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The spatio-temporal evolution of the concentration profiles of a push-pull network where the activating enzyme is located at one pole of the cell, while the deactivating enzyme freely diffuses through the cytoplasm, is given by Eqs. 9-14 of the main text. To derive the spatio-temporal evolution of 
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 as given by Eqs. 15-17 of the main text, we have to make the assumptions that the formation of the enzyme-substrate complexes is fast and that the diffusion term for 
[image: image2.wmf]d

[EX]

*

 in Eq. 14 can be neglected. The steady-state solutions of Eqs. 12 and 14 can then be combined with Eq. 9 to yield Eq. 15 of the main text. We now discuss the steady-state solution of Eq. 15 in the limits of weak-activation and strong-activation separately. 

Weak activation  

In the limit that 
[image: image3.wmf]aTdT

[E][E]

=

, the diffusion term in Eq. 14 of the main text will be small compared to the other terms in steady-state. Combining the steady-state solution of that equation with those of Eqs. 9 and 12 of the main text, yields the following equation for 
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 in steady state: 
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In the limit that 
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 will be large and 
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 will be small. In this limit, the above equation reduces to 
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This equation can be solved with the boundary conditions 
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where 
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 is the length of the cell. Defining the effective deactivation rate of 
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 and the characteristic decay length of 
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, then, if 
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, the solution of the above equation is 
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This equation predicts that the total amount of 
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 in the whole cell is independent of the diffusion constant 
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. This equation holds only in the limit that the diffusion term for 
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 in Eq. 14 of the main text can be neglected and if the deactivating enzyme 
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 is unsaturated, meaning that the total deactivation rate 
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 is proportional to the concentration of 
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. These assumptions are only accurate when 
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As 
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 increases, and close to the pole where the activating enzyme resides, the deactivating enzyme does become saturated with 
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. This lowers the deactivation rate per particle, which in turn increases the concentration of 
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 with respect to that in a system where both enzymes are uniformly distributed in space. 

The significance of the diffusion term for 
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 impedes an analytical derivation of 
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 is large, 
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 is essentially constant and independent of the diffusion constant. Under this condition we can prove that the total amount of 
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 must decrease with increasing diffusion constant, implying that in this regime the uniform network will actually respond weaker than the spatially non-uniform network. Integrating Eq. 14 over the length of the cell reveals that in steady state 
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. Combining Eq. 9 and Eq. 14 reveals that in steady state 
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. Hence, in steady state 
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, where 
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 is a constant. This means that if 
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 is independent of the diffusion constant, also 
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 must be independent of the diffusion constant. Now, when the diffusion constant decreases, the profiles 
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 vary more strongly in space and become less overlapping, as Figs. 5a and 5c show. The decrease in overlap between 
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. To compensate for this, the total amount of 
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 must increase with decreasing diffusion constant, when 
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 is constant.  

Strong activation 

Combining Eq. 9 with Eq. 14 yields, in steady state: 
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This equation for the steady-state concentration profile of 
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 is exact. Nevertheless, the diffusion term for 
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 impedes a transparant analytical solution. However, if 
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 is not too low, then essentially all of the deactivating enzyme is saturated, and 
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 (see Fig.5e of main text). Moreover, combining Eqs. 13 and 14 of the main text reveals that 
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 is constant in space, if, as assumed here, the diffusion constants of the enzyme 
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, are the same. Hence, in the limit that 
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 is saturated, the second term on the right-hand side of the above equation is zero, the third term is constant, and the equation reduces to 
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This equation can be solved with the boundary conditions in Eq. 4 with 
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. The solution is 
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where 
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, obtained from the solution of Eq. 7 in the domain 
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, obtained from the boundary condition at 
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 can be obtained from the boundary condition at 
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. First, we note that the total substrate concentration in the cytoplasm, 
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, is constant in space, because the diffusion constants of all the diffusing components are equal. Hence, the total substrate concentration in the whole cell is 
[image: image73.wmf]TcaTadT

[S][S][EX][S][X]()[EX][X]()[E]

LxLx

*

º+/==+/++

 (where we have used that 
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 can be obtained by solving Eq. 12 of the main text in steady state, which gives 
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. Combining these expressions with the boundary condition at 
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