Density Dependence Triggers Runaway Selection of Reduced Senescence
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These Appendices contain further theoretical development and technical results to supplement the main text of this paper, and are arranged as follows.

Appendix A.– Describes a class of age-dependent senescent rate functions that generalise the constant rate form considered in the main text, and which includes the effect of negative senescence. Examples of these more general forms are developed.

Appendix B.– Describes the simulation model in more detail, the Marginal Value Theorem, and further simulation results including for stochastic environments.

Appendix C.– Contains technical mathematical proofs of conditions under which functions b0(x) can be found for which 
[image: image356.wmf] is monotonically decreasing in x.
Appendix A: General theory

Concepts

We represent the age-specific rate of senescence 
[image: image2.wmf] 

&

j

t

 as the difference of two opposing forces, one promoting positive senescence (damage accumulation) and the other negative senescence (damage repair). Specifically, take 
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with 
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The non-negative term 
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 represents the rate of positive senescence, which is assumed to increase with age, and 
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 represents the rate of negative senescence, which is assumed to decrease with age. It follows from the above properties that:
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That is, 
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is the asymptotic rate of senescence of very old adults.  By forcing this variable to be non-negative, we preclude the possibility that the net effect of negative senescence persists to arbitrarily old ages. The best that can happen at large ages is a declining effect of negative senescence, which occurs when 
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 there is necessarily positive senescence at sufficiently old ages. The maximum rate of negative senescence, achieved by newly recruited adults, is 
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. Clearly there is no negative senescence at any adult age if
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The general effect of introducing negative senescence, suitably partitioned between births and deaths, is to give an early-adult life-history phase of negative senescence, in which fecundity increases and mortality decreases with age, followed by a late adult phase of positive senescence, in which fecundity declines and mortality increases. This general pattern is illustrated in Fig A.1 for an example to be developed in detail later in this Appendix.  

Components of age-specific senescence rate

More specifically: if 
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, giving an early-adult life-history phase of negative senescence (somatic growth and rising fertility), and for which 
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, giving a later life-history phase of positive senescence. 
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Fig A.1.  Graphs of vital rates.  (A) Relative vitality functions taking the form of Equation A11 at age t for x = 0, 0.2, 1, 10, as indicated. (B) Relative fecundity 
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 given by a partition of the form of Equation A12a. The dashed line is the asymptote 
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 trajectory that has relative fecundity increasing throughout adult life. (C) Survival probabilities taking the form of Equation A12b. (D) Death rate functions  
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 derived from Equation A12b. The dashed line is the asymptote 
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It follows from Equation A1 that the age-specific rate of loss of relative vitality is:
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where 
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 is the non-senescent component of the rate of vitality loss, which we assume is positive and independent of x. Finally, set
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Thus, relative vitality is given by: 
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We allow the possibility that 
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 also depend on x. This represents a tradeoff between the asymptotic rate of vitality loss and the timing of its approach to this level. Thus, we might expect a greater age-specific rate of vitality loss due to positive senescence as x increases. Similarly, the influence of negative senescence on the age-specific rate of vitality loss should decrease as the strength of the positive senescence effect increases with x. That is, we require:
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Clearly Equations A4 and A5 imply that 
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 is a monotonically decreasing function of x.  In Appendix C we shall show that there exists a family of new-adult recruitment functions, 
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 is monotonically decreasing in x. In addition, these functions can be chosen so that 
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, and hence there is a possible viable equilibrium population for each x (main text, section 1), defining an evolutionary continuum as considered in the main text.    

Example

We consider a model in which negative senescence acts to ameliorate the effect on vitality loss due to extrinsic mortality, for example through somatic growth allowing escape from predation and/or more effective food capture. For example, suppose that


[image: image65.wmf]g

-

L

-

(

t

)

=

g

1

1

+

h

t

.







(A6)

This means that negative senescence has the effect of reducing the extrinsic mortality rate with increasing age, with the result that, if there were no other source of mortality, extrinsic mortality would eventually go to zero. Here, 
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 is a positive parameter measuring the rate at which extrinsic mortality decreases. Clearly there is no negative senescence effect if 
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We allow the possibility that 
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 is a function of the senescence variable x.  Such dependence would express a possible tradeoff between positive and negative senescence, as in Equation A5. Thus, as the controlling rate of positive senescence x increases, implying a rapid loss of vitality with age, the force of negative senescence, promoting vitality-increasing somatic and/or behavioural development, may decrease; i.e. 
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is decreasing in x. However, nothing in what follows depends on such a tradeoff assumption, so we suppress this x-dependence from the notation. 

It now follows from Equation A6 that the negative senescence rate is given by:
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 For positive senescence, take 
[image: image71.wmf]l

+

(

t

)

 to be a Hill function:


[image: image72.wmf]l

+

(

t

)

=

(

x

t

)

n

k

n

+

(

x

t

)

n

,







(A8)

for 
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 a constant defining an age scaling factor which determines the age of onset of significant senescence. Thus, for n large, 
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 (Fig A.2A).  This represents delayed-onset senescence. Then we have:
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where the functions 
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are defined explicitly in terms of standard special functions  (see the final subsection of this Appendix, Equations A16 to A21 and Fig A.2B and C). It now follows from Equations A4, A6 and A9 that:
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and that relative vitality has the form:
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Notice that the limit as 
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We assume that relative vitality is partitioned between births and deaths as follows:
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where:
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Here, 
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 is the intrinsic, non-senescent component of mortality. Note that in Equation A12b we have used the fact that 
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The term multiplying the exponential in Equation A12b represents the effect on survival of extrinsic mortality. Note that, as 
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The partition defined by Equations A12a, b is illustrated in Fig A.1.

Relevant special functions

We require the class of special functions known as hypergeometric functions, defined by:
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 (Whittaker & Watson, 1978, Chapter XIV).

The functions 
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This can be represented explicitly in terms of hypergeometric functions:
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[Mathematica 5.0 software package.] Now define:
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Again, this can be represented in terms of hypergeometric functions:
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[Mathematica 5.0 software package.] Finally, for 
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Then we have:
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Thus, a non-unity value of k represents a rescaling of time t. 

It is worth noting that, in the limit 
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Graphs of 
[image: image131.wmf]t

n

(

1

+

t

n

)

, 
[image: image132.wmf]q

n

(

t

)

, 
[image: image133.wmf]Q

n

(

t

)

 and the relative vitality component 
[image: image134.wmf]e

x

p

-

k

2

Q

n

(

x

t

k

)

{

}

 for various x are illustrated in Fig A.2 below.
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Fig A.2. (A) Graph of 
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 for various x: (a) x = 0.2, (b) x = 0.3, (c) x = 0.5, (d) x = 1.  The dashed horizontal line is obtained by taking x = 0.  In all graphs, n = 5, and in D the age-scaling factor is k = 25.
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Appendix B: Simulated birth and death probabilities

For the simulations described in section 5 of the main text (Fig. 4) and further in this appendix, an array of K = 200 possible settlement sites was initially seeded with a population of 10 just-matured recruits (age t = 0), with no more than one individual at a site. These individuals had non-zero values of the two evolvable parameters controlling vitality loss: x (age-dependent senescence) and (0 (age-independent ageing). Each subsequent time-step from t to 
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1. Reproduction. – Defined by the birth rate 
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, as explained below.

2. Adult death. – Derived from survival function 
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3. Juvenile recruitment. – For each parent in turn, one offspring was sent to a random position in the array of habitable sites, at which it would immediately die if already occupied, or recruit if empty. The process was repeated for each of the parent’s offspring.

4. Inheritance. – The recruiting juvenile inherited its parent’s x and (0 with mutational increments or decrements to both, each of random magnitude ( 0.01. 

5. Randomization of locations. – The order of surviving residents and new recruits was randomized in the array, in preparation for stepping through it in the next time-step.

Here, 
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 with g extrinsic mortality acting uniformly on all adult ages. The environment in which organisms evolve is therefore characterized by the two parameters K and g. The remaining parameters characterize features of the organism. The time step was taken to be t = 0.1. Further details of these simulation steps are given below. 

Offspring Production from t to t + (t
For given x, birth rate at age t is:
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This means that 
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then it can be shown that the probability that the organism produces 
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In the context of the simulations, take 
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Substituting from (B1) for 
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This is the Poisson distribution of per capita offspring production between t and (t (i.e. one time step of the simulation).  This is the formula used in the simulations of section 5 of the main text. 
Probability of Death from t to t + (t
The probability of survival from time t to time 
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which can be expanded to:
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If 
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This is the form used in the simulations of section 5 of the main text. The probability that an organism dies in the interval t to 
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The Marginal Value Theorem 

Consider the situation of constant birth and intrinsic death rates 
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 concave increasing (see Fig. B.1). Then we can obtain optimal values 
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The proof is trivial and well known (e.g., Bulmer 1994). The theorem is illustrated graphically in Figure B.1. 

For example, if 
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This is the form of trade off curve used in the simulations of section 5 of the main text. 
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Fig B.1. The marginal value theorem determining the optimizing values 
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Environmental Stochasticity

The main model had a constant environment defined by the value of g (extrinsic mortality) and the size of K (carrying capacity of adults). The simulation was extended as outlined below to investigate impacts of environmental stochasticity by varying g on a lognormal distribution, and K on a normal distribution, every nth time step. Any drop in carrying capacity incurred a proportionate impact on the resident adults. Thus a drop in K from 200 to 150 entailed a 25% drop in the number of adults (chosen at random for removal from the population).

The environmental stochasticity had no perceptible effect on the runaway selection for smaller x. Varying g alone gave outputs indistinguishable from the constant environment case shown in Figure 4 of the main text, with respect to the evolution of x and (0, and the appearance of immortals, even for variances that encompassed frequent 5-fold increases given by ln(variance) = 1. This negligible impact of stochasticity in g applied whether g varied every 10 or every 100  time steps. However, a larger ln(variance) = 5 in g did prevent the appearance of immortals by sufficiently raising the mean (0 to virtually eliminate the occurrence of any individuals with (0 = 0. The addition of stochastic variation to K as well as to g also reduced the appearance of immortals by raising the mean (0. 

Figure B.2 shows outputs from the model with parameter values as in Figure 4 in the main text, except for the infrequent occurrence of relatively low-level fluctuations in both g and K. The environmental stochasticity has no effect on the evolution of x (graph A), but the fluctuations in K raise (0 above its optimum set by the marginal value theorem (graph B), causing a reduced frequency of intrinsic immortals (graph C) and consequent reduction in maximum lifespan in the population (graph D). The occurrence of more frequent and larger environmental stochasticity further reduces the frequency of immortals without influencing evolution in x. Figure B.3 shows the population supporting the appearance of single immortals only twice and briefly during the simulation. 
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Fig. B.2. Simulated evolution of negligible senescence in the presence of relatively slow and low environmental stochasticity. Fluctuations occur at every 500 time steps in g and K, with g having ln(variance) = 0.5 on a normal distribution around a mean of ln(0.001) and K having variance = 50 on a normal distribution around a mean of 200; other parameter values as main text Figure 4. Red lines in A-C show minima below black-line means, and maximum in D above black-line mean. Blue line in C shows carrying capacity above black-line population size, N.
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Fig. B.3. Simulated evolution of negligible senescence in the presence of relatively fast and high environmental stochasticity. Fluctuations occur at every 100 time steps in g and K, with g having ln(variance) = 1 on a normal distribution around a mean of ln(0.001) and K having variance = 400 on a normal distribution around a mean of 200; other parameter values and lines as Figure B.2.
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Appendix C: Mathematical conditions for decreasing R(x)
In this appendix we give mathematical proofs of three results. First, that the class of new-adult recruitment functions defined by Equation 14 in the main text contains a subclass which yields decreasing 
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 for the Gaussian relative vitality function of Equation 12. Second that, for more general representations of relative vitality, such as those considered in Appendix A, Equation A1, there is always a class of new-adult recruitment functions, with appropriate properties, for which 
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 is decreasing. Third, we show that the presence of negative senescence can only promote a decreasing 
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A class of new-adult recruitment functions 

Consider the explicit class of new-adult recruitment functions discussed in the main text:
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We shall show that this family contains examples for which 
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PROPOSITION C.1. For each 
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, determined by the Gaussian relative vitality function of main text Equation 12, is monotonically decreasing in x, with 
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Proof. First note that
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[Mathematica 5.0 software package.] Clearly 
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Thus, 
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so that 
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[Derived using the Mathematica 5.0 software package.]

Define 


[image: image228.wmf]G

(

z

)

=

1

+

s

1

z

e

x

p

-

r

z

(

)

,

(
[image: image229.wmf]s

,

r

>

0

).



(C5)
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for all positive 
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Consider:
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from (C7)
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from (C5)
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where 
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with 
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Derivation of the estimate C11
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from (C10)


[image: image331.wmf]=

b

0

(

X

)

e

x

p

-

¢

S

(

z

)

S

(

z

)

æ

è

ç

ö

ø

÷

d

z

+

1

S

(

X

)

¢

S

(

z

)

d

z

X

x

ò

X

x

ò

ì

í

î

ü

ý

þ



[image: image332.wmf]=

b

0

(

X

)

e

x

p

l

n

S

(

X

)

S

(

x

)

æ

è

ç

ö

ø

÷

-

1

-

S

(

x

)

S

(

X

)

æ

è

ç

ö

ø

÷

ì

í

î

ü

ý

þ



[image: image333.wmf]=

b

0

(

X

)

S

(

X

)

S

(

x

)

æ

è

ç

ö

ø

÷

e

x

p

-

1

-

S

(

x

)

S

(

X

)

æ

è

ç

ö

ø

÷

ì

í

î

ü

ý

þ



[image: image334.wmf]³

b

0

(

X

)

S

(

X

)

S

(

x

)

æ

è

ç

ö

ø

÷

e

x

p

-

1

-

S

¥

S

(

X

)

æ

è

ç

ö

ø

÷

ì

í

î

ü

ý

þ

.

Thus


[image: image335.wmf]R

(

x

)

=

b

0

(

x

)

S

(

x

)

³

R

(

X

)

e

x

p

-

1

-

S

¥

S

(

X

)

æ

è

ç

ö

ø

÷

ì

í

î

ü

ý

þ

,

 from which the estimate C11 follows. (
The role of negative senescence

Here we show that the presence of negative senescence in the form of a non-zero 
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Proof. From Equation A4, we have:
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and from Equation A5:
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It follows that:
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