, µ3 = 3, and µ4 = 4.

3

equation (S1).

Sbp(σ(i+1,j−1,k+1,l−1)) =

Rbp(ni, nj , nk, nl) if σ is a hairpin state.
+ shp(ni+1, nj−1, ni, nj ,) σ(i,j,k,l) becomes a stem
+ shp(nk+1, nl−1, nk, nl) state.

Rbp(ni, nj , nk, nl) if σ is a stem or an
+ s(ni+1, nj−1, ni, nj) insert basepair state,
+ s(nk+1, nl−1, nk, nl) σ(i,j,k,l) becomes a stem

state.
Rbp(ni, nj , nk, nl) if σ is a bulge left state

+ s(ni+µ1+1, nj−1, ni, nj) and µ1 ≤ 1 and µ3 ≤ 1,
+ s(nk+µ3+1, nl−1, nk, nl) σ(i,j,k,l) becomes a stem

state.
Rbp(ni, nj , nk, nl) if σ is a bulge left state

+ CnGC(ni, nj) + CnGC(nk, nl) and µ1 > 1 or µ3 > 1,
+ CnGC(ni+µ1+1, nj−1) σ(i,j,k,l) becomes a stem
+ CnGC(nk+µ3+1, nl−1) state.

Rbp(ni, nj , nk, nl) if σ is a bulge right state
+ s(ni+1, nj−µ2−1, ni, nj) and µ2 ≤ 1 and µ4 ≤ 1,
+ s(nk+1, nl−µ4−1, nk, nl) σ(i,j,k,l) becomes a stem

state.
Rbp(ni, nj , nk, nl) if σ is a bulge right state

+ CnGC(ni, nj) + CnGC(nk, nl) and µ2 > 1 or µ4 > 1,
+ CnGC(ni+1, nj−µ2−1) σ(i,j,k,l) becomes a stem
+ CnGC(nk+1, nl−µ4−1) state.

Rbp(ni, nj , nk, nl) if σ is an internal loop
+ sil(ni+1, nj−1, ni, nj) state,
+ sil(ni+µ1

, nj−µ2
, ni+µ1+1, nj−µ2−1) σ(i,j,k,l) becomes a stem

state.
Rbp(ni, nj , nk, nl) + Cmblend if σ is a left or right

+ CnGC(ni, nj) + CnGC(nk, nl) multibranch loop state,
σ(i,j,k,l) becomes a stem
state.

1.1.2 Insert basepair (b) & (c)

SbpiI is a score of inserting a basepair into a stem from the I sequence. The SbpiI score is only calculated
when ni and nj basepair, and the state is stem or insert basepair in the I sequence. The µ(i,j,k,l) lengths
are all set to zero if this case has the highest score in equation (S1).

SbpiI(σ(i+1,j−1,k,l)) = 2 × Rss(gap) + s(ni+1, nj−1, ni, nj) σ(i,j,k,l) becomes an insert base
pair in the I sequence state.

SbpiK is a score of inserting a basepair into a stem from the K sequence. The SbpiK score is only
calculated when nk and nl basepair, and the state is stem or insert basepair in the K sequence. The
µ(i,j,k,l) lengths are all set to zero if this case has the highest score in equation (S1).

SbpiK(σ(i,j,k+1,l−1)) = 2 × Rss(gap) + s(nk+1, nl−1, nk, nl) σ(i,j,k,l) becomes an insert base
pair in the K sequence state.

4

1.1.3 Align left (d)

Sal is score of aligning two single stranded nucleotides on the left side of an alignment.

Sal(σ(i+1,j,k+1,l)) =

Rss(ni, nk) if σ is a hairpin state,
− Lhp(µ1) − Lhp(µ3) σ(i,j,k,l) becomes a
+ Lhp(µ1 + 1) + Lhp(µ3 + 1) hairpin state.

Rss(ni, nk) if σ is a stem state or an
+ 2 × Lbl(1) insert basepair state,

σ(i,j,k,l) becomes a
bulge left state.

Rss(ni, nk) if σ is a bulge left state,
− Lbl(µ1) − Lbl(µ3) σ(i,j,k,l) becomes a
+ Lbl(µ1 + 1) + Lbl(µ3 + 1) bulge left state.

Rss(ni, nk) if σ is a bulge right state,
− Lbl(µ2) − Lbl(µ4) σ(i,j,k,l) becomes an
+ Lil(1, µ2) + Lil(1, µ4) internal loop state.

Rss(ni, nk) if σ is an internal loop state,
− Lil(µ1, µ2) − Lil(µ3, µ4) σ(i,j,k,l) becomes an
+ Lil(µ1 + 1, µ2) internal loop state.
+ Lil(µ3 + 1, µ4)

Rss(ni, nk) + 2 × Cmblnuc if σ is a left or right
multibranch loop state,

σ(i,j,k,l) becomes a
left multibranch loop state.

If this case wins in equation (S1), the lengths are updated like this:

µ1(i,j,k,l) = µ1(i+1,j,k+1,l) + 1
µ2(i,j,k,l) = µ2(i+1,j,k+1,l)

µ3(i,j,k,l) = µ3(i+1,j,k+1,l) + 1
µ4(i,j,k,l) = µ4(i+1,j,k+1,l)

5

1.1.4 Align right (e)

Sar is the cost of aligning two single stranded nucleotides on the right side of an alignment.

Sar(σ(i,j−1,k,l−1)) =

Rss(nj , nl) if σ is a hairpin state,
− Lhp(µ1) − Lhp(µ3) σ(i,j,k,l) becomes a
+ Lhp(µ1 + 1) + Lhp(µ3 + 1) hairpin state.

Rss(nj , nl) if σ is a stem state
+ 2 × Lbl(1) or an insert basepair state,

σ(i,j,k,l) becomes a bulge right state.
Rss(nj , nl) if σ is a bulge left state,
− Lbl(µ1) − Lbl(µ3) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ1, 1) + Lil(µ3, 1)

Rss(nj , nl) if σ is a bulge right state,
− Lbl(µ2) − Lbl(µ4) σ(i,j,k,l) becomes a bulge right state.
+ Lbl(µ2 + 1) + Lbl(µ4 + 1)

Rss(nj , nl) if σ is an internal loop state,
− Lil(µ1, µ2) − Lil(µ3, µ4) σ(i,j,k,l) becomes an
+ Lil(µ1, µ2 + 1) internal loop state.
+ Lil(µ3, µ4 + 1)

Rss(nj , nl) + 2 × Cmblnuc if σ is a left multibranch loop state,
σ(i,j,k,l) becomes a left
multibranch loop state.

Rss(nj , nl) + 2 × Cmblnuc if σ is a right multibranch loop state,
σ(i,j,k,l) becomes a right
multibranch loop state.

If this case wins in equation (S1), the lengths are updated like this:

µ1(i,j,k,l) = µ1(i,j−1,k,l−1)

µ2(i,j,k,l) = µ2(i,j−1,k,l−1) + 1
µ3(i,j,k,l) = µ3(i,j−1,k,l−1)

µ4(i,j,k,l) = µ4(i,j−1,k,l−1) + 1

6

1.1.5 Gap left I (f)

SglI is the cost of extending an alignment with one single stranded nucleotide on the left side of the I

sequence.

SglI(σ(i+1,j,k,l)) =

Rss(gap) if σ is a hairpin state,
− Lhp(µ1) + Lhp(µ1 + 1) σ(i,j,k,l) becomes a hairpin state.

Rss(gap) if σ is a stem state
+ Lbl(1) + Lbl(0) or an insert basepair state,

σ(i,j,k,l) becomes a bulge left state.
Rss(gap) if σ is a bulge left state,
− Lbl(µ1) − Lbl(µ1 + 1) σ(i,j,k,l) becomes a bulge left state.

Rss(gap) if σ is a bulge right state,
− Lbl(µ2) − Lbl(µ4) σ(i,j,k,l) becomes an internal loop state.
+ Lil(1, µ2) + Lil(0, µ4)

Rss(gap) if σ is an internal loop state,
− Lil(µ1, µ2) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ1 + 1, µ2)

Rss(gap) + Cmblnuc if σ is a left or right multibranch
loop state,

σ(i,j,k,l) becomes a left
multibranch loop state.

If this case wins in equation (S1), the lengths are updated like this:

µ1(i,j,k,l) = µ1(i+1,j,k,l) + 1
µ2(i,j,k,l) = µ2(i+1,j,k,l)

µ3(i,j,k,l) = µ3(i+1,j,k,l)

µ4(i,j,k,l) = µ4(i+1,j,k,l)

1.1.6 Gap left K (g)

SglK is the cost of extending an alignment with one single stranded nucleotide on the left side of the K

sequence.

SglK(σ(i,j,k+1,l)) =

Rss(gap) if σ is a hairpin state,
− Lhp(µ3) + Lhp(µ3 + 1) σ(i,j,k,l) becomes a hairpin state.

Rss(gap) if σ is a stem state
+ Lbl(0) + Lbl(1) or an insert basepair state,

σ(i,j,k,l) becomes a bulge left state.
Rss(gap) if σ is a bulge left state,
− Lbl(µ3) + Lbl(µ3 + 1) σ(i,j,k,l) becomes a bulge left state.

Rss(gap) if σ is a bulge right state,
− Lbl(µ2) − Lbl(µ4) σ(i,j,k,l) becomes an internal loop state.
+ Lil(0, µ2) + Lil(1, µ4)

Rss(gap) if σ is an internal loop state,
− Lil(µ3, µ4) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ3 + 1, µ4)

Rss(gap) + Cmblnuc if σ is a left or right multibranch
loop state,

σ(i,j,k,l) becomes a left multibranch
loop state.

7

If this case wins in equation (S1), the lengths are updated like this:

µ1(i,j,k,l) = µ1(i,j,k+1,l)

µ2(i,j,k,l) = µ2(i,j,k+1,l)

µ3(i,j,k,l) = µ3(i,j,k+1,l) + 1
µ4(i,j,k,l) = µ4(i,j,k+1,l)

1.1.7 Gap right I (h)

SgrI is the cost of extending an alignment with one single stranded nucleotide on the right side of the I

sequence.

SgrI(σ(i,j−1,k,l)) =

Rss(gap) if σ is a hairpin state,
− Lhp(µ1) + Lhp(µ1 + 1) σ(i,j,k,l) becomes a hairpin state.

Rss(gap) if σ is a stem state
+ Lbl(1) + Lbl(0) or an insert basepair state,

σ(i,j,k,l) becomes a bulge right state.
Rss(gap) if σ is a bulge left state,
− Lbl(µ1) − Lbl(µ3) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ1, 1) + Lil(µ3, 0)

Rss(gap) if σ is a bulge right state,
− Lbl(µ2) + Lbl(µ2 + 1) σ(i,j,k,l) becomes a bulge right state.

Rss(gap) if σ is an internal loop state,
− Lil(µ1, µ2) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ1, µ2 + 1)

Rss(gap) + Cmblnuc if σ is a left multibranch loop state,
σ(i,j,k,l) becomes a left multibranch
loop state.

Rss(gap) + Cmblnuc if σ is a right multibranch loop state,
σ(i,j,k,l) becomes a right multibranch
loop state.

If this case wins in equation (S1), the lengths are updated like this:

µ1(i,j,k,l) = µ1(i,j−1,k,l)

µ2(i,j,k,l) = µ2(i,j−1,k,l) + 1
µ3(i,j,k,l) = µ3(i,j−1,k,l)

µ4(i,j,k,l) = µ4(i,j−1,k,l)

8

1.1.8 Gap right K (i)

SgrK is the cost of extending an alignment with one single stranded nucleotide on the right side of the K

sequence.

SgrK(σ(i,j,k,l−1)) =

Rss(gap) if σ is a hairpin state,
− Lhp(µ3) + Lhp(µ3 + 1) σ(i,j,k,l) becomes a hairpin state.

Rss(gap) if σ is a stem state
+ Lbl(0) + Lbl(1) or an insert basepair state,

σ(i,j,k,l) becomes a bulge right state.
Rss(gap) if σ is a bulge left state,
− Lbl(µ1) − Lbl(µ3) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ1, 0) + Lil(µ3, 1)

Rss(gap) if σ is a bulge right state,
− Lbl(µ4) + Lbl(µ4 + 1) σ(i,j,k,l) becomes a bulge right state.

Rss(gap) if σ is an internal loop state,
− Lil(µ3, µ4) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ3, µ4 + 1)

Rss(gap) + Cmblnuc if σ is a left multibranch loop state,
σ(i,j,k,l) becomes a left multibranch
loop state.

Rss(gap) + Cmblnuc if σ is a right multibranch loop state,
σ(i,j,k,l) becomes a right multibranch
loop state.

If this case wins in equation (S1), the lengths are updated like this:

µ1(i,j,k,l) = µ1(i,j,k,l−1)

µ2(i,j,k,l) = µ2(i,j,k,l−1)

µ3(i,j,k,l) = µ3(i,j,k,l−1)

µ4(i,j,k,l) = µ4(i,j,k,l−1) + 1

9

1.1.9 Multibranched loops (j)

Join two alignments to get a multibranched structure. In equation S1 case (j) is only calculated when
σ(i,m,k,n) is a stem, basepair insert, bulge right, or a right multibranch loop state, and σ(m+1,j,n+1,l) is a
stem or a basepair insert state. σ(i,j,k,l) becomes a right multibranch loop state and the µi,j,k,l lengths
are set to zero if this case has the highest alignment score. Di,j,k,l is not used directly in this calculation.
It is always the external loop version D′

ij,kl which is used, see the External nucleotides section below.

1.1.10 External nucleotides

Single stranded nucleotides external to all basepairs must be scored like single stranded nucleotides in
multibranched loops. The score must therefore be recalculated when the alignment state is one of the
hairpin, bulge, or internal loop states. Furthermore, the cost for non-GC base pairs must also be added
in cases where the alignment state is one of the basepair states. This calculation does not affect the state
or the µ lengths of the alignment.

S′(σ(i,j,k,l)) =

(µ1 + µ3) × Cmblnuc − Lhp(µ1) − Lhp(µ3) if σ is a hairpin state.

CnGC(ni, nj) + CnGC(nk, nl) if σ is a stem or
a basepair insert state.

CnGC(ni+µ1
, nj) + CnGC(nk+µ3

, nl) if σ is a bulge left state.
+ (µ1 + µ3) × Cmblnuc − Lbl(µ1) − Lbl(µ3)

CnGC(ni, nj−µ2
) + CnGC(nk, nl−µ4

) if σ is a bulge right state.
+ (µ2 + µ4) × Cmblnuc − Lbl(µ2) − Lbl(µ4)

CnGC(ni+µ1
, nj−µ2

) + CnGC(nk+µ3
, nl−µ4

) if σ is an internal loop state.
+ (µ1 + µ2 + µ3 + µ4) × Cmblnuc

− Lil(µ1, µ2) − Lil(µ3, µ4)

0 if σ is a right or left
multibranch state

2 Implementation of the recursion

The changes to the dynamic programming method described here are not necessary for the use of the
pruning heuristic. The changes were only made as they ease the implementation of the foldalign

algorithm.
Traditionally recursions as the one in equation (S1) are implemented just as they are written. To

fill out the cell Di,j,k,l the scores of the cells Di+1,j−1,k+1,l−1, Di+1,j−1,k,l . . . are used. In the current
implementation a slightly different approach is used. Here an alignment score Di,j,k,l is expanded into the
alignment cells Di−1,j+1,k−1,l+1, Di−1,j+1,k,l See Figure S3 for an illustration. Rather than taking
the maximum of all the cases in equation (S1) at once the maximum must be taken every time a score has
been calculated. The reason for this trivial change to the dynamic programming is that the calculation of
part (j) of equation (S1) becomes simple to implement. The left part of the bifurcation structure is the
Di,j,k,l cell. The right part are all the cells which have start coordinates i′ = j + 1 and k′ = k + 1. The
implementation simply loops over any cell which starts with these coordinates and meets the constraints
(λ, δ, and bifurcation). The bifurcated alignments calculated this way all have the start coordinates (i, k),
but the lengths are different.

3 Memory implementation

In addition to making the algorithm much faster the pruning constraint makes it possible run the alignment
using much less memory. The bifurcation constraint is also used to lower the memory consumption.
The implementation as described below allows the foldalign algorithm to exploit the lower memory
requirements of the pruning heuristic. This is not the only possible way the dynamic programming matrix
can be implemented when the pruning heuristic is used. To use the heuristic in another method different
implementations should be considered.

10

A: j

i

B: j

i

Figure S3: Normal vs. Expanding dynamic programming. A two dimensional folding example of standard
vs. expanding dynamical programming matrices. i > j are the sequence coordinates. Case A: is the
standard case. The blue cell is filled using the green cells (adding a basepair, or a single stranded
nucleotide), and by joining two of the red cells (a bifurcation). Arrows have only been drawn for one
of the bifurcations. The grey cells are those which have already been filled. Case B: is the expanding
case. The blue cell is used to partially calculate the score of the green cells (adding a basepair or a
single stranded nucleotide). The yellow cells are the results of joining the blue cell and the red cells in
bifurcations. The dark grey cells are those which have already been completely filled. The light grey cells
are those where the calculation is not completely finished.

11

The pruning constraint saves memory since it is not necessary to store all the information about
alignments which have a score below the pruning threshold. The bifurcation constraint saves memory
by limiting the number of positions for which it is necessary to store all information about all non-
pruned alignments. The bifurcation constraint limits the alignments which must be stored for positions
i′ = {i + 2, ..., i + λ} to those where the first and the last nucleotides in the subalignment are basepaired
to each other. Subalignments where these positions do not basepair are not needed, and are therefore not
stored. The dynamic programming matrix is therefore split into two matrices. The short term memory
(STM) matrix and the long term memory (LTM) matrix.

The STM matrix stores the alignment score, state, and the four lengths (µ1, µ2, µ3, µ4, see section 1).
As described it is only necessary to hold values for positions i and i + 1. Therefore the complexity is
O(λ2δ) (O(λδ2) for global alignment). The way recursion is implemented the algorithm needs to write to
the memory in an unordered fashion due to the bifurcation calculation, see above. The STM matrix is
therefore implemented as a 3-dimensional random access array where the last dimension is allocated when
needed.

The LTM matrix potentially contains values for all allowed values of i. Therefore the complexity is
O(λ3δ) (O(λ2δ2) for global alignment). In this matrix it is only necessary to store the score. The state
and lengths are not needed, see the recursion section. The matrix is much more sparse than the STM
matrix. It is therefore implemented as a 2-dimensional matrix (i, k) with dimension O(λ2). Each cell in
this matrix holds a linked list. Each entry in the linked list holds a window size Wi = j − i and another
linked list. The final linked list holds the window size from the other sequence Wk = l − k, and the
alignment score. Both types of linked list are sorted by the window size.

12

