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Preamble 
The aim of this workflow is to provide examples of how the BioConductor package 
exonmap can be used to analyse Affymetrix exon array data. It exploits where 
possible existing tools and strategies for analysing 3’IVT arrays (such as the 
HGU133plus2 array). This includes standard approaches for normalization and pre-
processing, including RMA, GCRMA and PLIER, and standard methods for filtering 
for differential expression, including LIMMA, SAM and simple fold-change and t-test 
based approaches. 
 
Please note that this script is intended to work with versions 1.4.0 and above of 
exonmap. 
 
We assume a basic knowledge of R and BioConductor. 
 

Overview 
The basic strategy is shown in Figure 1. Expression data are loaded, normalized and 
pre-processed in order to identify a set of ‘interesting’ genes. These might be selected 
according to fold-change or correlation or selected on the basis of statistical 
significance, as is common with existing 3’IVT arrays. Given a set of ‘interesting’ 
probesets, annotation is then used to map these probesets to the genome, and thus to 
the features they target. Here we consider a simple pairwise comparison between two 
cell lines, MCF7 and MCF10A. 
 

Step 1: loading the data 
Exonmap uses the core affy packages within BioConductor to represent array data. In 
order to do this, a non-standard .cdf package is used; this can be downloaded from 
http://xmap.picr.man.ac.uk. 
 
Thus, to load exon array data, and to specify the name of the cdf package to use, the 
following three lines of code are sufficient: 

1 library(exonmap) 

2 raw.data <- read.exon() 

3 raw.data@cdfName <- “exon.pmcdf” 

read.exon() relies on a text file (called, by default, ‘covdesc’) containing data 
such as this: 
 
   group 
ex1MCF7_r1.CEL a 
ex1MCF7_r2.CEL a 

http://xmap.picr.man.ac.uk/


ex1MCF7_r3.CEL a 
ex2MCF10A_r1.CEL b  
ex2MCF10A_r2.CEL b 
ex2MCF10A_r3.CEL b 
 
in order to specify which CEL files to read, and to supply additional annotation data 
describing the samples.  
 

Step 2: normalization and expression summary 
Pre-processing is done in the usual way, but with the proviso that there are no paired 
mis-match spots on the arrays, so algorithms such as mas5 won’t work, and PLIER 
needs to be told not to use the mis-match spots: 

4 x.rma <- rma(raw.data) 

5 #or plier can be used: 

6 x.pli <- justPlier(raw.data, usemm=F, normalize=T, 
norm.type=”pmonly”, concpenalty=0.08) 

 

Step 3: identifying differentially expressed probesets 
Exonmap has a couple of simple functions to calculate fold-changes (and unadjusted 
t-test p-scores). pc() can be used to perform a pairwise comparison between two sets 
of arrays. fc() and tt() can be used to extract the fold-changes and p-scores 
produced for each probeset: 

7 pc.rma <- pc(x.rma,”group”,c(“a”,”b”)) 

8 keep <- (abs(fc(pc.rma)) > 1) & tt(pc.rma)< 1e-4 

9 sigs   <- featureNames(x.rma)[keep] 

Similarly, other popular tools can be used, such as limma: 
10 library(limma) 

11 design <- 
as.matrix(cbind(MCF7=c(1,1,1,0,0,0),MCF10A=c(0,0,0,1,1,1))) 

12 fit <- lmFit(x.rma,design) 

13 cont.matrix <- makeContrasts(MCF7vsMCF10A=MCF7-
MCF10A,levels=design) 

14 fit2 <- contrasts.fit(fit,cont.matrix) 

15 fit2 <- eBayes(fit2) 

16  

17 result <- decideTests(fit2,lfc=1) 

18 keep   <- result@".Data" != 0 

19  



20 limma.sigs   <- rownames(result@".Data")[keep] 

 

The result is a list of significant probesets.  
 

Step 4: mapping to annotation 
First we must connect to the X:MAP database which will provide the annotation: 

21 xmapDatabase(“Human”) 

Now, given a list of ‘interesting’ probesets (such as those identified in line 9, on the 
basis of fold-change and p-score), we can select just those probesets that hit exons: 

22 exonic <- select.probewise(sigs,”exonic”) 

A small but significant proportion of probesets on the array contain probes that might 
hybridize in more than one location. These can be filtered out: 

23 exonic.filtered <- exclude.probewise(exonic,”multitarget”) 

 

At this stage we have a list of ‘interesting’ exon-targeting probesets that match the 
genome uniquely in one location. These can now be mapped to genes: 

24 genes <- probeset.to.gene(exonic.filtered) 

An obvious question becomes, for each of these genes, do all their probesets show the 
same fold-change? One way to evaluate this would be, for each gene, to calculate the 
variance of the fold change for its probesets. If the variance is low, then the probesets 
are consistent with one another, if the variance is high, then different probesets are 
doing different things between the samples. This provides a simple metric for 
distinguishing between differentially expressed and alternatively spliced genes: 

25 splicevar <- function(a) { 

26   r <- apply(a[,1:6],1,function(b) { 

27     mean(b[1:3] - b[4:6]) 

28   }) 

29   m <- mean(r) 

30   v <- var(r) 

31   c(v,m) 

32 } 

Thus, splicevar is a function that takes a matrix of expression data, each row a 
probeset, each column, a sample. It assumes that the first three samples contain the 
MCF7 data, the last 3, the MCF10A data. It computes the mean fold change between 
the cell lines for each probeset, and places the results in r. The mean and variance of 
these values are then computed for the given set of probesets. 
  
In a moment, we will use splicevar to calculate the variance (it also calculates the 
mean; we will use that later) for each of the genes we identified at line 24. First, 



however, we need to find, for each of these genes, their exon-targeting probesets. 
Exonmap provides a utility function that does this, and maps them to their expression 
data: 

33 gep <- gene.to.exon.probeset.expr(x.rma,genes) 

It produces a data.frame: 
34 gep[1:3,] 

  ex1MCF7_r1.CEL ex1MCF7_r2.CEL ex1MCF7_r3.CEL ex2MCF10A_r1.CEL 
1       6.375762       5.836923       6.433112         6.485873 
2       6.084308       6.756105       6.689520         7.081683 
3       6.168754       6.426774       6.219463         6.277609 
  ex2MCF10A_r2.CEL ex2MCF10A_r3.CEL            gene            exon probeset_id 
1         6.069215         6.028865 ENSG00000162572 ENSE00001066428         470 
2         7.000371         6.738188 ENSG00000162572 ENSE00001066429         475 
3         6.067723         6.196594 ENSG00000162572 ENSE00001066430         480 
  probeset_name probe_count 
1       2315713           4 
2       2315718           4 
3       2315723           4 

 
We can split this on the gene name, to produce a list of data.frames, one for each 
gene: 

35 l <- split(gep,gep$gene) 

…and then apply our splicevar function to each entry in the list, using sapply: 
36 vars <- sapply(l,splicevar) 

We now have a table of means and variances, one for each of our genes. (Note that 
the table has two rows, the first, the variances, the second, the means, and N columns, 
one for each gene). They are distributed like this: 

37 #vars 

38 plot(density(vars[1,],na.rm=TRUE)) 

39 #means 

40 plot(density(vars[2,],na.rm=FALSE)) 

We can then partition the data based on this: 
41 DE <- vars[,(vars[1,] < 1)] 

42 AS <- vars[,(vars[1,] > 2)] 

 

Other approaches 
Alternatively, we can compute the splicing index, or use an ANOVA based approach: 

43 si.sig <- splicing.index(x.rma, genes, "group", c("a","b")) 

44 #For experiments with more than two replicate groups 

45 #splanv <- splanova(x.rma, 
genes[1001:1010],"group","a",thr=0.05) 



Visualization 
We can generate global plots for all of our genes. For example, we can sort genes 
according to their variances, and by looking at the sign of their means, determine in 
which direction the majority of probesets are changing: 

46 up <- vars[2,] > 0 

47 dn <- vars[2,] < 0 

48  

49 o.up <- order(vars[1,up],decreasing=T) 

50 o.dn <- order(vars[1,dn],decreasing=T) 

51 #get the 10 most ‘up’ and ‘down’ genes 

52 to.plot <- 
c(colnames(vars[,up][,o.up[1:10]]),colnames(vars[,dn][,o.dn[1:1
0]])) 

53  

54 gene.strip(to.plot,x.rma,list(1:3,4:6)) 

55  

We can also plot data for individual genes: 
56 plot.gene(genes[1],x.rma,list(1:3,4:6)) 

57 gene.graph(genes[1],x.rma,list(1:3,4:6),type="mean-int") 

All three plotting functions have a variety of parameters to change how they plot their 
data – see the man pages for more details. 
 

Novelty 
Some probesets target genes, but fall between the well characterized exons that form 
the ENSEMBL genes. These can be found and filtered as before, using: 

58 intronic <- select.probewise(sigs,”intronic”) 

59 intronic.filtered <- exclude.probewise(intronic,”multitarget”) 

Similarly, probesets that target between known genes can identified with: 
60 intergenic <- select.probewise(sigs,”intergenic”)  

61 intergenic.filtered <- exclude.probewise(sigs,”multitarget”) 

These can then be mapped to Genscan and EST based transcript predictions (currently 
using the development version of the package, version 1.1.14 or above). For example: 
 

62 xmapExtras() 

63 genscan <- probeset.to.transcript(intronic,db=”prediction”) 

64 EST     <- probeset.to.transcript(intronic,db=”est”) 



Finally, the functions xmapProbeset(), xmapGene(), etc. will open up an instance 
of the X:MAP genome browser pointing to the location of the specified feature. 

 


	A simple workflow for analysing Affymetrix exon arrays in Bi
	Preamble
	Overview
	Step 1: loading the data
	Step 2: normalization and expression summary
	Step 3: identifying differentially expressed probesets
	Step 4: mapping to annotation
	Other approaches
	Visualization
	Novelty



