
Text S4

Dynamics

To find approximate analytic expressions for the response of the system to inputs of the form
E1 = E0(1 + a sinωt), we use small signal analysis. This method consists of linearizing the
system about its steady state level, and further assuming that the input deviates from its steady
state level by small amounts. Any results thus obtained are expected to be valid for small E0a,
although numerically we have observed that the results so obtained describe the system better
than they might have the right to when E0a is not small. The method works as follows: First
let the function f(A,E1) (or just f for simplicity) denote the rate of change of A as described
by Equation 3 (i.e., dA

dt = f(A,E1)), and let Ass be the steady state level of A when the input is
constant and equal to E0, so that f(Ass, E0) = 0. Then define the deviations from steady state
levels δA = A−Ass and δE1 = E1−E0 = E0a sinωt. Assuming the deviations are always small
and Taylor expanding f(A,E1) about the steady state levels then yields

dδA

dt
= gδE1 − ωcδA, (9)

where g = ∂f
∂E1

∣∣
(Ass,E0)

is referred to as the gain and ωc = ∂f
∂A

∣∣
(Ass,E0)

as the cut-off frequency.
This equation is linear and may be solved for arbitrary inputs δE1 by one of the many useful
techniques to work with linear differential equation (i.e., by Laplace transforms). In particular,
when δE1 = aE0 sinωt and the initial condition is zero

δA = aE0
g√

ω2 + ω2
c

cos
(
ωt + tan−1(

−ωc

ω
)
)

+ aE0gωe−ωct,

where tan−1 denotes the inverse tangent. Here, we are only interested in twice the amplitude
of the steady state oscillations in A, from maximum to minima. These are evidently given by
Equation 4, such that for frequencies smaller than the cut-off ωc the oscillations are proportional
to g

ωc
and oscillations for frequencies larger than ωc decay as 1/ω.

Because the output of the system is A = A − C2, we need to translate these oscillations in
A to oscillations in A. In the ultrasensitive and threshold-hyperbolic regimes, C2 ≈ E2 so the
oscillations in A equal those in A. In the hyperbolic and signal-transducing regimes, C2 ≈ ω2

k2
A,

so the amplitude of the oscillations in A is that amplitude of the oscillations in A multiplied by
a factor of 1− ω2

k2
.

Regime 1: ultrasensitive

For the ultrasensitive regime we do not need to use the method above. This regime needs to
be fine-tuned to transmit signals because, as evidenced by its steady state response curve, is
only responsive to changes in the input close to its inflection point, at E1 = k2

k1
E2. Choosing

E0 at this level results in the cycle equation becoming dA
dt = k1aE0 sinωt, which is identical to

Equation 9 with a gain of k1 and cut-off frequency of zero. The previous equation does not
hold for small enough frequencies; instead at some effective cut-off frequency the oscillations
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will cover the full range of values that the ultrasensitive cycle may take. That is, the effective
cut-off frequency satisfies 2E0a

k1
ωc

= S −
(
1 + k2

k1

)
E2, where the right hand side is the saturation

level of the cycle. Solving for ωc in this expression yields the cut-off frequency in Table 3. The
ultrasensitive regime is the only one that achieved oscillations that cover its full steady state
response range, and where the (effective) cut-off frequency depends on the input amplitude a.

Regime 2: signal-transducing

Because Equation 3 for this regime is already linear in A and in E1, it already has the same
form as Equation 9 with g = k1 and ωc = ω2. Multiplying the gain by 1 − ω2

k2
to translate to

oscillations in A gives the result in Table 3.

Regime 3: threshold-hyperbolic

Applying the method described above results in the expressions in Table 3 (These results are
not expected to hold when the steady state input E0 is below the regime’s threshold and the
output is zero). For simplicity though, we let ω0 = ω1

∣∣
(E1=E0)

= k1E0
K1+E0

, which turns out to be
ωc for this regime.

Regime 4: hyperbolic

Applying the method described above results in the expressions in Table 3, where the cut-off
turns out to be ωc = ω0 + ω2.
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