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I. GENERAL EXPRESSION FOR
SUSCEPTIBILITY

We consider a network that is composed of N nodes
that responds to an upstream input signal n0. The sys-
tem of equations that describe the kinetic response of the
network is given by:

dni

dt
= J+

i (n0, n1, . . . , nN ) − J−
i (n0, n1, . . . , nN ), (1)

where J+

i and J−
i are the total fluxes of production and

elimination of ni. At a stable steady state the equations
given in (1) equal zero, hence

〈

J+

i

〉

=
〈

J−
i

〉

= 〈Ji〉 . (2)

The triangular brackets denote the steady state average.
The susceptibility of component j to changes in the

input n0 is

sj =
〈n0〉

〈nj〉

d 〈nj〉

d 〈n0〉
=

d ln 〈nj〉

d ln 〈n0〉
. (3)

Note that in the definition of susceptibility the deriva-
tives are full derivatives, describing the changes in 〈nj〉

after all the components have adjusted to the new steady
state. Using the chain rule we differentiate Equation (1)
at the steady state with respect to n0, and then multiply
by 〈n0〉 / 〈Ji〉:

〈n0〉

〈Ji〉

(

∂
〈

J+

i

〉

∂ 〈n0〉
−

∂
〈

J−
i

〉

∂ 〈n0〉

)

+

〈n1〉

〈Ji〉

(

∂
〈

J+

i

〉

∂ 〈n1〉
−

∂
〈

J−
i

〉

∂ 〈n1〉

)

〈n0〉

〈n1〉

d 〈n1〉

d 〈n0〉
+ . . .

+
〈nN 〉

〈Ji〉

(

∂
〈

J+

i

〉

∂ 〈nN 〉
−

∂
〈

J−
i

〉

∂ 〈nN 〉

)

〈n0〉

〈nN 〉

d 〈nN 〉

d 〈n0〉
= 0. (4)

Finally using Equation (2), we obtain

Hi0 + Hi1s1 + . . . + HiNsN = 0, (5)

where the sj terms are the susceptibility of each indi-
vidual component in the network (Equation (3)) and the
Hij terms are the reaction flux elasticities, as defined by
Paulsson [8, 9]

Hij = −
〈nj〉

〈Ji〉

(

∂
〈

J+

i

〉

∂ 〈nj〉
−

∂
〈

J−
i

〉

∂ 〈nj〉

)

=
∂ ln

〈

J−
i

〉

/
〈

J+

i

〉

∂ ln 〈nj〉
. (6)

In matrix form:

H~s = −~k, (7)

where the terms of H are Hij and the terms of ~k are Hi0.

II. EXPRESSION FOR NOISE AMPLIFICATION

We derived an analytical expression for noise ampli-
fication in a three component system using Paulsson’s
FDT-based approach [9]. Using this method the normal-
ized (standard deviation over mean) noise components
are given by the matrix equation

Mη + ηMT + D = 0, (8)

where the matrix η contains the normalized noise terms
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η =





η2
0 η01 η02

η10 η2
1 η12

η20 η21 η2
2



 . (9)

The matrix M describes the effect that each component
exerts on its neighbours

M =





−1/τ0 0 0
−H10/τ1 −H11/τ1 −H12/τ1

−H20/τ2 −H21/τ2 −H22/τ2



 . (10)

The Hij terms are the elasticities (Equation (6)) and the
τi parameters are the degradation time scales for each
component. Note that the first row of M contains only
one non-zero term, because components 1 and 2 do not
affect the input.

The matrix D is composed of the noise sources. We
assume that most of the noise originates from the input
n0, and hence D has only one non-zero term:

D =





2η2
0/τ0 0 0
0 0 0
0 0 0



 . (11)

Equation (8) was solved symbolically for η2
2 using Maple

(Maplesoft). The solution was used to substitute differ-
ent values of Hij and characterize the susceptibility-noise
amplification relation for each network architecture.

III. CRITERIA FOR STABILITY

In this section we derive criteria for stability of a sys-
tem with one input node, n0, and two other components
n1, n2. The differential equations for this system are

dn1

dt
= J+

1 (n1, n2|n0) − J−
1 (n1, n2|n0), (12a)

and

dn2

dt
= J+

2 (n1, n2|n0) − J−
2 (n1, n2|n0). (12b)

We distinguish n0 from n1 and n2 because it can affect
n1 and n2 but is not affected by them, and is therefore
treated as a parameter of the system. The Jacobian for
this system of equations is given by

A =





[

∂J+

1

∂n1
−

∂J−

1

∂n1

] [

∂J+

1

∂n2
−

∂J−

1

∂n2

]

[

∂J+

2

∂n1
−

∂J−

2

∂n1

] [

∂J+

2

∂n2
−

∂J−

2

∂n2

]



 , (13)

and the eigenvalues of the Jacobian conform to

(A11 − λ) (A22 − λ) − A12A21 = 0. (14)

For the system to have a stable solution the eigenval-
ues must be negative. Therefore, the components of the
Jacobian must satisfy

A11 + A22 < 0, (15a)

and

A11A22 − A12A21 > 0. (15b)

The Jacobian is related to the elasticities through
Aij = −HijJi/nj (Equation (6)). With this, the crite-
ria for stability becomes

H11/τ1 + H22/τ2 > 0, (16a)

and

H11H22 − H12H21 > 0. (16b)

with the τi terms defined as the time scales of the reac-
tions τi = ni/J

−
i .

IV. DESIGN OF PARAMETER SCREEN

Each network is defined by the connections between its
nodes and by the sign of the connections, i.e. activation
or repression. We require a connection from n0 to n1

and from n1 to n2. Each of these connections can either
be repressing or activating. There are four additional
possible connections in the network (n0 → n2, n1 → n2,
n1 → n1, n2 → n2) which can be repressing, activating or
non-existing. Thus we investigated 22×34 = 324 specific
circuits.

If node i is affected by node j then their interaction is
captured by the equation

dni

dt
= J+

i (. . . , nj , . . .) − J−
i (. . . , nj , . . .). (17)

To calculate the susceptibility and noise properties of a
specific network some information must be provided on
the magnitude of the fluxes J+

i and J−
i near the steady

state, specifically their elasticities (see Sections I and II,
and Equation (6) ).

For the purposes of the screen we assume that
the components undergo first order degradation,
∂ ln

〈

J−
i

〉

/∂ ln 〈nj〉 = 1. With this assumption the ef-
fect of one component on the other is captured by the
synthesis elasticity, defined as the relative change in the
steady state transcription rate of ni due to a small per-
cent change in the level of nj
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FIG. 1: All three-node circuits we investigated were sorted into groups according to decreasing fraction of stable parameter sets
out of all parameters sets (gray line). Within each group the networks were sorted according to the fraction of highly sensitive
low-noise parameter sets out of all stable sets (blue line). The results are shown for a sampling range (A) 0 < |Sij | < 2 and
(B) 0 < |Sij | < 10.

Sij =
〈nj〉
〈

J+

i

〉

∂
〈

J+

i

〉

∂ 〈nj〉
=

∂ ln
〈

J+

i

〉

∂ ln 〈nj〉
. (18)

The synthesis elasticities are related to the overall reac-
tion elasticities through Hii = 1 − Sii and Hij = −Sij .
We chose to work with the synthesis elasticities because
a positive Sij would always indicate that ni enhances
nj (even when i = j) and vice versa (assuming first or-
der degradation). In this framework the sensitivity of
the interaction between i and j is determined through
the absolute value |Sij | and the nature of the interaction
(activation or repression) is described by the sign of the
interaction arrow of the network. This makes the sam-
pling procedure of the parameter space much simpler.
Furthermore, the synthesis elasticities have an intuitive
physical meaning – they are proportional to the Hill co-
efficient of transcription factor binding and they decrease
as the saturation increases.

To assess the susceptibility-noise amplification behav-
ior of each network we considered many (20,000) positive
values for Sij . The sampling distribution of Sij could, in
principle, have an effect on the results. To generate Fig. 2
of the main text we sampled Sij from a uniform distribu-
tion between zero and four (chosen arbitrarily). Here we
test the effect of the sampling range on the results. Sup-
plementary Fig. 1 presents the fraction of stable param-
eter sets and the fraction of high-susceptibility low-noise

parameters sets, for each network in the screen. The fig-
ure is presented for two sampling ranges, 0 < |Sij | < 2
and 0 < |Sij | < 10. The sampling range affects the stabil-
ity as well as the fraction of high-susceptibility low-noise
parameter sets. Nevertheless, regardless of the sampling
range, all circuits with perfect stability do not display
high susceptibility and low noise. Furthermore, the net-
works that exhibit the best noise properties (highest frac-
tion of parameter sets with low noise amplification at a
given susceptibility) contain only positive feedback loops
(a combination of a coherent feed-forward element in ad-
dition to three positive feedback loops is also possible
in the sampling range 0 < |Sij | < 10, possibly because
the noise buffering capacity of the three positive feed-
back loops overwhelms the slight increase in noise due to
the feed-forward). Hence, changing the sampling range
of the parameter screen does not impact the qualitative
conclusions from the screen.

In the design of the screen we also set the time scales
of all components of the networks equal to one. A choice
of different values for the time scales alters the slope of
the linear relation between noise amplification and sus-
ceptibility for linear networks (Supplementary Fig. 2a).
Nonetheless, the fraction of parameter sets that lie above
or below this linear line is virtually unaffected by the
choice of the time constants (Supplementary Fig. 2b).
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FIG. 2: (A) The relation between susceptibility and noise amplification for linear networks, when the input noise autocorrelation
time τ0 is varied. (B) Fraction of parameter sets that show low noise amplification at constant susceptibility (compared to the
linear networks), for each network in the screen. Different colors represent different τ0 as in (A).

V. DERIVATION OF NOISE AND
SUSCEPTIBILITY FOR A TWO COMPONENT

SYSTEM

The noise properties of a two component circuit were
derived by Paulsson [8, 9] using Fluctuation Dissipation
Theorem [3]. For the sake of completeness we bring a
similar derivation based on Frequency Domain Analysis
[7, 12].

A. Solution neglecting intrinsic noise

We consider the simplest gene network: a two compo-
nent system with an input n0 and output n1. We derive
the susceptibility of n1 to changes in n0, and the magni-
tude of noise that propagates from n0 to n1. The system
is described by a single differential equation

dn1

dt
= J+(n0, n1) − J−(n0, n1), (19)

where J+ is flux of generation of n1, and J− is the flux of
elimination. Typically, the elimination term will follow
first order kinetics J−(n0, n1) = const × n1, but we will
consider the more general case. The average steady state
levels of n0 and n1 are given by 〈n0〉 and 〈n1〉. To find
the change in n1 steady state levels due to a small change
in n0, we repeat the steps in Section I, and differentiate
Equation (19) with respect to n0 at the steady state:

(

∂ 〈J+〉

∂ 〈n0〉
−

∂ 〈J−〉

∂ 〈n0〉

)

+

(

∂ 〈J+〉

∂ 〈n1〉
−

∂ 〈J−〉

∂ 〈n1〉

)

d 〈n1〉

d 〈n0〉
= 0.

(20)
Recall that at steady state 〈J+〉 = 〈J−〉 = 〈J〉. To

obtain an expression for the susceptibility s1 = 〈n0〉
〈n1〉

d〈n1〉
d〈n0〉

we multiply Equation (20) by 〈n0〉 / 〈J〉 and rearrange to
get

s1 = −
H10

H11

. (21)

The elasticities H10 and H11 are defined by

H10 =
∂ ln 〈J−〉 / 〈J+〉

∂ ln 〈n0〉
, (22a)

and

H11 =
∂ ln 〈J−〉 / 〈J+〉

∂ ln 〈n1〉
. (22b)

When H10 > 0 then n0 downregulates n1 and vice versa.
First-order degradation of n1 with no feedback implies
H11 = 1. Positive feedback of n1 on itself is characterized
by H11 < 1, and negative feedback results in H11 > 1.

Now we turn to derive the level of noise that is prop-
agated from n0 to n1. The approach we use for this
purpose is frequency domain analysis (see [7, 12] and the
supplementary of [1, 10]). We linearize Equation (19),
and rewrite it in terms of fluctuations from the steady
state ∆nj(t) = nj(t) − 〈nj〉:

d∆n1

dt
=

(

∂ 〈J+〉

∂ 〈n0〉
−

∂ 〈J−〉

∂ 〈n0〉

)

∆n0+

(

∂ 〈J+〉

∂ 〈n1〉
−

∂ 〈J−〉

∂ 〈n1〉

)

∆n1.

Normalizing the equation through division by 〈J〉 we ar-
rive at

〈n1〉

〈J〉

dx1

dt
=

〈n0〉

〈J〉

(

∂ 〈J+〉

∂ 〈n0〉
−

∂ 〈J−〉

∂ 〈n0〉

)

x0+

〈n1〉

〈J〉

(

∂ 〈J+〉

∂ 〈n1〉
−

∂ 〈J−〉

∂ 〈n1〉

)

x1.
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The xj variables are the normalized deviation from the
steady state,

xj(t) =
nj(t) − 〈nj〉

〈nj〉
j = {0, 1}. (23)

In terms of elasticities we get

−τ1

dx1

dt
= H10x0 + H11x1, (24)

with τ1 describing the time constant of n1 turnover, and
it is defined as

τ1(〈n0〉 , 〈n1〉) =
〈n1〉

〈J〉
.

We apply the Fourier transform to Equation (24) and
move from the time domain to the frequency domain:

x̂j(ω) =

∫ ∞

−∞

xj(t)e
−iωtdt j = {0, 1}, (25)

resulting in the relation

x̂1(ω) = −
H10

H11

1

i τmod ω + 1
x̂0(ω), (26)

where τmod is the time constant modified by the feedback
τmod = τ1/H11. The function H10/H11 (i τmod ω + 1)

−1

in Equation (26) is sometimes referred to as the transfer
function [2] or the impulse response function [7], because
it relates the frequency response of x1 to that of the in-
put. To describe the noise in x0 and x1 we utilize the con-
cept of the autocorrelation function 〈xj(t0)xj(t0 + t′)〉.
We assume the fluctuations x0 can be represented by an
exponentially decreasing autocorrelation function, with
magnitude η2

0 ,

〈x0(t0)x0(t0 + t′)〉 = η2
0e−t′/τ0 . (27)

The Fourier transform of the autocorrelation function of
x0 (which is termed the power spectrum of x0) is

〈x̂0(ω) x̂∗
0(ω)〉 = 2η2

0

τ0

τ2
0 ω2 + 1

. (28)

The asterisk denotes the complex conjugate. The power
spectrum of x1 can be derived by multiplying x̂1(ω) from
Equation (26) by its conjugate and taking the ensemble
average [2, 7]. Then, using Equation (28)

〈x̂1(ω) x̂∗
1(ω)〉 =

H2
10

H2
11

1

(τmod ω)2 + 1
〈x̂0(ω) x̂∗

0(ω)〉

= 2η2
0

H2
10

H2
11

1

(τmod ω)2 + 1

τ0

(τ0ω)2 + 1
.(29)

To find the magnitude of the noise η1 we return to the
time domain and substitute t′ = 0 in the autocorrelation
function:

η2
1 =

1

2π

∫ ∞

−∞

〈x̂1(ω) x̂∗
1(ω)〉 eiωt′dω

∣

∣

∣

∣

t′=0

=
1

2π

∫ ∞

−∞

〈x̂1(ω) x̂∗
1(ω)〉 dω. (30)

Solving the integral in (30), substituting the result for
the susceptibility (Equation (21)) and recalling that
τmod = τ1/H11 we arrive at

η2
1/η2

0 = s2
1

τ0

τ0 + τ1/H11

. (31)

In the case of a loop-free cascade and first order degrda-
tion H11 = 1. If there is a negative feedback on n1 then
H11 > 1 and the noise is amplified beyond that of the
linear cascade. However, when the feedback is positive
and 0 < H11 < 1 (which may still allow for the existence
of a stable steady state) then the noise amplification can
be much lower than that of the linear cascade, for a given
susceptibility.

B. Inclusion of Intrinsic Noise

The analysis above of a system composed of a single
input and a single output did not take into account in-
trinsic noise that arises from translational bursts [6, 13]
or other sources [8, 11]. In this section we incorporate,
following [6, 13], noise that arises from the production of
low-copy short-lived mRNA, denoted by m:

dm

dt
= βm (n0, n1) − m/τm + fm(t). (32a)

The protein n1 is translated from the mRNA:

dn1

dt
= β m − n1/τ1 + f(t). (32b)

The terms βm, β, τ−1
m and τ−1

1 are the production and
degradation rates of the mRNA and the protein, respec-
tively. βm depends on n0 and n1 because these proteins
may in general modulate the transcription rate of n1.
The functions fm(t) and f(t) are white noise terms that
have a mean zero and a very short autocorrelation time:

〈fm(t)〉 = 0, (33a)

〈fm(t0)fm(t0 + t′)〉 = qmδ(t′ − t0), (33b)

and similarly for f(t)

〈f(t0)f(t0 + t′)〉 = qδ(t′ − t0). (33c)
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The prefactors qm and q define the magnitude of the au-
tocorrelation for the fluctuations in the mRNA and in
n1, respectively. They are determined by the molecu-
lar interactions [3]. Typically the noise originates from a
random birth-death process, hence its magnitude is the
sum of the mean reaction fluxes [3, 6, 14]:

qm = βm (〈n0〉 , 〈n1〉) + 〈m〉 /τm = 2 〈m〉 /τm, (34a)

and

q = β 〈m〉 + 〈n1〉 /τ1 = 2 〈n1〉 /τ1. (34b)

As before, we linearize Equations (32a) and (32b) near
the mean steady state and divide by the steady state
fluxes βm = 〈m〉 /τm and β 〈m〉 = 〈n1〉 /τ1 to obtain

τm
dxm

dt
= −Hm1x1 − Hm0x0 − xm +

τm fm(t)

〈m〉
, (35a)

and

τ1

dx1

dt
= xm − x1 +

τ1 f(t)

〈n1〉
. (35b)

The elasticities Hmj for j = {0, 1} are given by

Hmj = −
〈nj〉

βm

∂βm

∂ 〈nj〉
, (36)

and the normalized deviations from the steady state are
defined as xj = (nj − 〈nj〉) / 〈nj〉 for j = {0, 1,m}. Per-
forming the Fourier transform on Equations (35a) and
(35b) we arrive at

(iτmω + 1) x̂m = −Hm1x̂1 − Hm0x̂0 +
τm f̂m(ω)

〈m〉
(37a)

and

(iτ1ω + 1) x̂1 = x̂m +
τ1 f̂(ω)

〈n1〉
. (37b)

If we are interested in correlation times that are much
longer than the mRNA degradation time, t′ � τm, then
τmω � 1. In this case the solution for x̂1(ω), which can
be found from (37a) and (37b), reduces to

x̂1(ω) = −
Hm0

iτ1ω + H11

x̂0 +
τm f̂m(ω)

(iτ1ω + H11) 〈m〉

+
τ1 f̂(ω)

(iτ1ω + H11) 〈n1〉
, (38)

with the definition H11 = 1 + Hm1. Equation (38) de-
scribes how fluctuations are transferred from each noise
source to x1. We multiply x̂1(ω) in equation (38) by its

conjugate and then perform an ensemble average [2, 7].
Because all noise sources are uncorrelated their cross-
correlation terms equal zero. The power spectrum of

f̂m(ω) and f̂(ω) can be derived from the Fourier trans-
form of Equations (33c), (34a) and (34b). The resulting
expression for the power spectrum of x1 is

〈x̂1(ω)x̂∗
1(ω)〉 =

H2
m0

τ2
1 ω2 + H2

11

〈x̂0(ω)x̂∗
0(ω)〉 +

2τm

(τ2
1 ω2 + H2

11) 〈m〉
+

2τ1

(τ2
1 ω2 + H2

11) 〈n1〉
. (39)

As explained in Equations (27) and (28) in the pre-
vious section, we assume that the autocorrelation of x0

decreases exponentially with a time constant τ0. Hence

〈x̂0(ω) x̂∗
0(ω)〉 = 2η2

0

τ0

τ2
0 ω2 + 1

. (40)

The normalized noise in n1 can be found from the power
spectrum of x1 as explained in Equation (30) of the pre-
vious section:

η2
1 =

1

2π

∫ ∞

−∞

〈x̂1(ω) x̂∗
1(ω)〉 dω

=
H2

m0

H2
11

τ0

τ0 + τ1/H11

η2
0 +

τm

τ1H11 〈m〉
+

1

H11 〈n1〉
.

We recall that the susceptibility is s1 = −Hm0/H11, and
define the burst coefficient as the average number of pro-
teins that are produced from a single mRNA molecule,
b = βτm = τm 〈n1〉 /τ1 〈m〉. Finally we arrive at

η2
1 =

1 + b

H11 〈n1〉
+ s2

1

τ0

τ0 + τ1/H11

η2
0 . (41)

The contribution of the intrinsic noise is captured by the
term (1 + b) / (H11 〈n1〉).

VI. BIOLOGICAL MECHANISMS THAT
FILTER NOISE

Positive feedback that increases susceptibility and
time averaging occurs at intermediate elasticities, i.e.

0 < H11 < 1 in Equation (31). To preserve this behavior
over a large range of input levels a constant value of H11

must be maintened. One possible biological mechanism
that can retain 0 < H11 < 1 is positive feedback that in-
volves negative cooperativity (where one subunit of the
protein inhibits the binding of a second subunit, leading
to Hill coefficients lower than one). Although negative
cooperativity was found in signal transduction pathways
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FIG. 3: Mechanisms to generate positive feedback that filters noise. (A) A transcription factor 1 responds to an input 0 and
activates its own transcription. It also activates the transcription of a repressor 2 that competes with the transcription factor
binding. (B) An input signal 0 activates the transcription of 1, which activates 2, that can also activate 1, closing a positive
feedback loop. Protein 2 also represses its own transcription by competing with 1.

[4, 5], it was not described in transcriptional networks,
to the best of our knowledge.

In this section we suggest a class of transcriptional net-
works that can provide high sensitivity and low noise am-
plification over a large range of input levels. These net-
works include positive feedback combined with competi-
tive inhibition-based negative feedback. The competitive
inhibition effectively decreases the binding affinity and
generates effective negative cooperativity. The proposed
mechanisms are shown in Supplementary Fig. 3. Before
we analyze each case separately, we derive a general for-
mulae for the susceptibility and noise amplification of the
systems in Supplementary Fig. 3.

As derived in Section I the susceptibility vector is given
by

H~s = −~k, (42)

where the components of H are the elasticities Hij and

the terms of ~k are Hi0. For the class of three component
systems at hand

H =

(

H11 H12

H21 H22

)

(43a)

and

~k =

(

H10

0

)

. (43b)

The susceptibility of component n1 to changes in the in-
put n0 will be

s1 = −
H10

H11 − H12H21/H22

. (44)

To find the noise amplification we use Paulsson’s FDT-
based approach ([9] and Section II). Using this method
the matrix of normalized noise components, η, is given
by

Mη + ηMT + D = 0, (45)

where

M =





−α0 0 0
−α1H10 −α1H11 −α1H12

0 −α2H21 −α2H22



 (46a)

and

D =





2α0η
2
0 0 0

0 0 0
0 0 0



 , (46b)

where the αi terms are the degradation rates of each
component. After some algebra the noise amplification
is given by

η2
1

η2
0

= s2
1 ×

α1 (H11 − H12H21/H22)

α0 + α1 (H11 − H12H21/H22)
×

α0 + α1 (H11 − H12H21/H22)

α0 + α1

(

H11 −
α2H22

α0 + α2H22

H12H21

H22

) ×

(

1 −
α0

α0 + α2H22

α1

α1H11 + α2H22

H12H21

H22

)

.(47)

The first two terms in the equation are the susceptibil-
ity and “ideal” time averaging (compare these terms to
Equation (31)). The elasticity H11 is modified by a fac-
tor H12H21/H22. This captures the effects of inhibition
through n2. The last two terms of the equation are cor-
rection terms that arise because the initiation of n2 is
not immediate. These terms approach one when the re-
sponse time of the intermediate component n2 is very
short. From this analysis we immediately note that in or-
der to have good noise properties two requirements must
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be fulfilled: First, the Hill coefficients should be adjusted
such that the elasticities will conform to

0 < H11 − H12H21/H22 < 1, (48)

and second, that component n2 will respond quickly

α2H22 � α1H11. (49)

We now discuss each of the specific examples in Sup-
plementary Fig. 3 separately.

A. Mechanism 1 – Self positive feedback and
activation of a repressor

In the first mechanism of Supplementary Fig. 3a,
an input signal, labeled 0, activates the output gene,
labeled 1. Gene 1 encodes for a transcription factor that
can directly enhance its own transcription. Transcription
factor 1 also activates a repressor 2, that can bind to the
same promoters as 1, thereby competitively inhibiting it.
The differential equations that describe this system are:

dn1

dt
= β1n0

n1/K11

1 + n1/K11 + n2/K12

+ l − α1n1, (50a)

dn2

dt
= β2

n1/K21

1 + n1/K21 + n2/K22

− α2n2. (50b)

where the βi terms denote the transcription rate coeffi-
cients and the Kij terms are the Michaelis-Menten bind-
ing constants. l is some low-level basal transcription
which is needed to avoid the solution n1 = n2 = 0. In
the next derivations we neglect l. From these equations
the elasticities are given by

H10 = −1, (51a)

H11 = 1 −
1 + n2/K12

1 + n1/K11 + n2/K12

, (51b)

H12 =
n2/K12

1 + n1/K11 + n2/K12

, (51c)

H21 = −
1 + n2/K22

1 + n1/K21 + n2/K22

, (51d)

and

H22 = 1 +
n2/K22

1 + n1/K21 + n2/K22

. (51e)

Note that all Hill coefficients in this specific example
equal one. Different Hill coefficients can be used just as
long as the requirement in Equation (48) is fulfilled. In

Fig. 3 of the main text, for example, the repressor binds
its own promoter with a Hill coefficient of 2, whereas all
other Hill coefficients equal 1.

Another requirement from the positive feedback, such
that it can buffer noise effectively, is that it will not sat-
urate over a large range of input signals, otherwise the
susceptibility will vanish. This necessitates strong repres-
sion

n2

K12

�
n1

K11

, (52a)

n2

K22

�
n1

K21

, (52b)

n2

K12

� 1, (52c)

and

n2

K22

� 1. (52d)

Using (52a), (52b), (52c) and (52d) in (50a) and (50b) at
the steady-state, we find that

n1 ≈

(

β1

α1

K12

K11

)2

β2

α2

K22

K21

n2
0, (53a)

and

n2 ≈

(

β1

α1

K12

K11

)

n0. (53b)

The upper bound on n0, above which the system satu-
rates, is given by substituting (53a) and (53b) back into
the conditions in (52a) and (52b):

(

β1/α1

β2/α2

K12

K11

)

n0 � 1. (54a)

and
(

β1/α1

β2/α2

(

K12

K11

)2
K21

K22

)

n0 � 1. (54b)

The lower bound follows from Equations (52c) and (52d),
but the system will probably be limited by intrinsic noise
when the number of molecules is too low.

The expressions in (54a) and (54b) simply mean that
in order to maintain strong repression over a large range
of input signals, the transcription level of the repressor
n2 and its affinity to the promoters should be large com-
pared to that of transcription factor n1. This is the third
condition, beyond Equations (48) and (49), that would
make this system a good noise filter.
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B. Mechanism 2 – Indirect positive feedback
through a self-repressing component

Mechanism 2 is presented in Supplementary Fig. 3.
The input signal n0 activates the transcription of the
output protein n1. The protein n1 can activate the tran-
scription of n2. The latter has two functions (it can also
be two different proteins), on the one hand it enhances
the transcription of the output n1, thus establishing the
positive feedback loop. On the other hand n2 represses its
own transcription through competitive binding, thereby
reducing the effect of the positive feedback. The kinetic
equations for this system are

dn1

dt
= β1n0

n2/K12

1 + n2/K12

− α1n1, (55a)

dn2

dt
= β2

n1/K21

1 + n1/K21 + n2/K22

− α2n2. (55b)

The corresponding elasticities are

H10 = −1, (56a)

H11 = 1, (56b)

H12 = −
1

1 + n2/K12

, (56c)

H21 = −
1 + n2/K22

1 + n1/K21 + n2/K22

, (56d)

and

H22 = 1 +
n2/K22

1 + n1/K21 + n2/K22

. (56e)

The values of the elasticities can be manipulated by vary-
ing the Hill coefficients (which were taken to be 1 in this
example), just as long as the relation in Equation (48) is
kept.

Using similar arguments as in Section VIA we arrive
at the scaling of n1 and n2 when the system is far from
saturation:

n1 ≈

(

(

β1/α1

K12

)2
β2/α2K22

K21

)

n2
0, (57a)

and

n2 ≈

(

β1/α1

K12

β2/α2K22

K21

)

n0. (57b)

Consequently, the upper bounds on n0 to maintain an
unsaturated response are

(

β1/α1

K12

K22

K21

)

n0 � 1, (58a)

and
(

β1

α1

β2

α2

K22

K2
12K21

)

n0 � 1. (58b)

Simulations have shown that this mechanism can in-
deed buffer noise when compared to a linear cascade with
the same susceptibility (not shown).

VII. SIMULATION PARAMETERS

The reactions and parameters that were simulated in
the figures of the main text are given below.
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Description Reaction Rate
Generate mRNA φ → m0 βm0

Degrade mRNA m0 → φ αm0m0

Generate n0 φ → n0 β0m0

Degrade n0 n0 → φ α0n0

Generate n1 include feedback φ → n1 β1
n0

K+n0

(

Kh
1 + nh

1

)

−1

Generate n1 no feedback φ → n1 β1
n0

K+n0

Degrade n1 n1 → φ α1n1

TABLE I: Reactions simulated in Fig. 1 of the main text

Parameter Value
No feedback Feedback

h — 4
αm0 5 5
α0 0.1 0.1
α1 0.1 0.1
βm0 1.5 1.5
β0 67 67
β1 120 1.92 × 1011

K 1000 1000
K1 10 10
n0 200 200

TABLE II: Parameters for the simulation in Fig. 1c of the main text

Parameter Value
h 0 1 2

αm0 5 5 5
α0 0.5 0.5 0.5
α1 0.1 0.1 0.1
βm0 5 5 5
β0 Adjusted according to n0

β1 225 1.52 × 104 1.77 × 106

K 1000 1000 1000
K1 10 10 10
n0 Mean from 125 to 8000

TABLE III: Parameters for the simulation in Fig. 1d of the main text

Description Reaction Rate
Generate mRNA φ → m0 βm0

Degrade mRNA m0 → φ αm0m0

Generate n0 φ → n0 β0m0

Degrade n0 n0 → φ α0n0

Generate n1 φ → n1 β1n0
n1/K11

1+n1/K11+n2/K12
+ l

Degrade n1 n1 → φ α1n1

Generate n2 φ → n2 β2
n1/K21

1+n1/K21+(n2/K22)2

Degrade n2 n2 → φ α2n2

Generate n1 - no feedback φ → n1 c n r
0

TABLE IV: Reactions simulated in Fig. 3 of the main text
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Parameter Value
αm0 5
α0 0.5
α1 0.1
α2 0.1
βm0 0.45
β0 Adjusted according to n0

β1 200
β2 8 × 105

K11 104

K12 10
K21 104

K22 10
l 0.1

n0 Mean value from 100 to 1260

r, c Adjusted to the steady state and susceptibility of the system with the feedback

TABLE V: Parameters for the simulation in Fig. 3 of the main text
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