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1. GO Analysis of Targets of Global Regulators 
 

In this section we present significant Gene Ontology (GO) categories for the seven 

transcription factors (TFs) with the largest number of predicted and curated targets. The 

analysis was done separately on the predicted set and the curated set. The p-value was 

computed based on the hypergeometric distribution. Only categories with at least 5 genes 

were included in the analysis. The corrected p-value for testing multiple categories is 

based on a randomization procedure in which a set of the same size was randomly drawn 

500 times from the base set of all genes considered. The corrected p-value is then the 

proportion of times in which a GO p-value for a random set was more significant than an 

actual p-value. We observe that in some cases a significant GO category for the predicted 

targets of a TF is also significant for the curated targets, while in other cases the category 

is only significant among the predicted targets. 

 
ArcA – predicted 
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ArcA – curated 
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CRP – predicted 

 
 
CRP – curated 
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Fis – predicted 

 
 
Fis – curated 
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FNR – predicted 

 
 
FNR – curated 
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H-NS – predicted 

 
 
H-NS – curated 
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IHF - predicted 
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IHF – curated 
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NarL - predicted 
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NarL - curated 
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2. GO Analysis Results of Splits in DREM Map 
 

In this section we present significant GO enrichments for the sets of genes assigned to 

the same path out of splits conditional on the set of genes going into the split. The split 

number and the path (i.e. whether it was the low, middle, or high path) is indicated above 

each table and corresponds to Figure 5A in the main manuscript.  

Conditional on the set of genes passing the filtering criteria, the upregulated genes at 

the first split were most enriched for carbohydrate transport (p-val <10-8), while the 

downregulated genes were most enriched for biosynthetic process genes (p-val <10-30) 

including translation genes (p-val <10-24). The most enriched biological process for the 

highest activated path conditioned on the set of genes going into split 2 was 

oxidoreductase activity (p-val <8×10-6). The lower path out of split 6 was enriched for 

genes related to the ribosome (p-val< 10-11) and aerobic respiration (p-val <4×10-7). 

Genes on the lower path out of split 9, were enriched for genes known to be involved in 

aerobic and cellular respiration (p-val < 2×10-5), TCA cycle (p-val < 4×10-5), and 

coenzyme catabolic processes (p-val < 4×10-5). Additional GO category enrichments can 

be found in the tables below. Overall the GO categories found here among activated and 

repressed genes are consistent with the previously known literature on E. coli anaerobic 

response [1,2,3,4]. 
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Split 1 - Low 
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Split 1 - High 

 
 
Split 2 - Low 

 
 
Split 2 - Middle 

 
 
Split 2 - High 

 
 
Split 3 - High 

 
 
Split 5- High 
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Split 6 - Low 

 
 
Split 7 - Low 

 
 
Split 9 - Low 
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3. Dynamic Regulatory Maps at Different Score Thresholds 
 

The following two maps are based on the same input data as the maps shown in 

Figure 5A and 5C of the main manuscript, but with a stricter score requirement of (10-5) 

for a TF and regulatory mode label (1 activator; -1 repressor) to appear on a path out of a 

split. The split score is computed based on the hypergeometric distribution (see 

Supporting Methods). 

Map using Prediction Extended Input (10-5 Score Threshold) 

 
Map using Curated Input (10-5 Score Threshold) 

 



 17 

The following maps are based on the same input data as the maps shown in Figure 5A 

and 5C of the main text, but with a looser score requirement of (10-3) for a TF label to 

appear on a path out of a split. 

Map using Prediction Extended Input (10-3 Score Threshold) 

 
 

Map using Curated Input (10-3 Score Threshold) 
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4. Motif Scanning Distribution of Location of Sites 
 

For the 71 TFs with a confirmed target based on direct evidence in EcoCyc [5] and a 

motif positional weight matrix in RegulonDB, we scanned for binding site motifs on both 

strands in a 350 base pair region around any gene which was the first gene transcribed in 

a transcriptional unit based on the RegulonDB list [6]. The 350 base pair region ranged 

from 50 base pairs downstream of the start of the coding sequence to within 300 base 

pairs upstream of the start of the coding sequence. The base that was closest to the 

downstream end of the region determined the position of the motif. Only one base of the 

motif needed to lie within the upstream boundary, but the entire motif would need to be 

within the downstream boundary. For a gene we associated its motif score with the score 

in the region of the first gene transcribed in its transcriptional unit. If the gene belonged 

to several transcriptional units with different initial genes we used the highest score. 

Below we plot distribution of the location of highest scoring sites we associated with 

genes, only counting sites with a positive score and a site once for each TF. The plot is 

aggregated over all 71 TFs. As can be seen the number of motif hits tended to be lower 

near the boundaries of the region we consider. One can also observe a positional bias for 

binding sites immediately upstream of the start of the coding region. 
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5. Extended Analysis of ChIP-chip Validation 
 

In this section, we present below an extended version of Figure 3 from the main 

manuscript. In the figure below we have added the following to Figure 3: 

1. To all the graphs we added a curve which represents the expected 95th percentile 

performance of a method that randomly orders genes. This curve was computed 

based on the hypergeometric distribution.  

2. For all graphs we added a curve based on using SEREND on only the expression 

data and direct targets in EcoCyc without the motif input, and also without using 

the self-training procedure. The values from this curve corresponds to the 

expression feature of the meta-classifier during the initial iteration of SEREND, 

before any labels have changed.  

3. For all graphs we added a curve based on the results of the Relevance Network 

approach [7] using the square of the correlation coefficient which was previously 

reported to outperform mutual information for network inference on this data [8]. 

We applied the correlation coefficient on the same normalized and transformed 

gene expression data as described in the main manuscript. 

4. For FNR and CRP we added curves based on the direct set of results returned by 

RegTransBase [9] without extending the list to include other genes listed in the 

same transcriptional unit. 

5. For FNR case we have add a point corresponding to the set of genes listed in the 

Supplement of Ref. [10] as being differentially expressed in FNR knockouts.  

6. For the H-NS case we extend here the list of the H-NS bound targets listed in Ref. 

[11] to include any other gene in the same RegulonDB [6] transcriptional unit as a 

gene from this H-NS bound list. 
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6. Effect of Self-Training Parameter k 
 
For the self-training procedure as stated in the main text of the manuscript, SEREND 

would change the label of a gene g based on a formula that depends on a parameter k. As 

k increases the self-training method requires greater confidence from the classifier that 

the gene is actually regulated by the TF before changing its label. When k is sufficiently 

high no gene will be relabeled as a target of the TF making the SEREND method similar 

to a version that does not use self-training.  

In the figure below we investigate the effect of this choice of parameter value on the 

results that would be obtained with our ChIP-chip validation for three more values of k: 

1.5, 4, and 10. We observe from these figures that in the FNR case with values of k=4 

and k=10 we observe an improvement using self-training that we did not observed when 

k=2. However in the IHF case, the results with k=4 and k=10 are similar to the results 

when not using self-training, while there is an improvement over self-training for k=1.5 

and k=2.  
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Analysis on the Effect of the Choice of k on Recovering ChIP-chip 
targets without Direct Evidence 

 
 



 23 

7. Effect of Randomly Extending the Curated Network 
 

In Figure 6A of the main manuscript, we showed that by extending the curated inputs 

with additional predictions DREM increased the score significance of most of the key 

TFs. To investigate whether this could be a result of simply predicting more TF-gene 

interactions we generated 10,000 sets of randomly extended TF-gene inputs. These 

randomly extended inputs had the same curated targets as the prediction extended 

network, additionally among the genes used in the aerobic-anaerobic shift application of 

DREM we also constrained a random extension to have the same number of predicted 

targets for each TF and regulatory mode (activator or repressor) as in our prediction 

extended network. For those genes that were a target of a TF in both the curated and 

prediction extended network, but had a different regulatory mode annotation, we used the 

annotation in the prediction extended input. The DREM software [12] contains the option 

to either use TF-gene input in inferring the model or only as a post-processing step. If the 

TF-gene input was used to infer the model, then the transition probabilities for a gene 

between states were based on the specific set of TFs regulating the genes as determined 

based on an Input-Output Hidden Markov Model (IOHMM). If the option to use TF-gene 

input only in a post-processing step is selected, then DREM infers the regulatory map 

using only the time series expression data, and under this option the transition 

probabilities are the same for each gene and the model is an instance of a Hidden Markov 

Model (HMM). For both the IOHMM and HMM, the TF-gene inputs were used in a post-

processing step to score TFs at splits. While we use the IOHMM to infer the dynamic 

maps presented in this paper, we observed for this data that the difference in scores given 

to TFs using the HMM and IOHMM model for both the curated and prediction extended 

input was minor compared to the difference in scores based on the differences of these 

input sets (see below). Thus in our evaluation we only inferred a model once based on the 

time series data using an HMM, which we then in a post-processing step scored using all 

10,000 randomly extended input sets sets. As can be seen in the figure below even the 

95th percentile of scores resulting from these randomly extended inputs did not improve 

over just using the curated inputs. 
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The graph shows the top 20 values of the maximum negative log base 10 scores for a 

TF and mode (activator or repressor) at any split, only including a TF and mode pair 

once. We evaluated this for the curated input, as well as the random and prediction 

extended inputs using a HMM, and also for the curated input and prediction extended 

input using an IOHMM. To keep the scale of the graph reasonable the highest score with 

the prediction extended input using an IOHMM (38.2) and using an HMM (33.4) are not 

shown in the figure. 

We also provide in the figure below a dynamic map using the IOHMM model and the 

first input set that was randomly generated based on a scoring threshold of 10-4. We note 

that this map has fewer TF-labels at an equivalent scoring threshold than, both the 

curated input and the prediction extended input shown in Figure 5 of the main text, which 

were based on the same scoring threshold. 
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Map using a Randomly Extended Input Set (10-4 Score Threshold) 
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