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1 Motivation

The goal of this section is to derive a mathematical measure by which a
null hypothesis (denoted by H0) can be evaluated for an arbitrary pair of
differentially expressed genes (g1, g2), where g1 is a transcription factor (TF)
gene, and g2 is a possible target gene. Here, H0 asserts that there is no direct
transcriptional regulatory interaction between g1 and g2 – i.e., the protein
product of g1 does not bind the promoter of g2 as a TF or a TF component.
This measure will take into account two different sources of evidence, the
strength of the time-lagged correlation (TLC) between time-course measure-
ments of the expression levels of the gene pair, and the time lag at which the
time-lagged correlation coefficient (TLCC) is statistically most significant.
In this document, the significance measure is first described procedurally
in Sections 2–3. A self-contained presentation of all background material,
∗To whom correspondence should be addressed. Email: aderem@systemsbiology.org,

ishmulevich@systemsbiology.org
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including formal definitions of the kernel density method and proofs of all
Propositions, is given in the second half of this document (Sections 4–5).

2 Description of the method

Because the true set of all pairs of differentially expressed genes (g1, g2)
satisfying the null hypothesis H0 under TLR stimulation cannot be known, it
is necessary to adopt a model for the set of pairs satisfying H0, from which a
background distribution of TLCCs can be estimated. In this work, we choose
to modelH0 by using a setH of pairs of differentially expressed genes (h1, h2)
for which the protein product of h1 is not a transcription factor. Thus, each
gene pair in H automatically satisfies H0. A description of how the set H
is compiled can be found in the main text (see Materials and Methods).
Since both the individual genes making up of pairs within H and the set of
differentially expressed transcription factor genes are distributed throughout
the various co-expressed clusters (see Table S6), using the set H to model the
set of all gene pairs for which H0 holds, is likely a reasonable approximation.
We denote by G the set of gene pairs for which the null hypothesis H0 is
to be evaluated, namely, the set of pairs (g1, g2) of genes for which g1 is a
differentially expressed transcription factor gene, and g2 is a differentially
expressed gene. Let L be the set of time lags at which the TLCC is to be
computed, which in this work is the set {0, 10, 20, 30, 40, 50, 60, 70, 80} min
(see Materials and Methods).

For each τ ∈ L, and for any gene pair (h1, h2) ∈ H, one can compute
the squared TLCC, ρ2

τ (h1, h2), using Equation 2 in the main text. A single
TLCC is obtained representing the correlation across multiple time-course
experiments (see Materials and Methods). It is convenient to represent the
squared coefficient correlation as a family of functions πτ : H → [0, 1] defined
by

πτ (h1, h2) ≡ ρ2
τ (h1, h2),

for all (h1, h2) ∈ H and for each τ ∈ L. For each time lag τ ∈ L, we
construct the histogram of values of πτ (H). To the extent that the elements
of H are representative of the set of all differentially expressed gene pairs
satisfying H0, the smooth probability density function (PDF) estimated
from the values of πτ (H) using kernel density estimation (see Section4.2)
should approximate the continuous probability density function (PDF) for
values of πτ for randomly selected pairs of differentially expressed genes
satisfying H0. In this work, the Gaussian kernel method (formally defined
in Definition 3) is used to obtain a continuous PDF Dπτ estimating the
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true distribution of TLCCs for gene pairs satisfying H0. For notational
simplicity, the dependence of Dπτ on the smoothing length s used in the
Gaussian kernel (see Materials and Methods) is not shown. The PDF Dπτ
is a function from R to R+ (the positive reals), but its values outside of the
unit interval [0, 1] are exponentially suppressed in the limit of small s. By
integrating each Dπτ we obtain a cumulative distribution function (CDF)
Fπτ , which is a smooth function from R to [0, 1]. It can be shown that Fπτ
is a smooth function approximating the fractional rank of squared TLCC
values πτ (H) (see Proposition 1). As explained in Section 4.3, each of the
Fπτ functions (one for each τ ∈ L) is continuous and strictly monotonic.
For each τ ∈ L and for each (h1, h2) ∈ H we compute (using numerical
integration) a fractional rank of the score πτ (h1, h2), which we denote by
µτ (h1, h2),

µτ (h1, h2) = Fπτ (πτ (h1, h2)). (1)

Formally, each µτ is a function from H to [0, 1]. The value µτ (h1, h2) rep-
resents the fractional rank (obtained using the smoothed distribution Fπτ )
of the squared TLCC ρ2

τ (h1, h2) within the set of values ρ2
τ (H). We are now

ready to define the optimal time lag ψ, and an associated significance mea-
sure ω, in terms of {µτ}τ∈L. For each (h1, h2) ∈ H, we compute ψ(h1, h2)
and ω(h1, h2) as follows:

ψ(h1, h2) = argmax
τ∈L

(µτ (h1, h2)) , (2)

ω(h1, h2) = 1−max
τ∈L

(µτ (h1, h2)) , (3)

The value ψ(h1, h2) represents the time lag at which the fractional rank is
maximal, and the value ω(h1, h2) represents the complementary maximum
(across time lags) fractional rank. Formally, ψ is a function from H to L,
and ω is a function from H to [0, 1]. We note in passing that the definition
of ψ encodes the unbiased method of time lag selection. In the standard
method of lag selection, one would define the optimal time lag ψst as

ψst(h1, h2) = argmax
τ∈L

(πτ (h1, h2)) ,

which would introduce a bias towards selecting a τ for which as few sample
points as possible contribute to ρ2

τ (see the main text subsection, Expression
Dynamics Analysis).

At this point, it is convenient to employ a theorem (see Proposition 2 and
Definition 4 in Section 4.3) which says that given the continuous PDF Dπτ ,
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one can define a continuous random variable πτ whose probability density
function is given by Dπτ and whose cumulative distribution function (CDF)
is given by Fπτ . The CDF Fπτ , in the limit of small s, reproduces the cumu-
lative normalized histogram of πτ (H) (see Proposition 3). In the same sense
that Dπτ approximately represents the histogram of TLCC values πτ (H),
the random variable πτ represents computing the TLCC for pairs of genes
selected from H at random with uniform probability (see Section 4.2). Since
a function of a random variable is itself a random variable (see Definition 2),
the smoothed fractional rank of the random variable πτ is itself a continuous
random variable denoted by µτ ,

µτ ≡ Fπτ (πτ ) , (4)

for each τ ∈ L. Recall that for a finite set of N measurements, the rank-
transformed measurements are uniformly distributed between 1 and N . Sim-
ilarly, the fractional rank-transformed TLCCs {µτ} are each uniformly dis-
tributed on the unit interval (see Proposition 8). This means that the family
of random variables {µτ} are identically distributed; however, they are not
(in general) independent.

In terms of the random variables µτ , the the optimal time lag ψ and
complementary maximum fractional rank ω become random variables ω
and ψ,

ψ ≡ argmax
τ∈L

(µτ ) , (5)

ω ≡ 1−max
τ∈L

(µτ ) . (6)

The random variable ψ is discrete (with possible outcomes given by the set
L), and ω is continuous (with possible outcomes spanning the unit interval
[0, 1]). We now briefly address the question of under what assumptions
about Dπτ will ψ and ω be independent. For the set H of non-interacting
gene pairs (i.e., ordered pairs of genes for which the first gene is not a direct
transcriptional regulator of the second), to a good approximation the non-
independence of the {µτ}τ∈L can be expressed in terms of a τ -independent
bias α that contributes additively to each µτ . Under this assumption, ψ and
ω can be shown to be independent (see Proposition 9). Empirical evidence
for the approximate independence of ψ and ω for the set H used in this
work, is shown in Figure S17.

Having described a method for selecting an optimal time lag ψ that is
unbiased on the set H, we now propose a probabilistic method to account for
the biological likelihood of the time lag, in the assessment of the significance
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of the TLCC. Specifically, for a given outcome τ ∈ L for ψ, we compute
relative likelihood of the null hypothesis H0, given the outcome τ for the
optimal time lag. This relative likelihood R(τ) is defined by the equation

R(τ) =
P (H0|ψ = τ)

P (H0)
,

where P (H0) is the prior probability that for (g1, g2) ∈ G, (which means
that g1 a transcription factor gene), the pair satisfies H0 (i.e., that g1 does
not directly regulate g2). The probability P (H0) can be either estimated
from prior knowledge of the transcriptional regulatory network, or treated
as a tunable parameter that controls the strength of the τ -dependence of
R(τ). Each value of P (H0|ψ = τ), for τ ∈ L, is the conditional probability
of H0 for an observed optimal time lag ψ = τ . Formally, R is a function
from L to R+. Using Bayes’s Rule and the rule of total probability, the
above expression for R(τ) can be written as

R(τ) =
1

P (H0)

(
1− (1− P (H0))P (τ |H0)

P (τ)

)
,

where P (τ) is the prior probability of a time lag τ , for a randomly selected
pair of genes. It is straightforward to estimate P (τ) directly from the expres-
sion data set, by computing the frequency at which each time lag τ is found
to be optimal according to Eq. 2 (see Materials and Methods). The function
P (τ |H0) is the conditional probability that, given a direct transcriptional
regulatory interaction, the intrinsic transcriptional time delay (at which the
TLC is most significant) will have the value τ . This function is given an
explicit parametric form in Section 3. Given that ψ is independent of ω, it
follows that ω is independent of R(ψ) (see Proposition 10). We note that
for a biologically plausible time lag τ , R(τ) will take on a smaller value, and
for a biologically implausible time lag, R(τ) will take on a larger value – this
is because R(τ) is the relative likelihood of the null hypothesis, given the
observed time lag.

We can now define our overall measure of significance for the TLCC.
Based on the independence of ω and R(ψ), and in analogy with Fisher’s
method for combining P-values [1], let γ be the random variable defined by

γ ≡ ln (ωR(ψ)) .

The formal construction for interpreting a function of a random variable as
a random variable, is given in Definition 2. The variable γ is continuous
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and takes values on R. We compute the value of γ for all (h1, h2) ∈ H,

γ(h1, h2) = ln (ω(h1, h2)R(ψ(h1, h2))) .

The kernel density estimation procedure is then used to obtain the PDF
Dγ for all values γ(H) (see Definition 3). The CDF Fγ is then obtained
from Dγ by integration. Formally, Dγ is a function from R to R+, and
Fγ is a function from R to [0, 1]. By Definition 2, the composition Fγ(γ)
is a random variable, and by Proposition 8, it is uniformly distributed on
[0, 1]. Since it is uniformly distributed on the unit interval, and since a high-
significance TLCC with optimal time lag will result in a very small value for
γ and thus a very small value for Fγ(γ), the distribution Fγ will be used
for assigning a P value based on the TLCC.

Recalling that the set G is the collection of gene pairs for which the null
hypothesis H0 is to be evaluated, we now describe how Fγ will be used to
compute a P value for gene pair (g1, g2) ∈ G. As was done for the set H,
we compute the squared TLCC for each time lag τ ∈ L and for each pair
(g1, g2) ∈ G, and denote it by ϕτ (g1, g2),

ϕτ (g1, g2) ≡ ρ2
τ (g1, g2).

We use different symbol in order to make explicit ϕτ is a function from G
to [0, 1], whereas πτ is a function from H to [0, 1]. In analogy with the
fractional rank µτ , we compute a fractional rank ντ of a TLCC for a pair
in G, but this rank is computed within the distribution of TLCCs from the
set H:

ντ (g1, g2) = Fπτ (ϕτ (g1, g2)) ,

for (g1, g2) ∈ G and τ ∈ L. We note that each ντ is a function from G
to [0, 1]. Just as was done for the set H, we compute the optimal time
lag (here given the symbol θ) and complementary maximum fractional rank
(here given the symbol ξ):

θ(g1, g2) = argmax
τ∈L

(ντ (g1, g2)) ,

ξ(g1, g2) = 1−max
τ∈L

(ντ (g1, g2)) ,

for all (g1, g2) ∈ G. Finally, in analogy with γ defined on the set H, we
incorporate the θ and ξ values into a combined log score, to which we assign
the symbol σ:

σ(g1, g2) = ln (ξ(g1, g2)R(θ(g1, g2))) ,
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for any (g1, g2) ∈ G. We note that σ is a function from G to R. Let us
denote by σ the continuous random variable corresponding to the function
σ. To the extent that H is an unbiased and representative sampling of gene
pairs for which the null hypothesis H0 is true, σ|H0 should be distributed
approximately as γ, i.e.,

Fσ|H0
' Fγ . (7)

Finally, the overall significance P tlc (where exp stands for “expression”) of
the TLC is computed as

P tlc(g1, g2) = Fγ(σ(g1, g2)),
= Fγ (ln (ξ(g1, g2)R(θ(g1, g2)))) , (8)

for any (g1, g2) ∈ G. By Eq. 7, under the null hypothesis, P tlc will be
distributed approximately uniformly on the unit interval. The smaller the
value of P tlc(g1, g2), the more unlikely is a pair of outcomes (ψ, ω) to occur
by chance (under the null hypothesis) with an associated γ value smaller
than or equal to σ(g1, g2). For this reason, P tlc is taken as the overall
significance measure.

3 Prior Distribution of Transcriptional Time Lags

In this section we describe how the prior distribution for transcriptional
time lags, P (τc, H0), was selected. For a transcription factor gene g1 and a
target gene g2, the overall transcriptional regulatory time delay τc (where
“c” stands for the combined gene-gene delay) can be modeled as a sum of
two delays,

τc = τrna + τprot.

The time τprot represents the delay associated with the transcription factor
protein, including the translation time, folding time, nuclear translocation
times, and (for a down-regulated TF gene) protein half-life. The time τrna

represents the delay associated with the target gene and is the time required
to produce a completed mRNA, once the transcription initiation complex
has been assembled on the gene’s promoter. Although data for τprot and
τrna for all pairs of transcription factors and target genes are not available,
it is possible to estimate moments of the distribution of τc. The components
of the post-transcriptional delay have been estimated as 1–3 min for trans-
lation [2], 7 ± 2.5 min for post-translational assembly [3], and 1–2 min for
nuclear translocation [4], for a total protein delay of approximately 10.5 ±
4 min. Furthermore, τrna is estimated to have a mean value of 40 min and a
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median value of 20 min [5], with a distribution that is skewed [5, 6, 7]. The
distribution of τc over the set of all interacting pairs is therefore modeled
using the gamma distribution with a mean value of 45 min and a variance
of approximately 250 min2,

P (τc|H0) = τk−1
c

e−τc/w

Γ(k)wk
, (9)

with k = 8 and w = 5.625. An overall delay of 45 min is consistent with
the upper limit of the total delay (40 min) estimated in [8]. With the choice
k = 8, this distribution gives a small probability (less than 2%) for a tran-
scriptional regulatory interaction with an overall (gene-gene) delay less than
10 min. Because it is conditioned on the existence of a transcriptional regu-
latory interaction between g1 and g2, we denote this probability distribution
by P (τc|H0). This conditional probability distribution is discretized to ob-
tain a conditional probability of observing each of the possible discrete time
lags τ ∈ L. Here, we assume that the set of time lags L is a uniform binning
with ∆τ = 10 min. In terms of this binning,

P (τ |H0) =
∫ τ+∆τ/2

τ−∆τ/2
P (τc|H0)dτc, (10)

for all τ ∈ L.

4 Gaussian kernel density estimation method

In this section we provide a self-contained description of the method of Gaus-
sian kernel density estimation, and its application to multivariate statistical
data analysis. We also show that P values derived from the kernel density
smoothing method will be uniformly distributed under the null hypothesis.

4.1 Notation

Let R+ denote the set of positive real numbers. Let I denote the closed
unit interval. Let N denote the natural numbers, and N0 denote the natural
numbers plus the number zero. We shall use bold Greek letters to denote
random variables, and the non-bold version to denote an outcome for a
specific sample point. For example, θ would denote a random variable, and
θ would denote an outcome. All random variables are real-valued unless
otherwise noted. The power set of a set A will be denoted P(A). We shall
normally abbreviate an element (h1, h2) ∈ H as h = (h1, h2) ∈ H, and
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similarly g = (g1, g2) ∈ G. For cases where we have a set A = {Ab}b∈B
whose elements are indexed by a set B, we may use the notation {Ab},
where the index set is understood by context. For a probability space S and
a random variable ξ on S, we use E(ξ) to denote the expectation value of ξ.
We shall denote the cardinality of a set A by |A|. We denote a vector in Rn

(n ∈ N) by ~v = (v1 . . . vn), and the Euclidean norm of the vector ~v in Rn by
‖~v‖. We denote by [a, b] the closed interval {x ∈ R|a ≤ x ≤ b}, and by (a, b)
the open interval {x ∈ R|a < x < b}. For a subset A ⊂ X, Ā shall denote
the set-theoretic complement of A within X. If A,B ⊂ X, A − B denotes
the relative complement of B in A. The step function Θ : R → {0, 1} shall
be defined by

Θ(x) =

{
1, if x ≥ 0,
0, if x < 0,

for all x ∈ R. Please note that in this document, γ does not denote the
incomplete gamma function, in contrast to the definition of γ used in the
main text.

4.2 Preliminary definitions

Let A denote a probability space (A,P(A), PA), where A is a finite set of
sample points and PA : P(A)→ I is the uniform probability measure defined
by

PA(S) =
|S|
|A|

,

for all S ∈ P(A).

Definition 1 To each measurable function ζ : A → R is associated a ran-
dom variable on A, which we denote by ζ. The cumulative distribution
function (CDF) Fζ : R→ I associated with ζ is defined by

Fζ(z) =
∑
a∈A

PA({a})Θ(z − ζ(a)),

=
∑
a∈A

1
|A|

Θ(z − ζ(a)). (11)

for all z ∈ R. The expectation value of any random variable ζ on A is given
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by

E (ζ) =
∑
a∈A

PA({a})ζ(a),

=
1
|A|

∑
a∈A

ζ(a).

We note that the CDF function Fζ is monotonic and satisfies

lim
z→−∞

Fζ(z) = 0,

lim
z→+∞

Fζ(z) = 1.

Definition 2 For any measurable function f : R → R and any random
variable ζ on A, we define the composition f ◦ ζ to be the random variable
on A associated with the measurable function (f ◦ ζ) : A→ R.

For finite A, the function Fζ will not be continuous. This makes it difficult
to use Fζ as a measure of significance for a value z ∈ R obtained from
extending ζ outside the set A (e.g., supposing that A is a representative
set of sample points for which the null hypothesis is true, one often wishes
to extend ζ to sample points for which the likelihood of observing ζ, given
the null hypothesis, is to be evaluated). It is therefore convenient to define
a smooth CDF that approximates Fζ . Let K : R → R+ be a continuous
function such that

lim
x→±∞

K(x) = 0,

where x ∈ R, and ∫ ∞
−∞
K(x)dx = 1. (12)

Using the kernel K, a smoothed probability density function (PDF) Dζ :
R→ R+ can be obtained,

Dζ,K(z) =
∑
a∈A

PA({a})K(z − ζ(a)),

=
1
|A|

∑
a∈A
K(z − ζ(a)). (13)

It follows immediately by Eqs. 12 and 13 that Dζ,K satisfies the rule of total
probability, ∫ +∞

−∞
Dζ,K(z)dz = 1.
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Given Dζ,K, a smoothed cumulative distribution function (CDF) Fζ,K : R→
I is defined by

Fζ,K(z) =
∫ z

−∞
Dζ,K(z′)dz′

for all z ∈ R. It follows directly that

lim
z→−∞

Fζ,K(z) = 0, (14)

lim
z→+∞

Fζ,K(z) = 1. (15)

BecauseDζ,K(z) > 0 for all z ∈ R, the function Fζ,K is strictly monotonically
increasing, and thus onto.

4.3 Univariate Gaussian kernel density estimation

A particularly useful family of kernels is based on the Gaussian. Let {Gs}s∈R+ :
R→ R+ be a family of maps defined by

Gs(x) =
1√
2πs

e−
x2

2s2 , (16)

for all x ∈ R and for all s ∈ R+. The parameter s is called the smoothing
length. Taking K = Gs, the PDF function Dζ,Gs is said to be the Gaussian
kernel density smoothed PDF of ζ, which for simplicity we will denote by
Dζs . It is convenient to formalize this definition.

Definition 3 Let A = (A,P(A), PA) be a probability space with A finite and
PA uniform. Let ζ : A → R be measurable, and denote by ζ the associated
random variable on A. Let s ∈ R+. We define the Gaussian kernel density
smoothed PDF function Dζs : R→ R+ and CDF function Fζs : R→ I of ζ,
on the space A, by the equations

Dζs(z) =
1√

2π|A|s

∑
a∈A

e−
(z−ζ(a))2

2s2 , (17)

Fζs(z) =
∫ z

−∞
Dζs(z

′)dz′, (18)

for all z ∈ R.

The notation Dζs and Fζs shall be used in place of the equivalent (but more
cumbersome) notation, Dζs,Gs and Fζs,Gs . The function Fζs can be formally
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represented in terms of the error function erf(x),

Fζs(z) =
1

2|A|
∑
a∈A

(
1 + erf

(
z − ζ(a)√

2s

))
. (19)

For s ∈ R+, this function is continuously differentiable. For the sake of
completeness, we note that, by the definition of Fζs in Definition 3 above,

Dζs(z) =
d

dz
Fζs(z),

for all z ∈ R.

Proposition 1 Given Fζs and Fζ defined by Eqs. 18 and 11, respectively,
the following holds everywhere except perhaps on a set of measure zero:

lim
s→0+

Fζs = Fζ .

Proof Take the s→ 0+ limit of Eq. 19, and use the definition of the error
function, to obtain the desired result.

Thus for s > 0, Fζs is a smooth function approximating Fζ . Given that
Dζs is continuous and positive-definite (see Eq. 17), Fζs is continuous and
strictly monotonically increasing; therefore, it is invertible. The function Fζs
can be interpreted as the CDF of a continuous, real-valued random variable
ζs on a different probability space, as we now explain. Let I ≡ (I,B, PI)
be the probability space with σ-algebra B and unit probability measure
PI : B→ I.

Definition 4 Given a map ζ : A → R and the associated Gaussian kernel
density smoothed PDF Dζs : R → R+ and CDF Fζs : R → I as defined in
Definition 3, let ζs : I → R be the map defined by

ζs(u) = F−1
ζs

(u),

for all u ∈ I. The map ζs constitutes a continuous random variable on I,
denoted ζs, for which the value at sample point u ∈ I is given by ζs(u). For
any continuous function f : R → R, the expectation value of f(ζs) on I is
given by

E (f(ζs)) ≡
∫ 1

0
f(ζs(u))du.
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Proposition 2 Given Fζs defined as in Definition 3 and ζs defined as in
Definition 4, the CDF of ζs is precisely Fζs.

Proof Compute PI({u ∈ I|ζs(u) ≤ z}) for all z ∈ R. Use the definition of
ζs, and the fact that Fζs is strictly monotonic.

As a consequence of Proposition 2, by differentiation, we obtain that the
continuous random variable ζs is distributed according to the PDF Dζs . To
summarize, given a random variable ζ on a discrete probability space A,
and a smoothing length s ∈ R+, we can obtain a smooth CDF and PDF
from Definition 3, and a corresponding continuous random variable ζs on the
probability space I using Definition 4. We now prove a key limit equivalence
between expectation values involving ζ, and expectation values involving ζs.

Proposition 3 For ζ and ζs defined in Definitions 3 and 4, and for any
continuous function f : R→ R,

lim
s→0+

E (f(ζs)) = E (f(ζ)) .

Proof Any continuous function is measurable, so f(ζ) is a random variable
on A, and f(ζs) is a random variable on I. Use Definition 4, and perform a
change-of-variable u = Fζs(z) under the integral. Note that the interchange
of the s→ 0+ limit and the integral is permissible in the last step, because
the integrand is uniformly continuous in s. Use the fact that the zero-
variance limit of a Gaussian is the Dirac delta distribution δ(x).

Proposition 3 implies that for sufficiently small s, any order moment of ζs
will approximate the corresponding moment of ζ. In this sense, the distri-
bution of the continuous random variable ζs approximates the distribution
of ζ. This result enables us to approximately compute the expectation value
of any function involving ζ on the discrete probability space A, as an ex-
pectation value (on the space I) of the corresponding function of ζs.

4.4 Multivariate Gaussian kernel density estimation

The above construction of a PDF Dζs from a map ζ is useful when we are
concerned only with the univariate probability distribution of a particular
variable, say, ζs. However, in many cases, we will have a collection of maps,
and will wish to obtain a smoothed multivariate PDF for the collection.
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Definition 5 Let A = (A,P(A), PA) be a probability space over a finite set
A with uniform probability measure PA. Let n ∈ N and N = {1, . . . , n}.
Let {ζi}i∈N : A → R be a family of maps, which we can write as a single
vector-valued map ~ζ : A → Rn. Let {ζi}i∈N be the random variables on A
associated with the maps ~ζ, which we can also denote by ~ζ. Let s ∈ R+.
The Gaussian kernel density smoothed joint PDF of {ζi}i∈D on the space A
shall be defined as a map D ~ζs

: Rn → R+ satisfying

D ~ζs
(~z) =

∑
a∈A

1
(2π)

n
2 sn|A|

e−
‖~z−~ζ(a)‖2

2s2 , (20)

for all ~z ∈ Rn. The corresponding joint CDF is a continuously differentiable
map F ~ζs : Rn → I satisfying

F ~ζs(~z) =
∫ z1

−∞
dz′1 · · ·

∫ zn

−∞
dz′nD ~ζs

(~z′), (21)

for all ~z ∈ Rn.

It should be noted that Definition 5 does not depend on the {ζi}i∈N being
independent.

Proposition 4 The marginal Gaussian kernel density smoothed probability
distribution for ζi is the same as the univariate kernel density smoothed
distribution for ζi from Definition 3.

Proof Recall from Definition 3 the formulas for the univariate Gaussian
kernel density smoothed PDF D(ζi)s

: R → R+ and CDF F(ζi)s
: R →

I for each map ζi. (For simplicity, we shall henceforth denote these two
functions by Dζi,s and Fζi,s). The marginal distribution for ζi is obtained
by integrating D ~ζs

over any hyperplane of Rn with zi held fixed.

The function D ~ζs
satisfies the rule of total probability,∫ +∞

−∞
dz1 · · ·

∫ +∞

−∞
dznD ~ζs

(~z) = 1.

Since D ~ζs
(~z) > 0 for all ~z ∈ Rn, it follows that F ~ζs , is strictly monotonic

in any of its variables taken one at a time, with the other variables being
held fixed and nonzero. By Sklar’s Theorem [9], given F ~ζs , there exists a
continuous function C ~ζs : In → I such that

C ~ζs
(
Fζ1,s

(z1), . . . ,Fζn,s(zn)
)

= F ~ζs(~z), (22)
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for all ~z ∈ Rn. The function C ~ζs is called a copula. It follows from the
previous equation that

C ~ζs (1, . . . , 1, ui, 1, . . . , 1) = ui, (23)

C ~ζs (u1, . . . , ui−1, 0, ui+1, . . . , un) = 0,

for all ~u ∈ In and for all i ∈ N . As a corollary, we have

C ~ζs (1, . . . , 1) = 1, (24)

so C is onto. Furthermore, since the Fζi,s are strictly monotonic (for all
i ∈ N), and since F ~ζs is strictly monotonic in any one of its variables when
the other variables are nonzero and held fixed, it follows from Eq. 22 that C ~ζs
is strictly monotonic as a function of any one of its variables, when the other
variables are nonzero and held fixed. We shall now construct a σ-algebra F

on In, and an associated probability measure PIn : F→ R+ as follows. Let
V (~u) be a box with one corner at the origin in In and the opposite corner
given by the vector ~u ∈ In,

V (~u) ≡ [0, u1]× · · · × [0, un], (25)

for any ~u ∈ In. We are now in a position to define F as a set consisting of
all possible countable unions of such boxes and their complements, i.e., all
possible subsets S ⊆ In of the form

S = V (~u1) ∪ · · · ∪ V (~ui) ∪ V (~ui+1) ∪ · · · ∪ V (~uj), (26)

for all i, j ∈ N0 such that i ≤ j, and where ~uk ∈ In for all k. It is easy to see
from Eq. 26 that F is closed under complementation and under countable
unions of any of its members. Thus, F is a σ-algebra on In. We shall now
define the measure PIn generatively. Starting with the corner box (“cbox”)
set V (~u), we define

PIn (V (~u)) = C ~ζs
(u1, . . . , un) , (27)

for all ~u ∈ In. On the complement corner box, or “ccbox”, we define

PIn
(
V (~u)

)
= 1− PIn (V (~u)) ,

= 1− C ~ζs
(u1, . . . , un) , (28)
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for all ~u ∈ In. The density of C per unit n-dimensional volume of sample
space is given by a function Q : In → R+ satisfying∫ u1

0
du′1 · · ·

∫ un

0
du′nQ(~u′) = C(~u),

or equivalently,

Q(~u) =
d

du1
· · · d

dun
C(~u), (29)

for all ~u ∈ In. Using Q, we can now define the measure on the arbitrary set
S ∈ F,

PIn(S) =
∫
S
dC =

∫
S
dnuQ(~u), (30)

which reduces to Eqs. 27 and 28 when S = V (~u) and S = V (~u), respectively.
By the fact that Q ≥ 0, it follows that PIn(S) ≥ 0 for all S ∈ F, and thus,
PIn satisfies the first probability axiom. Computing PIn(In), we find

PIn(In) =
∫
In
dnuQ(~u),

= C(1, 1, . . . , 1),
= 1,

with the last step due to Eq. 24. Thus, PIn satisfies the second probability
axiom. Finally, for a countable sequence of disjoint sets {Si}i∈N,

S = S1 ∪ S2 ∪ · · · ,

we find

PIn(S) = PIn(S1 ∪ S2 ∪ · · · ),

=
∫
S
dnuQ(~u),

=
∑
i

∫
Si

dnuQ(~u),

=
∑
i

PIn(Si),

and thus, PIn satisfies the third probability axiom. Thus, PIn is a probability
measure on F, and the ordered triple (In,F, PIn) is a probability space, which
we shall call In.
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Definition 6 Given the family of maps {ζi}i∈N : A→ R and the associated
univariate Gaussian kernel density smoothed PDFs Dζi,s : R → R+ and
CDF Fζi,s : R → I (with s ∈ R+) defined in Eqs. 20 and 21, we define a

family of maps {ζ̂i,s}i∈N : In → R, by

ζ̂i,s(~u) = F−1
ζi,s

(ui), (31)

for all ~u ∈ In and for all i ∈ N . Since these maps are continuous, they
constitute a family of random variables on In, which we denote by {ζ̂i,s}i∈N .
For any continuous function f : Rn → R, the expectation value of f({ζ̂i,s})
is given by

E(f({ζ̂i,s})) =
∫ 1

0
du1 · · ·

∫ 1

0
dunQ(~u)f({ζ̂i,s(~u)}),

where Q is defined in Eq. 29

Proposition 5 For any i ∈ N , the marginal CDF of ζ̂i,s, defined in Eq. 31,
is given by Fζi,s.

Proof We wish to evaluate PIn({~u ∈ In|ζ̂i,s(~u) ≤ z}), for all z ∈ R and
i ∈ N . Use the definition of ζ̂i,s above, and then use the fact that Fζi,s is
strictly monotonic and onto, to compose Fζi,s on both sides of the inequality,
yielding

PIn({~u ∈ In|F−1
ζi,s

(ui) ≤ z}) = PIn({~u ∈ In|ui ≤ Fζi,s(z)}).

We recognize the set under the curly braces as a box which can be repre-
sented using V defined in Eq. 25,

PIn({~u ∈ In|ui ≤ Fζi,s(z)}) = PIn(V (1, . . . , 1,Fζi,s(z), 1, . . . , 1)).

This can be evaluated using Eq. 27 and Eq. 23 to obtain the desired result,

PIn({~u ∈ In|ζ̂i,s(~u) ≤ z}) = Fζi,s(z).

Having established that the marginal CDF of ζ̂i,s is the same as the uni-
variate CDF of ζi,s, we now dispense with the hat symbol. We shall denote
the collection of random variables {ζi,s}i∈N by the vector notation, ~ζs.
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Proposition 6 The joint CDF of {ζi,s}i∈N is F ~ζs.

Proof We wish to evaluate PIn({~u ∈ In|ζi,s(~u) ≤ zi,∀i ∈ N}). As for the
case with the marginal distribution, we use Eqs. 25, 27, and 22,

PIn({~u ∈ In|ζi,s(~u) ≤ zi,∀i ∈ N}) = PIn({~u ∈ In|ui ≤ Fζi,s(zi), ∀i ∈ N}),
= PIn(V (Fζ1,s

(z1), . . . ,Fζn,s(zn))),

= C(Fζ1,s
(z1), . . . ,Fζn,s(zn)),

= F ~ζs(~z).

This proves the desired result.

Proposition 7 Given any continuous function f : Rn → R, given ~ζ defined
in Definition 5, and given ~ζs = {ζi,s}i∈N where the {ζi,s}i∈N are defined as
in Definition 6,

lim
s→0+

E(f( ~ζs)) = E(f(~ζ)).

Proof

E(f( ~ζs)) =
∫
In
dnuQ(~u)f(F−1

ζ1,s
(u1), . . . ,F−1

ζn,s
(un)),

=
∫

Rn
dnzf(~z)

(∏
i∈N
Dζi,s(zi)

)
Q
(
Fζ1,s

(z1), . . . ,Fζn,s(zn)
)
,

=
∫

Rn
dnzf(~z)D ~ζs

(~z).

Note that the change of variable ~z = {zi}i∈N , where zi = F−1
ζi,s

(ui) for all
i ∈ N , has been used after the first line. Observing that the integrand above
is uniformly continuous in s, and taking the limit s→ 0+, we find

lim
s→0+

E(f( ~ζs)) =
∫

Rn
dnzf(~z) lim

s→0+
D ~ζs

(~z),

=
1
|A|

∑
a∈A

∫
Rn
dnzf(~z)δ(~z − ~ζ(a)),

= E(f(~ζ)),

which completes the proof.
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Definition 7 The random variables {ζi,s}i∈N are said to be independent if
and only if their multivariate PDF D ~ζs

is separable, i.e., it satisfies

D ~ζs
(~z) =

n∏
i=1

Dζi,s(zi),

in terms of the univariate densities {Dζi,s}, for all ~z ∈ Rn.

We have presented a framework for approximately computing arbitrary
moments of a random variable ζ on the probability space A with finite
sample set A. The appropriate estimate is shown to be the corresponding
moment of a continuous random variable ζs (on the probability space I)
which is induced from the Gaussian kernel density smoothing of the discrete
PDF for ζ. We have also generalized the framework to a family of dis-
crete random variables {ζi}, obtaining a corresponding family of continuous
random variables {ζi,s} on the probability space In, and established the
asymptotic equivalence of expectation values of scalar functions of ~ζ and ~ζs.
Having established this asymptotic equivalence, we shall henceforth exclu-
sively work with the continuous random variable ζs obtained using Gaussian
kernel density estimation for a specific value of s (see Materials and Meth-
ods, main text), and for notational clarity, the s subscript will be now be
dropped. Thus, the symbol ζ shall be understood as the continuous random
variable whose density distribution is the Gaussian kernel density smoothed
PDF (see Definition 4).

4.5 Uniform distribution of CDF of a random variable

We now state a crucial property of a random variable derived from the CDF
of another random variable. To begin with, let B ⊆ R be nonempty and
connected (and not a single-point set). Let γ : I → B be a surjection,
and let γ be the associated random variable on I, which we assume is
continuously distributed on B (in a sense that will be defined shortly). The
CDF Fγ : B → I can be defined as the probability that γ ≤ u, over the
space I,

Fγ(b) ≡ PI
({
u′ ∈ I|γ(u′) ≤ b

})
. (32)

for all b ∈ B. The function Fγ also satisfies the same limits as Eqs. 14 and
15, and it is monotonically increasing. Let us also construct the probability
density function (PDF) of γ, which is a map Dγ : B → R+ defined by

Dγ(b) =
d

db
Fγ(b), (33)
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for all b ∈ B. We assume that the CDF Fγ is continuously differentiable, so
that Dγ is continuous on B (with the topology inherited from R), i.e., that
γ is continuously distributed. We now prove a lemma about Fγ .

Lemma 1 Given γ, B, and Fγ defined as above, Fγ is strictly monotonic.

Proof Assume that Fγ is not strictly monotonic. Since Fγ is by definition
monotonic (and assumed to be continuously differentiable), and since B is
connected, there must exist an interval Q ⊂ B on which Fγ is constant.
Then Dγ(Q) = 0, which implies that

PI ({u ∈ I| inf(Q) ≤ γ(u) ≤ sup(Q)}) = 0, (34)

implying that γ is not a surjection, which is a contradiction. This proves
the Lemma.

As a corollary, we note that the function Fζ obtained using Gaussian ker-
nel density estimation, is strictly monotonic (which was deduced previously
following Definition 3.

Proposition 8 Let γ be a continuously distributed random variable on I,
such that the associated map γ : I → B is a surjection, and where B ⊆ R
is connected and nonempty (and not a single-point set). Let η : I → I be a
map defined by

η(u) = PI
(
{u′ ∈ I|γ(u′) ≤ γ(u)}

)
≡ (Fγ ◦ γ) (u) (35)

for all u ∈ I. Then the associated random variable on I, called η, is uni-
formly distributed on the unit interval.

Proof Let Fη : I → I be the CDF of η. Since η is a random variable on I,
by the same definition as in Eq. 32, Fη obeys

Fη(u) = PI
({
u′ ∈ I|η(u′) ≤ u

})
, (36)

for all u ∈ I. Using Eq. 35,

PI
({
u′ ∈ I|η(u′) ≤ u

})
= PI

({
u′ ∈ I|Fγ(γ(u′)) ≤ u

})
. (37)

Since Fγ is continuous and strictly monotonic, F−1
γ : I → B exists and is a

surjection, and we obtain

PI
({
u′ ∈ I|Fγ(γ(u′)) ≤ u

})
= PI

({
u′ ∈ I|γ(u′) ≤ F−1

γ (u)
})
. (38)
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Since γ is onto, for any u ∈ I, there exists at least one element v ∈ I such
that γ(v) = F−1(u). Select any map g : I → I such that for all u ∈ I,

γ(g(u)) = F−1(u). (39)

We then have

PI
({
u′ ∈ I|γ(u′) ≤ F−1

γ (u)
})

= PI
({
u′ ∈ I|γ(u′) ≤ γ (g(u))

})
. (40)

By Eq. 32, this is just

PI
({
u′ ∈ I|γ(u′) ≤ γ (g(u))

})
= Fγ (γ(g(u))) , (41)

which by Eq. 39 is just

PI
({
u′ ∈ I|γ(u′) ≤ γ (g(u))

})
= u. (42)

We have thus established that

Fη(u) = u, (43)

and therefore, η is uniformly distributed on the unit interval.

The random variable ζs defined in Definition 4 (now called ζ) has a probabil-
ity distribution Dζ over R that is continuous and positive-definite. Therefore
by Proposition 8, the random variable on the probability space I defined by
Fζ(ζ) = Fζ ◦ ζ is uniformly distributed on the unit interval.

5 Independence Proofs

In this section, we show that ψ and ω defined as in Eqs. 5–6, with certain
reasonable assumptions about Dπτ , are independent. We then show that
this implies that ω and R(ψ) are independent.

Recall that our starting point are the maps πτ : H → R+. By kernel
density estimation as described in Definition 5, we obtain the joint CDF
F~π : Rl → I for the maps {πτ}τ∈L. By Definition 6, the maps {πτ} are
associated with a family of continuous random variables {πτ}τ∈L on I l.
Recall that in Eq. 4, by composing Fπτ with {πτ} (see Definition 2), we
obtain family of random variables {µτ} (on I l) that take values on the unit
interval. By Proposition 4, the marginal distribution of each µτ on I l is
the same as the (kernel density smoothed) univariate distribution of µτ on
I. According to Proposition 8, each {µτ} defined as a univariate function
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on I is uniformly distributed on the unit interval. Therefore, the {µτ}
are marginally identically distributed, however, they are not independent.
Nevertheless, to the extent that the {µτ} can be decomposed into the sum of
two random variables such that the τ -dependent term (taken as a collection)
are mutually independent, we now show that ψ and ω are independent.

Proposition 9 Let {µτ} be a collection of identically distributed random
variables. Assume there exists a continuous random variable α on I and a
family of random variables {ετ}τ∈L such that

µτ = ετ +α (44)

for all τ ∈ L, and such that {ετ} are are mutually independent and inde-
pendent of α. The random variables ψ and ω, as defined in Eqs. 5 and 6,
are independent.

Proof Since the {µτ}τ∈L are identically distributed it follows from Eq. 44
that the variables {ετ}τ∈L are identically distributed. We further observe
that

ψ = argmax
τ∈L

(ετ ) . (45)

Hence, ψ is independent of α. Let us now define a continuous random
variable β by

β ≡ max
τ∈L

(ετ ) . (46)

Since the {ετ}τ∈L are independent and identically distributed, it also follows
that ψ is independent of β. Thus, ψ is independent of α and β. Since the
{ετ} are independent of α, it follows from Eq. 46, that α is independent of
β. Therefore ψ is independent of α+ β. Now, from Eqs. 6, 44, and 46, we
obtain

ω = 1− (β +α). (47)

It follows immediately that ω is independent of ψ.

The assumption that the residuals {ετ}τ∈L are independent of the bias α is
much weaker than assuming that the {µτ}τ∈L are independent. The validity
of the assumption embodied in Eq. 44 for the particular case of the set H of
non-interacting gene pairs has been demonstrated empirically by observing
that the distribution Fω (ω|ψ) is (to a reasonable approximation) uniform,
and equivalent to the marginal distribution of Fω (ω) (see Figure S17, Sup-
plementary Information). A common situation involving the decomposition
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of Eq. 44 is the scenario where α is defined as the average (over τ) of µτ ;
in that case, the premise of Proposition 9 would be that the τ -dependent
variation of µτ about the mean, is independent of the mean value.

We now prove that given two real-valued random variables α and β and
a differentiable function f : R→ R, α (assumed to have countable solutions
to f(β) = γ for each possible γ) is independent of f(β).

Proposition 10 Let α and β be independent real-valued random variables,
and let f : R → R be a differentiable function. Then α and f(β) are
independent.

Proof We denote by Dαβ the joint probability density of outcomes α and β.
Since α and β are independent, the joint probability density for outcomes
α and β satisfies

Dαβ(α, β) = Dα(α)Dβ(β),

where Dα is the marginal probability density for the outcome α, and Dβ is
the marginal probability density for the outcome β. A formula for computing
the probability density function (PDF) of a function of a random variable
in terms of the PDF of the random variable, is given in [10]. Using this
formula, the joint probability density of outcomes α and γ is:

Dαγ(α, γ) =
n(γ)∑
i=1

Dαβ(α, βi)
f ′(βi)

,

from which it follows that α and γ are independent. Note that monotonicity
of f is not required in this proof, which is important for its application to
R(τ) in the significance test (see Section 2).
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