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Supporting Information

Mathematical Properties of the DDa+PA model of PIN evolution.

We introduce a more rigorous terminology for the mixture models to PIN evolution presented in Materials and

Methods, and show in particular that (1) DDa may explain any protein network topology and (2) computing the

likelihood of a PIN generated by DDa is computationally infeasible. Here we focus on the evolution process only

and do not consider the sampling component of our model that account for incompleteness in observed PINs.

Let G =
(
V,E

)
denote a graph with node set V and edge set E, where e ∈ E if there are nodes u, v ∈ V such

that e is a link between u and v. We always take G to be undirected without multiple edges, self-loops and labelled.

Definition S.1 A randomly growing graph is a Markov chain
{
Gt

}∞
t=t0

such that Gt is a subset of the nodes of Gt+1.

Denote the transition probability from Gt to Gt+1 by P (Gt+1|Gt) and consider the transition kernel P := P (·|·).

A randomly growing graph together with a stopping rule T defines an evolution graph
{
Gt

}T

t=t0
. Equivalently, a

transition kernel, an initial graph and a stopping rule uniquely define an evolution graph.

Note that the above definition readily implies that only one node be added per time. Since graphs are labelled,

the last node added in Gt is uniquely determined. Here we consider deterministic stopping rules only. In this text

we focus on the transition kernel P that corresponds to evolution dynamics. It is straighforward to determine the

transition probabilities for the mixture model presented in the main text; recall in particular that the node u for

duplication is chosen uniformly. Denote the growth parameters of this mechanism by θ =
(
δDiv, δAtt,α

)
.

Lemma S.2 Given Gt and Gt+1, assume that node u is the parent of the new node v in Gt+1. We have that

P (Gt+1|Gt, u, θ) = αPA(u, v) + (1− α)DDa(u, v, δDiv, δAtt) (S.10)

where PA(u, v) := 111
(
e(u, v) = 1 ∧ d(v) = 1

)
,

DDa(u, v, δDiv, δAtt) := C
[
δe(u,v)
Att (1− δAtt)1−e(u,v)

]([
1− δDiv

]2N11(u,v)[
δDiv(1− δDiv)

]N10(u,v)
)
,

e(u, v) is 1 if there is an edge between u and v and 0 otherwise, d(v) denotes the degree of node v, N11(u, v) :=

#N(u) ∩ N(v) and N10(u, v) := #N(u) ∪ N(v) − #N(u) ∩ N(v) − e(u, v). The constant C of normalization is

(1− δDiv
2)N11(uv)+N10(u,v).

Proof: Suppose that x in Gt duplicated and diverged to the nodes u and v in Gt+1. Let N(x) be the set of nodes

in Gt that are adjacent to x, and denote for all u,v the set numbers M11(u, v) := #
{
y ∈ N(x)

∣∣y ∈ N(u)∧y ∈ N(v)
}
,

M01(u, v) := #
{
y ∈ N(x)

∣∣y /∈ N(u) ∧ y ∈ N(v)
}

and M10(uv) := #
{
y ∈ N(x)

∣∣y ∈ N(u) ∧ y /∈ N(v)
}
. Since edges

duplicate and diverge uniformly and independently, the transition probability of duplication-divergence discarding

links between the parent and child is proportional to

[
(1− δDiv)(1− δDiv)

]M11(u,v)[
δDiv(1− δDiv)

]M01(u,v)[(1− δDiv)δDiv
]M10(u,v)

.
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If we denote N11(u, v) and N10(u, v) as above, then the above expression simplifies to

[
1− δDiv)

]2N11(u,v)[
δDiv(1− δDiv)

]N10(u,v)
,

and (S.10) follows easily.

Corollary S.3 The transition probability from Gt to Gt+1 given the set θ of growth parameters is

P (Gt+1|Gt, θ) =
1
t

∑

u

P (Gt+1|Gt, u, θ). (S.11)

If not stated otherwise, the (standard) mixture model in this article is the evolution graph with transition proba-

bilities (S.11), initial graph G0 that connects two nodes with one link and stopping time T &∞. For H. pylori and

P. falciparum, we take T = 1500 and T = 5300 respectively.

Definition S.4 For a graph Gt and a node v in Gt, denote Gt where node v is removed by Gt(−v). v is said to be

removable if P
(
Gt

∣∣Gt(−v), θ
)

> 0 for some θ. If Gt contains removable nodes, then it is called reducible, otherwise

irreducible. An evolution graph is reducible, if P (Gt|G1) > 0 for some θ and any graph Gt, where G1 is the graph

consisting of one node.

Lemma S.5 Consider the transition kernel P of the mixture model. For any nontrivial graph Gt and a node v of

Gt

P
(
Gt

∣∣Gt(−v)
)

> 0,

where we set δAtt and δDiv different from 0, 1 and α < 0.

Proof: Since P does not produce a graph with nodes of degree 0, we may choose a node w (= v in Gt. If Gt

contains only v and w, then there must be an edge between them and clearly p
(
G2

∣∣G1, v, θ
)

= 1− δAtt > 0. Let us

now assume that Gt contains more than two nodes. Consider N := N(v)∪N(w) \ {v, w}. Then, we may construct

Gt(−v) as the graph that results after replacing v,w and N(v),N(w) with its common ancestor u,N .

Applying Lemma S.5 repeatedly, gives the following Corollary.

Corollary S.6 The mixture model is reducible.

Corollary S.6 guarantees that the the mixture model can explain any graph G topologically. In particular, Lemma

S.5 is based on properties of DDa, and hence a fortiori DDa can explain any graph topologically. It also shows that

every node is removable and hence there are T ! ways to reduce any graph Gt with DDa. This is significantly less

for the transition kernel presented in [19], making the inference scheme therein computationally feasible.
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Summarizing aspects of PINs
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Figure S.1: The PIN data sets generated by process (1) were dominated by stochastic effects. 1000 networks to H.

pylori (grown to 1500 nodes and subsampled to 675) are generated with the parameter θ = (0.32, 0.02, 0.15), and

the squared errors between each summary and the mean summary are recorded. The frequency of cases such that

the squared error is greater than values on the abscissa is plotted for WR, ND, PL, ND and TRIA. In 20% of all

cases, the squared error in TRIA is greater than 1000, while in all cases the squared error in ND is not larger than

1. Except for ND, large deviations are likely for all summaries, reflecting that stochastic effects dominate network

summaries.
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Figure S.2: Different parameters of model (1) leave dis-

tinguishable imprints on simulated PINs. We compared

WR and NDfor α = 0, 0.2, 1 to the observed summaries

of H. pylori (grey) by simulating 50 networks to H. py-

lori (grown to the number of open-reading frames, 1500,

and subsampled to the observed network order, 675)

with θ = (0.24, 0.04,α) for varying α. For each within-

distance d and each node degree k the interquantile

range of p(wr ≤ d) and p(k) for the 50 generated net-

works was drawn. (a) The interquantile ranges of WR

for PINs generated by different parameters were clearly

distinct, and the mixture model with α = 0.2 visually

improved fit relative to DDa and PA. (b) On the same

scale, the interquantile ranges of ND largely overlapped,

indicating that ND might have significantly less power

than WR to distinguish between different parameters.

(c) On the log scale for p(k), the interquantile ranges of

ND generated by different parameters were again distin-

guishable, suggesting that the use of different distance

metrics might play an important role in inference on

protein network data.
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B= 5
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B= 50
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Figure S.3: Mean summaries over larger ensembles of B simulated PIN data sets have reduced variance, as

exemplified here with DIAM. We computed the mean summary (red points) from B = 200, 50, 5 networks to H.

pylori (grown to 1500 nodes with θ = (0.28, 0.03, 0.21) and subsampled to 675 nodes). In each computation, the 50

networks were randomly chosen from the 200 networks and then the 5 networks randomly from the 50 networks.

This procedure was repeated 100 times, and we report the density of the distance of the mean simulated DIAM to

the observed DIAM for B = 200, 50, 5. The average of these errors (vertical red line) and the range of one standard

deviation (blue) are added. Clearly, the variance of the mean DIAM shrinks with increasing B, and similarly for

all other summaries (not shown) with
√

B according to the Central Limit Theorem (not shown).
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Figure S.4: To compare the variability of the mean posterior summaries of H. pylori, we studied the density of

standardized variation cv(θ), described in Materials and Methods, on the grid θ ∈ [0.1, 0.7] × [0, 0.5] × [0.1, 0.6]

in steps of 0.025. Computations were based on summaries taken from 1000 simulated PINs to H. pylori (grown

to 1500 nodes and subsampled to 675). We plot the marginal cv(α) against α for (a) summary statistics and (b)

summary distributions. cv complements the information given by smd in Figure 1 to characterize the sensitivity

and variability of the summary statistics. TRIA, FRAG and CC are extremely variable, offsetting their high

standardized mean derivatives. ND is almost invariant to random fluctuations and to different parameters. Results

for the other two parameters are very similar (not shown).
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Figure S.5: Many proteins are missing in PINs, and, ideally, summaries should be robust under increasing in-

completeness. For a given parameter θ, we compared the curvature of decay of ND with those of PL and TRIA

under decreasing ρ. The interquantile range and mean summaries for PL, ND and TRIA are displayed (in blue) as

a function of decreasing sampling fraction ρ. Computations were based on 250 networks to P. falciparum (grown

to 5300 nodes with θ = (0.32, 0.04, 0.05), and subsampled according to ρ). The green dashed line corresponds to

proportional decay relative to the sampling fraction and is computed as follows. Denote the observed sampling

fraction of the P. falciparum PIN data set with ρD = 0.24, and a mean simulated summary to an ensemble of

simulated PINs at sampling fraction ρ with Sθ,ρ. Given another sampling fraction ρ′, the slope of the green dashed

line is
(
Sθ,ρD −

ρ′

ρD
Sθ,ρD

)
/
(
ρD − ρ′

)
. We considered ρ′ = 0.22; the intercept is computed analogously. Apart from

CC, all other summaries were distorted under decreasing ρ. While ND decreased linear to the sampling fraction,

PL decreased sublinearily and TRIA superlinearily. This indicates that at low sampling fraction, global aspects of

PINs are much less distorted than motif counts in biological network data.
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Network Summaries avg. acc. prob. GR(δDivδDivδDiv) GR(δAttδAttδAtt) GR(ααα)

ND 0.15 1.00 1.01 1.00

WR+DIA+CC+
0.02 1.00 1.00 1.00

ND+FRAG

WR+ND+
0.06 1.01 1.01 1.00

CC+FRAG

ND+PL+
0.03 1.00 1.01 1.01

DIA+CC+FRAG

Table S.1: Convergence analysis of LFI on the H. pylori PIN data set. For each set of summaries, the average

empirical acceptance probabilities and the GR-statistics are reported for each evolution parameter; see text in the

Supporting Information. All runs converge well as indicated by the GR-statistic, and the empirical acceptance

probabilities are between [0.02, 0.15] to facilitate cross-comparison.

Convergence analysis of likelihood-free inference.

MCMC is guaranteed to converge in distribution to the posterior under some regularity conditions. The MCMC

output may be directly used to determine the burn-in period, at which the Markov chain has not yet converged.

After burn-in, MCMC continues and is taken to sample from the posterior. Such analysis is particularly important

for likelihood-free inference within MCMC, because of (i) the nontrivial choice of ε in combination with the set of

summaries S and (ii) the nature of the ABC algorithm.

Suppose we start many Markov chains at overdispersed initial parameter values. A standard technique to detect

that all chains have not yet converged is to compare the variance within one chain against the variance between all

chains [41]: if this ratio exceeds 1.2, then convergence is usually rejected. In this case we argue that the independent

chains have not explored the state space sufficiently well, and must run longer.

Tables S.1 and S.2 document the empirical acceptance probabilities and the Gelman-Rubin test for all Markov

chain runs presented in the main text. MCMC output is taken to represent posterior samples after 800 iterations

if the Gelman-Rubin statistic does not exceed 1.2. This criterion ensures that posterior samples are taken after

tempering the MCMC chains.
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Incompleteness avg. acc. prob. GR(δDivδDivδDiv) GR(δAttδAttδAtt) GR(ααα)

1271/5300 0.04 1.00 1.00 1.00

900/5300 0.03 1.00 1.03 1.02

600/5300 0.02 1.08 1.03 1.06

Table S.2: Convergence analysis of LFI on the P. falciparum PIN data set. For PIN data sets of increasing

incompleteness, we report the average empirical acceptance probabilities and the GR-statistic for the evolution

parameters; see text in the Supporting Information. LFI with ρ ≥ 0.17 (900/5300) converged very well as indicated

by the GR-statistic. With increasing ρ, LFI converged less well.
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Preliminary Tests of LFI on simulated protein networks

Accuracy PIN test data sets were generated based on model (1) with the parameter θ = (0.4, 0.3, 0.3). To

simulate incompleteness, we grew the PIN test data sets to 120 proteins and retained a subgraph of 100 proteins.

For each test, 4 independent PIN test data sets were generated in this way. We believe that the performed tests

were demanding because the protein test networks are (1) very small and (2) highly variable so that characteristics

genuine to the evolution mechanism and yet common to all networks are highly diluted. Then we applied the

LFI scheme detailed in Materials and Methods, with each Markov chain using a different PIN test data set. We

tried a number of different sets of network summaries and studied the accuracy in re-estimating θ. LFI based

on WR+DIA+CC+ND+FRAG was particularly successful. For example, Figure S.7 compares how accurately

LFI based on WR+DIA+CC+ND+FRAG and LFI based on ND re-estimate θ in terms of 2D-histograms of the

posterior of θ.

Sensitivity For a number of different summaries, we also studied if LFI is sensitive to changes in the evolution

model. Similar as above, we generated PIN test data sets according to DDa or PA with the parameters θ =

(0.4, 0.3, 0), and θ = (0.4, 0.3, 1) respectively. LFI based on WR+DIA+CC+ND+FRAG may distinguish between

DDa and PA. Figure S.6 possibly illustrates best that the mixture parameter α is in favor of the correct model

(orange), and that the marginal posterior of α separate clearly. Similar results were obtained for other tests based

on 4 or more network summaries (data not shown).

In summary, our method correctly predicted the true model parameter with accuracy, converged quickly and

clearly distinguished between different evolution mechanisms only when 4 or more different summaries with non-zero

gradient and moderate variation were used. Notably, ND alone could not re-estimate the true model parameters

confidently, while the set of summaries composed of WR+DIA+CC+ND+FRAG performed very well relative to

other combinations. We could not reproduce similar results without either tempering or smoothing.

(a)

DDa

(b)

PA

Figure S.6: Violin plot of the marginal posterior of α for LFI based on

WR+DIA+CC+ND+FRAG on PIN test data sets. (left) The PIN test data

sets were generated by θ = (0.4, 0.3, 0). (right) The PIN test data sets were gen-

erated by θ = (0.4, 0.3, 1). In both cases, the re-estimated marginal posterior of

α is in favor of the correct model (orange lines), and the bulk of the marginal

posteriors are clearly separated.
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Figure S.7: LFI to re-estimate the parameter from 4 randomly created test PINs generated with θ = (0.4, 0.3, 0.3) as

described in the Supplementary Information. (a,c,e) 2D-histograms of the posterior parameters with LFI based on

WR+DIA+CC+ND+FRAG. The posteriors are centered around the true parameter (red). (b,d,f) For comparison,

2D-histograms of the posterior parameters based on LFI with ND. Here, the posteriors appear diffuse and are not

centered around the true parameter.
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Network Summaries avg. acc. prob. GR(δDivδDivδDiv) GR(δAttδAttδAtt) GR(ααα)

ND 0.30 1.02 1.01 1.01

WR+DIA+CC+
0.31 1.03 1.04 1.10

ND+FRAG

Table S.3: Convergence analysis for LFI to fit the PIN test data sets, accompanying Figure S.7. For each set of

summaries, the average empirical acceptance probabilities and the GR-statistics are reported for each evolution

parameter; see text in the Supporting Information. All runs converge as indicated by GR, and the empirical

acceptance probabilities are similar, allowing a cross-comparison.


