
Supplementary methods

Sequence model and objective function

Assume the profiled TF binds a sequence-set X containing n DNA sequences X1 to Xn. We

model the possibility of each sequence Xi having exactly one or no binding site. Let Z be a

vector of length n denoting the starting location of the binding site in each sequence: Zi = j

if there is a binding site starting at location j in Xi and we adopt the convention that Zi = 0

if there is no binding site in Xi. We assume that the TF motif can be modeled as a PSSM

of length W parameterized by φ while the rest of the sequence follows some background model

parameterized by φ0. The PSSM can be described by a matrix φ where φa,b is the probability

of finding base b at location a within the binding site for 1 ≤ b ≤ 4 and 1 ≤ a ≤ W .

Thus if the sequence Xi is of length li, and Xi contains a binding site at location Zi, we can

compute the probability of the sequence given the model parameters as:

P (Xi | φ, Zi > 0,φ0) = P (Xi,1, . . . Xi,Zi−1 | φ0)×

(
W∏

a=1

φa,Xi,Zi+a−1

)
× P (Xi,Zi+W , . . . Xi,mi

| φ0)

and if it instead does not contain a binding site as:

P (Xi | φ, Zi = 0,φ0) = P (Xi,1, Xi,2 . . . Xi,mi
| φ0)

We wish to find φ and Z that maximize the joint posterior distribution of all the unknowns

given the data. Assuming priors P (φ) and P (Z) over φ and Z respectively, our objective function

is:

arg max
φ,Z

P (φ,Z | X,φ0) = arg max
φ,Z

P (X | φ,Z, φ0)P (φ)P (Z) (1)

Optimization strategy and scoring scheme

As others before us have done, we use Gibbs sampling to sample repeatedly from the posterior

over φ and Z with the hope that we are likely to visit those values of φ and Z with the highest

posterior probability. Gibbs sampling is a Markov chain Monte Carlo (MCMC) method that

approximates sampling from a joint posterior distribution by sampling iteratively from individual
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conditional distributions [1]. Applying the collapsed Gibbs sampling strategy developed by Liu

[2] for faster convergence, we can integrate out φ and sample only the Zi. This results in the

following expression for sampling Zi from its conditional distribution assuming the prior on Z

to be independent of the PSSM parameters φ:

P (Zi | Z[−i],X,φ0) =
P (Z | X,φ0)

P (Z[−i] | X,φ0)
=

P (Z)
∫
φ

P (X | φ,Z,φ0)P (φ)dφ

P (Z[−i])
∫
φ

P (X | φ,Z[−i],φ0)P (φ)dφ

where Z[−i] is the vector Z without Zi. Proceeding analogously to the derivation of Liu [2], we

compute the integrals using a Dirichlet prior on φ. We further simplify the sampling expression

by dividing it by P (Zi = 0,Xi | φ0) which is a constant at a particular sampling step. This

results in the following sampling distribution for a particular location j within sequence Xi,

similar to the predictive update formula as described in Liu et al. [3]:

P (Zi = j | Z[−i],X,φ0) =
P (Zi = j)×

(
W∏

a=1
φa,Xi,j+a−1

)
P (Zi = 0)× P (Xi,j , . . . , Xi,j+W−1 | φ0)

(2)

for 1 ≤ j ≤ li −W + 1, and

P (Zi = j | X,φ0) = 1 (3)

for j = 0, where φ is calculated from the counts of the sites contributing to the current alignment

Z[−i], plus the pseudocounts as determined by the Dirichlet prior. More details are provided

in Narlikar et al. [4].

The joint posterior distribution after each iteration can be calculated as:

P (φ,Z | X,φ0) ∝ P (X | φ,Z,φ0)× P (φ)× P (Z) (4)

To simplify the computation, we divide the above expression by P (X | Z = 0,φ0) which is a

constant, and use the logarithm of the resulting value as a score for the motif.

To maximize the objective function and hence the score, we run the Gibbs sampler 10 times

from random initializations for a predetermined number of iterations each (10000 in the results

presented here) after apparent convergence to the joint posterior and output the highest scoring

PSSM at the end. We report only a single motif φ to enable us to evaluate the algorithm and

compare it with other popular methods. In principle, however, since we are using an MCMC
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sampling method, we could instead perform Bayesian model averaging over many samples from

the posterior and report a mean motif (or multiple motifs if there are multiple modes in the

distribution).

Inter-motif distance

We calculate the inter-motif distance between the learned motif and the literature consensus

based on distance metric constructed by Harbison et al. [5]. They define the distance D between

two aligned motifs φ and φ′ as:

D(φ, φ′) =
1
ω

ω∑
i=1

1√
2

∑
L∈{ACGT}

(φi,L − φ′i,L)2

where ω is the aligned motif width, and φ and φ′ are parameters of two PSSMs.

To determine the optimal alignment between two motifs, we use the minimum distance be-

tween motifs among all possible alignments (including reverse complements) in which the motifs

overlap by at least six bases. If the smaller motif is shorter than six bases, we ensure that all

bases of the smaller motif are used in the optimal alignment. We include an additional constraint

that the average entropy of the learned motif must be at least 1 in the overlapping region. We

noticed that without this entropy constraint, low entropy motifs or motifs with a mismatch at

important nucleotide bases were incorrectly labeled as true motifs.

In general, we use a distance cutoff of 0.25 to declare whether a motif learned from a particular

sequence-set matches the literature consensus or not. However, in cases where a TF has multi-

ple sequence-sets arising from ChIP-chip experiments performed under different environmental

conditions, we also allow a motif to be declared a match if it satisfies all three of the following

conditions: (1) its distance to the literature consensus is less than 0.30, (2) its distance to all of

the other learned motifs for the same TF in the other environmental conditions is less than 0.15,

and (3) the distance of the literature consensus to all of the other learned motifs for the same

TF in the other environmental conditions is less than 0.25 (i.e., all the other motifs are matches

under the original distance criterion). This second criterion was added after we noticed that in

rare instances, motifs of the same TF arising from different environmental conditions would be

nearly identical to one another, but one would just miss the 0.25 cutoff while the others would

all make it.
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Although increasing or decreasing the distance cutoff of 0.25 correspondingly changes the

number of motifs called correct, the general trend of the total number of correctly learned motifs

across all programs (both PRIORITY-based and other state-of-the-art programs) remains the

same, so the relative results are generally insensitive to a range of reasonable choices for this

cutoff. We acknowledge that our distance function is imperfect and probably not as accurate as

visual inspection in determining whether two motifs match, but we chose an automated method

in order to reduce the possibility of introducing subjective bias into our results.

Motifs derived from literature

We used the set of literature consensus sequences which were compiled from Transfac, YPD,

or SCPD by Harbison et al. prior to the publication of their ChIP-chip data. We further

supplemented the set with binding site information reported by Dorrington and Cooper [6] and

Jia et al. [7] for two TFs Dal82 and Rtg1, respectively.

We converted the consensus sequences into PSSM motifs by using the base at each position

in the same manner as Harbison et al.:

• At a consensus position, we assigned the particular base a probability of 0.964, with 0.012

being assigned to each of the other three possibilities.

• At a degenerate position with two possible base values, we assigned those bases a probability

of 0.488 each, and 0.012 for the other two.

• At a position where we had an ‘N’, we assigned an equal probability of 0.25 for each base.

The genome

We used the March 2006 genome when computing the nucleosome occupancy predictions using

the model from Segal et al. [8] The probes used by Harbison et al. are based on an older version

of the genome (2004). We therefore took into account the changes from the older version to the

2006 version, and translated the probe coordinates accordingly to get the bound sequence-sets

from the 2006 genome. We notice the FASTA files of the sequence-sets do not change much;

indeed, most remain exactly the same.
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Nucleosome-guided map of TF binding sites

Using our 86 high-confidence motifs (14 newly predicted and 72 that match literature consensus),

we scan the sequences in each of the corresponding 86 sequence-sets. A site is considered to be

a binding site if its probability under the respective PSSM is at least half the maximum possible

probability under that PSSM. We compile these predictions into ten tracks corresponding to

the ten environmental conditions from which the 86 sequence-sets were derived. In addition, we

also produce an eleventh track that integrates the binding site information across all conditions.

These eleven tracks are available as GFF files.
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