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We derive analytical approximations for the expected
waiting time for a cell with k mutations to appear. We
consider the Wright-Fisher process for constant popula-
tion size: we define the model in Section I, in Section II
we present a simple argument which works only for weak
selection, then in Section III we develop an approxima-
tion for strong selection. Finally in Section IV growing
cell populations are investigated.

I. WRIGHT-FISHER PROCESS

Consider a population with a constant number N of
cells. In every cell division mutations occur at rate u
per locus. Each cell has d susceptible loci, and a muta-
tion at each locus increases fitness by the same amount
s. Thus, when j of the loci are mutated, the fitness of
the cell is proportional to (1 + s)j . Let Nj = Nj(t) be
the number of cells with j mutations out of the d sus-
ceptible loci at time t, and xj = Nj/N be their relative
frequency. We assume that the system evolves accord-
ing to the Wright-Fisher model [1], where cells evolve
in non-overlapping generations, and each cell indepen-
dently chooses a parent cell from the previous generation
with a probability proportional to the fitness of the par-
ent. Each cell becomes identical to its parent apart from
mutations which occur with probability u at each un-
mutated gene location. Consequently the probability of
a configuration [N0(t + 1), . . . , Nd(t + 1)] is given by the
multinomial distribution

N !
N0(t)! · · ·Nd(t)!

d∏
j=0

θ
Nj(t)
j (1)

with parameters

θj =
j∑

i=0

(
d− i

j − i

)
uj−i(1− u)d−j (1 + s)ixi∑

`(1 + s)`x`
. (2)

The parameter θj is the probability that a cell in the next
generation will have j mutations. If the mutation rate is
small u � 1 we can neglect multiple mutations, and θj

simplifies to

θj =
(1 + s)jxj∑
`(1 + s)`x`

+ u(d− j + 1)
(1 + s)j−1xj−1∑

`(1 + s)`x`
.

The first term is the probability to produce an additional
cell of type j without mutation, while the second term
is the probability that a cell of type j − 1 mutates and
produces a cell of type j. In the simulations we did not
need to use this approximation.

II. DETERMINISTIC APPROACH

In the large N limit we may try to neglect stochastic
fluctuations in order to obtain a deterministic equation
[1]. We also assume that u and s are small, hence we only
keep their leading order behavior. Considering xj(t) as
a continuous variable in time we arrive at a system of
ordinary differential equations

ẋj = u [(d− j + 1)xj−1 − (d− j)xj ] + sxj(j − 〈j〉) (3)

where the dot represents the time derivative, and 〈j〉 is
the average number of mutant loci at a given time,

〈j〉 =
∑

i

i xi(t). (4)

The terms on the right hand side of (3) are easy to in-
terpret. The first (gain) term describes cells with j − 1
mutations becoming cells with j mutations by acquiring
a new mutation at one of the (d − j + 1) possible loci.
The second (loss) term similarly accounts for cells with
j mutations undergoing a new mutation at one of the
(d− j) possible loci. The last term describes the effect of
fitness, where each sub-population grows with a rate of
their fitness advantage compared to the average fitness.
Note also that densities remain normalized

∑
j xj = 1

due to the 〈j〉 term.
We are interested in the time until the first cell with

k mutations appears, i.e., until xk = 1/N . If k � d, the
number of available mutations is approximately d, and
we have

ẋj = ud(xj−1 − xj) + sxj(j − 〈j〉), (5)

a somewhat simpler system of coupled first order differ-
ential equations. The full solution is the Poisson distri-
bution with the time dependent parameter λ = λ(t),

xj =
λje−λ

j!
, λ =

ud

s
(est − 1). (6)

This solution can be easily verified by substituting it back
into (5). This solution describes a distribution with equal
mean position and variance

〈j〉 = var j = λ, (7)

both growing exponentially in time for generic parameter
values.

This behavior, however, is not supported by simula-
tions, where we observe a traveling wave solution with
constant speed and constant width (see Fig.1). The rea-
son for the failure of this replicator description is the
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following. The deterministic equation produces all types
of mutants instantaneously, which then start to multiply,
especially the ones with many mutations. This makes
the distribution over j (or over t) much wider then in
the simulations. In other words, N0 is large enough for
the deterministic equation to predict N1 correctly, but
then N1 is relatively small when the first cell with j = 2
mutations arrives. Hence the fluctuations cannot be ne-
glected, and the deterministic description fails to predict
N2 correctly.

Note, however, that without selection, i.e. for s → 0
and λ → udt, equation (6) becomes a good approxima-
tion. In this case, the time tk to reach a k-fold mutant
can be expressed from the condition xk(tk) = 1/N , as

tk =
−k

ud
W

[
− k!1/k

kN1/k

]
for s → 0, (8)

where the Lambert W function is the inverse function of
f(x) = xex [2]. For example for N = 109 and ud = 10−5

it gives t20 ≈ 3.5× 105, while simulations result in t20 ≈
5.6× 105. For positive selection s > 0, however, we need
to develop an alternative approximation, which we do in
the next section.

III. WAVE-LIKE SOLUTION

Inspired by simulation results, we now develop a bet-
ter approximation for the waiting time tk. We decouple
the evolution due to selection from the evolution due to
mutation. We model the selection part as a deterministic
process, but treat mutations stochastically.

First we consider only selection. For cell types already
present in the system, we neglect the effect of mutation
in the time evolution, since usually s � ud. Then the
governing equation (3) simplifies to

ẋj = sxj(j − 〈j〉), (9)

where we extend the range of j to all integers. This
equation has a Gaussian traveling wave solution

xj = A exp
[
− (j − vt)2

2σ2

]
, (10)

with constant speed v, and constant width σ. A contin-
uously varying j would imply a normalization constant
A = 1/

√
2πσ2, and we use this value here as an approxi-

mation. Substituting solution (10) back into (9) yields a
simple relationship between the speed and the width of
the traveling wave of mutants,

v = sσ2. (11)

Now we have to consider the mutations which we have
neglected so far. Notice that if we introduce each new
type of mutant one after the other at a given speed, we
also obtain (after some transient time) the solution (10)
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FIG. 1: Simulation results for the distribution of cells with
given number of mutated genes at fixed times. The data can
be very well approximated by a Gaussian wave traveling at
constant speed to the right. The parameters of this simulation
were N = 109, s = 0.01, µ = 10−7, d = 100, and generation
time of one day.

with the width given by (11). Simulations of the Wright-
Fisher process support that xj(t) is a Gaussian (after an
initial transient phase), that it has a constant width (see
Fig. 1), and that the relationship (11) between the width
and the speed holds.

Let us now derive an approximate expression for the
speed v of the mutant wave in the stationary state. We
need to know the average time τ at which the first new
cell with j + 1 mutations appears after the birth of the
first cell with j mutations. We assume that 〈j〉 does not
change during this short time, and define the constant
γ = j − 〈j〉. From (9) the density xj initially grows
exponentially in time [3],

xj(t) =
1
N

esγt, (12)

where we also set xj(0) = 1/N , as we start from a single
mutant. We approximate the time τ as the time until,
on average, one mutant is produced [4],

Nud

∫ τ

0

xj(t)dt = ud

∫ τ

0

esγtdt =
ud

sγ
(esγτ − 1) = 1 ,

which leads to the speed of the mutant wave

v =
1
τ

=
sγ

log
(
1 +

sγ

ud

) ≈ sγ

log
sγ

ud

. (13)

As γ is typically of order one in our simulations, we as-
sumed here that sγ � ud is also true in the s � ud
limit.
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FIG. 2: Expected waiting time for a cell with 20 mutantions, t20, as a function of (a) the population size N , (b) the selective
advantage s per mutation, and (c) the per-locus mutation rate u. The circles are the results of 100 independent simulations at
each parameter set. We always assumed d = 100 sensitive loci, and set N = 109 in (b) and (c), s = 0.01 in (a) and (c), and
u = 10−7 in (a) and (b). The solid curves correspond to the analytic approximation (17).

Next, we determine γ. Since vt = 〈j〉, at the moment
when there is exactly one j cell, we have from (10) that

1√
2πσ2

exp
(
− γ2

2σ2

)
=

1
N

(14)

and hence

γ =
√

2σ

√
log

N√
2πσ2

≈
√

2σ
√

log N =

√
2v

s
log N .

As σ is of order one, here we neglected log
√

2πσ2 next to
log N , and we also used (11) in the last step. Substituting
γ into expression (13) for the speed we obtain

v =
2s log N[

log

(
s

ud

√
2v

s
log N

)]2 . (15)

In the denominator we still have v inside the logarithm,
which we approximate by the leading behavior v ≈ s to
arrive at

v ≈ 2s log N(
log

s

ud
+

1
2

log log N2

)2 ≈
2s log N(
log

s

ud

)2 , (16)

where we also neglected the double logarithm term in the
last step. This is our final formula for the speed of the
wave. Using this expression for the speed we approximate
the expected waiting time for the first k-fold mutant cell
to appear as

tk ≈
k

v
≈ k

(
log

s

ud

)2

2s log N
(17)

In Figure 2, the dependence of tk, for k = 20, on N ,
s, and u is analyzed by simulations of the Wright-Fisher
model. The simple analytic argument given here leads
to the appealing expression (17) for the expected waiting
time, which is in good qualitative agreement with the
simulation results for the Wright-Fisher process.

IV. GROWING POPULATION

Let us now study a population which grows exponen-
tially from an initial size Ninit to a final size Nfin during
the evolution, that is N(t) = Ninite

bt, where b is chosen
such that N(tk) = Nfin. For the relative frequencies xj ,
equation (10) is still valid, but the speed of the wave is no
longer constant. Since the speed depends logarithmically
on system size [see (16)], it grows linearly in time

v(t) = a log N(t) = a(bt + log Ninit) (18)

where a = 2s/[log(s/ud)]2 is a constant. Hence the time
at which the wave front reaches k mutations is given by

k =
∫ tk

0

v(τ)dτ = atk
log Ninit + log Nfin

2
(19)

which leads to

tk ≈ k

(
log

s

ud

)2

s log NinitNfin
(20)

for the waiting time for the k-fold mutant to appear.
Note that this is also the waiting time in a constant
population (17) with an effective population size Ne =√

NinitNfin. Effective population sizes are frequently used
in exponentially growing populations evolving according
to the Wright-Fisher model [5].
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FIG. 3: Expected waiting time for a cell with k = 20 muta-
tions, t20, as a function of selection strength s, in a population
which grows exponentially from size 106 to 109. The circles
are simulation results of 100 runs for each s value, with mu-
tation rate u = 10−7 and d = 100. The solid curve is our
analytical approximation (20).

In Figure 3 we compare the above formula to simula-
tion results for a growing population. We conclude that
our approximation works remarkably well also for grow-
ing populations.
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