Table S4. Transcription related parameters for $\mathbf{2}$ doub/h, $37^{\circ} \mathbf{C}$. Transcription related parameters as defined in [28], obtained here for 2 doub/h. Values in bold were estimated. See S1.2 in Text S1 for further explanations.

Genetic parameter	Units	P1 $^{\mathrm{a}}$	$\mathbf{P 2}^{\mathrm{a}}$	constitutive $^{\mathrm{a}}$	repressable $^{\text {a }}$	pause $^{\mathrm{a}}$
$D_{i}=V_{\text {cell }}(2$ doub/h $) \cdot d_{i}$	average copies per cell	27^{b}	27^{b}	40.4^{c}	$\mathbf{4 0 8 . 4}^{\mathrm{d}}$	161.8^{e}
$V_{i}^{\max }$	min/min	110^{f}	110^{f}	33^{g}	1.5^{h}	3.3^{i}
c_{i}	nuc/sec	85^{j}	85^{j}	52^{j}	52^{j}	$\mathbf{0 . 8 9}^{\mathrm{d}}$
$K_{m, i}$	molec/cell	1240^{l}	2531^{k}	405^{k}	405^{k}	405^{k}
L_{i}	base pairs	6000^{m}	6000^{m}	2000^{m}	1000^{m}	1000^{m}

${ }^{a}$ Promoter classes as defined by [28].
${ }^{\mathrm{b}}$ The average number of copies of the $r r n$ operon per cell, $D_{r r n}(\mu)$, is given by Eq. S7: $D_{r n}(\mu)=\sum_{j=1}^{7} 2^{\mu\left(C\left(1-m j_{j}^{(m)}\right)+D\right)}$, where $m_{j}^{(r r n)}$ are the rrn operon map locations given in Table S1.
${ }^{c}$ According to [28], $\left[\mathrm{P}_{\text {constitutive }}\right]=1.5\left[\mathrm{P}_{\text {rrn }}\right]$, in order to fit to (1) transcription of all r-proteins and (2) mRNA synthesis rate. This is consistent with the length of the r-protein gene class given in Table S 1 : the total DNA per chromosome associated with this gene class is roughly $40.4 /(27 / 7=\text { gene dosage per gene })^{*}(2000 \mathrm{bp})=20,948=$ total length of constitutive class coding genes, compared with $L_{r \text {-protein }}=21252$ (Table S1).
${ }^{\mathrm{d}}$ Estimated value - see S1.2.
${ }^{\mathrm{e}}$ According to [28], based on known fractions of intermittently inactive RNAp in the cell $\left[\mathrm{P}_{\text {pause }}\right]=6\left[\mathrm{P}_{\mathrm{rm}}\right]$.
${ }^{\mathrm{f}}$ Estimated in [3]. Assumed to be growth rate independent [28].
${ }^{\mathrm{g}}$ As measured for the spc ribosomal promoter, which is a representative promoter for this class (see [28]).
${ }^{\text {h }}$ As measured for β-lactamase promoter, which is taken to be a representative promoter for this class (see [28]).
${ }^{i}$ Maximum initiation rate was set to be ten fold lower than the $\mathrm{V}^{\max }$ for the constitutive gene class, assuming pause genes are blocked 90% of the time [28].
${ }^{j}$ See table 3 in [17].
${ }^{\mathrm{k}}$ Constitutive promoter binding affinities scale according to cell volume with respect to their values at 2.5 doub $/ \mathrm{h}$ and are taken from [28]. Volumes are given in Table S2.
${ }^{1}$ Taken from table 5 of [105]: $\mathrm{K}_{\mathrm{P} 1}: \mathrm{K}_{\mathrm{P} 2}$ at $(2.14$ doub $/ \mathrm{h})=0.49: 1$, i.e. $1240=0.49 * 2531$.
${ }^{\mathrm{m}}$ See tables 1 and 2 in [28].

