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In section 1 we discuss the derivation, validity and some dynamical properties
of the nonlinear diffusion equation. This includes:

• Section 1.1: When does the equation break down?

• Section 1.2: Higher order terms in the nonlinear diffusion equation.

• Section 1.3: Performance and Reaction-time for the nonlinear diffusion
equation.

• Section 1.4: Comparisons of fits from the linear and the nonlinear dif-
fusion equations.

In section 2 we derive the nonlinear diffusion equation from two additional
model systems beyond the system of three rate equations studied in the main
text. The sections are:

• Section 2.1: Network of integrate-and-fire neurons.

• Section 2.2: Reduced equations from Wong and Wang 2006.

1 The Nonlinear Diffusion Equation

Canonical equations for bifurcations such as the nonlinear diffusion equation
are known as amplitude equations or normal forms. Here we briefly discuss
the validity of the amplitude equation approach for systems with winner-
take-all behavior. For a general introduction to bifurcations see [8] and [3]
while a more in-depth treatment can be found in [5], [4], and [10].

We first note that a bifurcation is a qualitative change in the dynamics of
a system as a function of a system parameter. In the context of neurobiologi-
cally motivated winner-take-all models the parameter of interest is the input
to the system which is modulated by the absence or presence of the stimulus
amongst other possible sources. The qualitative change in behavior of inter-
est is from the presence of a single stable state, i.e. spontaneous activity, to
a state in which the dynamics can appropriately be labeled ‘winner-take-all’.

We first consider a network capable of winner-take-all behavior in which
the populations of neurons, A and B, which encode the two possible choices
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are statistically identical, i.e. no characteristic stands out which would al-
low us to tell neurons from the two populations apart a priori and any
heterogeneities in single-cell properties or network topology are shared by
both populations alike. If both populations receive the same input, e.g. a
two-choice random dots task with zero coherence, then the system behav-
ior remains unchanged if we interchange the identity of the two populations
(A,B) → (B,A). Because of this reflection symmetry, if there is a steady
(non-oscillatory) bifurcation of the spontaneous state to a winner-take-all
state, it will have the form Ẋ = aX ± X3, i.e. it is a pitchfork bifurcation,
maintaining the reflection symmetry X → −X.

If, as is our case, the bifurcation parameter is the input, then the linear
growth rate a = µν̄ = µ(ν − νbif ) where ν is the mean input to both popu-
lations, and νbif is the input right at the bifurcation. Now if the reflection
symmetry is broken by a small difference in input ∆ν to the two populations,
this will generically add a constant term, proportional to that difference. If
we additionally assume the presence of a noise term we have

Ẋ = η∆ν + µν̄X ± X3 + σξ(t), (S.1)

where σ is the noise amplitude and we have assumed additive noise.
Note that while we can not know the functional form of η, µ and σ

without starting with a model and actually deriving Eq(S.1), we find that
the constant and linear terms are proportional to the difference in inputs
and the mean input to both populations respectively. This result is therefore
independent of our choice of model.

1.1 When does the equation break down?

Eq.(S.1) holds in a strict mathematical sense when we are vanishingly close
to the bifurcation and the difference in inputs is infinitesimally small. In any
real application it will give a quantitative description of the dynamics in some
limited range of parameter values which is model-dependent. Fortunately,
amplitude equations such as Eq.(S.1) tend to capture the qualitative features
of the dynamics even relatively far from the bifurcation. Although the only
way to test the region of quantitative validity of Eq(S.1) for a given model is
to compare with the said model, we can discuss the conditions under which
quantitative predictions should deteriorate.
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1. As the bifurcation parameter, in this case the external input ν, devi-
ates from the value at the bifurcation, any quantitative predictions will
worsen.

2. As the symmetry-breaking term, in this case the difference in external
inputs, increases, any quantitative predictions will worsen.

3. As the amplitude itself increases, i.e. the value of X, within a simula-
tion, higher order terms, not present in Eq(S.1) will gain in importance
and the quantitative match will worsen.

4. Since we are not interested in stationary behavior, i.e. fixed points or
limit cycles, but rather transient phenomenon, we must additionally be
concerned about initial conditions and noise. Close to the bifurcation,
we can approximate the dynamics starting from an initial condition.
The effect of initial conditions in a particular system has, in fact, been
described in detail in [11] where it was argued that the initial transient
during which the system relaxes to the slow manifold cannot be ignored.
However, sufficiently close to the bifurcation this relaxation is rapid
and merely introduces an error into the quantitative predictive power
of Eq.(S.1). We treat the noise as a small-amplitude forcing with the
consequence that the noise term for the amplitude equation can be
obtained through a simple linear transformation. The accuracy of this
approach degrades continuously with increasing noise amplitude.

In fact, even where the quantitative error is large or where no such
quantitative comparison can be made, Eq(S.1) provides an excellent
qualitative description of the relevant behavior measures. An example
can be seen in Fig.S.1 where we have fit Eq(S.1) to data from the
spiking model in [9]. Although the complexity of the model does not
allow for an analytical derivation of Eq.S.1, the equation nonetheless
provides an excellent fit to data generated from numerical simulation
of the network.

1.2 Higher order terms in the nonlinear diffusion equa-
tion

Eq.S.1 represents the correct asymptotic description of the noisy dynamics
near an imperfect pitchfork bifurcation in general. However, under some
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Fig. S.1: The nonlinear diffusion equation gives a good fit to simulations
from network models, even when it cannot be analytically derived. Here we
compare results from Eq.S.1 (solid lines) with data generated from simulation
of a network model including synapses of the AMPA, GABA and NMDA
type [9]. The presence of these currents makes an analytical derivation of
Eq.S.1 intractable. The network model and parameters values are as in
[9]. Parameters for Eq.S.1 were µν̄ = 0.003, σ = 0.000676 and η∆ν =
coherence/3.9e − 5.
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circumstances higher order terms (strictly asymptotically smaller than those
in Eq.S.1) may gain in importance. We consider two cases here briefly. First
we note that the unnormalized version of Eq.S.1 can be written Ẋ = η +
µX + γX3 + σξ(t).

1. Near the point in parameter space where the cubic term changes sign,
i.e. |γ| ≪ 1, all terms should be rescaled to include a saturating quintic
term −|Γ|X5. Unless the cubic term is very small this rescaling is not
mathematically justifiable and the quintic term should not be included.

2. Multiplicative noise: If the noise source in the original equation is mul-
tiplicative in nature then the leading order noise term in the amplitude
equation is essentially given by the same noise source rescaled by the
steady-state solution and is therefore additive. A higher order term
involves the interaction between the noise and the small-amplitude so-
lution X of Eq.S.1 and is therefore a correction of the linear term µ.

1.3 Performance and reaction time for the non-linear
diffusion equation

In this section we will describe how the performance and reaction time de-
pends on some of the parameters of the non-linear diffusion equation.

For simplicity we redefine the following parameters in Eq.S.1

α = η∆ν, and β = µν̄.

It is convenient to introduce the function Q(X) = 2
σ2 E(X), where E(X)

is Eq.10 from the main text and following Karlin & Taylor (1981) we will use
the so-called scale function S(y) and so-called speed density m(y) defined by

S(y) =

∫ y

−a

exp{Q(z)}dz, m(y) =
1

σ2 exp{Q(y)} .

Given two symmetric boundaries a and −a (a > 0) the probability of the
process exiting through a, as a function of the initial condition X0, −a <
X0 < a, is given by [6, p.195]

Pa(X0) =

∫ X0

−a
exp{Q(y)}dy

∫ a

−a
exp{Q(y)}dy

=
S(X0)

S(a)
. (S.2)

The probability of exiting through the other boundary (i.e. through −a) is
given by 1 − Pa.
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1.3.1 Expressions for the mean reaction time

The mean first passage time from the interval (−a, a), as a function of the
initial condition X0 is given by ([6, p.197])

RT (X0) =2Pa(X0)

∫ a

X0

[S(a) − S(y)]m(y)dy+

2(1 − Pa(X0))

∫ X0

−a

[S(y) − S(−a)]m(y)dy.

(S.3)

This expression (Eq. S.3) gives the mean exit time from (−a, a) through
any of the boundaries. However, often it is of interest to consider the mean
exit time through a particular boundary. For example, we might want to
know the mean exit time through a starting somewhere in (−a, a), as this
could correspond to a correct decision. To find this we need to consider the
conditional diffusion process consisting of all sample paths of the original
diffusion process that eventually exit through a. The expression then reads
(see [6, p.264])

RTa(X0) =
2[S(a) − S(X0)]

S(a)S(X0)

∫ X0

−a

S2(y)m(y)dy+

2

∫ a

X0

S(y)[S(a) − S(y)]

S(a)
m(y)dy.

(S.4)

1.3.2 How performance depends on the parameters of the non-
linear diffusion equation

To study how the performance function (Eq. S.2) depends on changes of the
model parameters we here investigate the derivative of the performance func-
tion with respect to these parameters. First we derive a general expression
for the derivative with respect to a generic parameter γ:

∂(Pa(X0))

∂γ
=

1
∫ b

a
exp{Q(y)}dy

[

∂(
∫ X0

a
exp{Q(y)}dy)

∂γ
− Pa(X0)

∂(
∫ b

a
exp{Q(y)}dy)

∂γ

]

.
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Next we use Leibniz’s rule to take the derivative under the integral sign to
get:

∂(Pa(X0))

∂γ
=

1
∫ a

−a
exp{Q(y)}dy

[

∫ X0

−a

∂(Q(y))

∂γ
exp{Q(y)}dy−

Pa(X0)

∫ a

−a

∂(Q(y))

∂γ
exp{Q(y)}dy

]

.

(S.5)

1.3.3 Dependence on α

We first consider the dependence on α (remember that α = η∆ν). To proceed
we use the following observations

∂(Q(y))

∂α
=

−2y

σ2
,

and
∫ a

−a

exp{Q(y)}dy > 0

for any values of the parameters. Then, after some rearrangements, we get
that

∂(Pa(X0))

∂α
= c

[

Pa(X0)

∫ a

X0

y exp{Q(y)}dy − (1 − Pa(X0))

∫ X0

−a

y exp{Q(y)}dy

]

,

where c = 2(σ2
∫ a

−a
exp{Q(y)}dy)−1 > 0 and does not depend on the initial

condition. By changing the variable of integration in the last integral to
y = −y we get

∂(Pa(X0))

∂α
= c

[

Pa(X0)

∫ a

X0

y exp{Q(y)}dy + (1 − Pa(X0))

∫ a

−X0

y exp{Q(−y)}dy

]

.

Since a > 0, by assumption, the first integral in the above expression is
clearly positive. The second integral can be rewritten as

∫ a

−X0

y exp{Q(−y)}dy =

∫ X0

0

y (exp{Q(−y)} − exp{Q(y)}) dy+

∫ a

X0

y exp{Q(−y)}dy,

7



which shows that it also is positive. Hence it follows that

∂(pa(X0))

∂α
> 0.

That is to say, performance is an increasing function of α.

1.3.4 Dependence on β

Next we will show that Pa is a decreasing function of β as long as Pa > 0.5
(remember, β = µν̄). Using that

∂(Q(y))

∂β
=

−y2

σ2
,

and proceeding as above we arrive at:

∂(Pa(X0))

∂β
= d

[

Pa(X0)

∫ a

X0

y2 exp{Q(y)}dy − (1 − Pa(X0))

∫ a

−X0

y2 exp{Q(−y)}dy

]

,

where d = (σ2
∫ a

−a
exp{Q(y)}dy)−1 > 0 and does not depend on the initial

condition. We can, without loss of generality, restrict our considerations
to the case of Pa(X0) > 0.5.1 Doing this it is clear that the only way that
∂(Pa(X0))

∂β
can be negative is if the second integral is bigger than the first. This

means that if we can show that the performance is a decreasing function of
β for the initial condition X0 = 0 it will also follow that this is true for all
initial conditions X0 ≥ 0. This is so because a positive initial condition will
enhance the differences between the two integrals. So assume that X0 = 0.

Then to prove that the derivative is always negative amounts to showing
that

1

1 − Pa(X0)

∫ a

0

y2 exp{Q(y)}dy <
1

Pa(X0)

∫ a

0

y2 exp{Q(−y)}dy. (S.6)

To do this we introduce the two functions

g(y) =
exp{Q(y)}

∫ a

−a
exp{Q(z)}dz(1 − Pa(X0))

, h(y) =
exp{Q(−y)}

∫ a

−a
exp{Q(−z)}dz(Pa(X0))

.

1This is so because if we can show that in this case Pa is a decreasing function of β it
follows that P

−a is an increasing function.
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Note that since
∫ a

−a

exp{Q(−z)}dz = −
∫ −a

a

exp{Q(z)}dz =

∫ a

−a

exp{Q(z)}dz,

showing that (S.6) holds amounts to showing that

∫ a

0

y2(g(y) − h(y))dy < 0. (S.7)

Next we note that
∫ a

0
g(y)dy = 1 and

∫ a

0
h(y)dy = 1. This implies that unless

g and h are identical (i.e. if α = 0) there must be intervals where g > h and
vice-verse. Given the form of h and g it is easy to show that if α 6= 0 there is
exactly one point y∗ > 0 at which g(y∗) = h(y∗). Moreover, for any y in the
half-open interval [0, y∗) we have that g(y) > h(y), similarly for y ∈ (y∗, a]
we have that g(y) < h(y). This means that we can decompose the integral
in (S.7) as follows

∫ a

0

y2(g(y) − h(y))dy =

∫ y∗

0

y2(g(y) − h(y))dy −
∫ a

y∗

y2(h(y) − g(y))dy.

Now the integrands in the two integrals on the right hand side are both
positive and we will proceed by giving an upper bound of the first and a
lower bound of the second. Indeed we have that
∫ a

0

y2(g(y) − h(y))dy =

∫ y∗

0

y2(g(y) − h(y))dy −
∫ a

y∗

y2(h(y) − g(y))dy ≤

y∗2

∫ y∗

0

(g(y) − h(y))dy − y∗2

∫ a

y∗

(h(y) − g(y))dy =

y∗2

∫ a

0

g(y) − h(y)dy = 0,

and hence that performance is a non-increasing function of β. Note that this
statement is valid for non-negative initial conditions and only in the case
when pa > 0.5.

1.3.5 How reaction-time depends on β

Next we demonstrate that the mean RT is a decreasing function of β. We
do this for the case of α = 0 and initial condition X0 = 0. This implies that
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Pa = P−a = 0.5 and that Q(y) = Q(−y) and m(y) = m(−y) in which case
Eq. S.3 becomes

RT (X0 = 0) = 2

∫ a

0

[S(a) − S(y)]m(y)dy.

Next, we use that

∂(S(a) − S(y))

∂β
= − 1

σ2

∫ a

y

y2 exp{Q(y)}dy,

and that
∂(m(y))

∂β
=

1

σ2
y2m(y).

Applying to t(X0) gives

∂(RT (X0 = 0))

∂β
= − 1

σ2

∫ a

0

(∫ a

y

z2 exp{Q(z)}dz

)

m(y)dy

+
1

σ2

∫ a

0

(∫ a

y

exp{Q(z)}dz

)

y2m(y)dy.

Hence ∂(RT (X0))/∂β < 0 if the first term is bigger than the second. But
this must be so since

∫ a

y

z2 exp{Q(z)}dz ≥ y2

∫ a

y

exp{Q(z)}dz

for all y ≥ 0, and we are done.

1.4 Comparisons of fits from the linear (constant drift)
and nonlinear diffusion equations.

Here we compare fits from the linear and nonlinear diffusion equations for
data from the random moving dot task, see also Figs.3 and 4 from the main
text. We use here the ‘standard’ diffusion model without variability in ei-
ther the initial condition or drift across trials. Curves for the data from [7]
were reproduced using standard closed form expressions for performance and
reaction-times and parameter values given in [7]. The fits of both the lin-
ear and nonlinear diffusion models were made by minimizing the sum of the
normalized squared difference between data and model(s). We only included
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mean RT on correct trials and percent correct in the fitting. The normal-
ization was done by dividing the difference of two particular quantities by
their sum. This was to give approximately the same weight to all observa-
tions. For the linear model the minimization was made by the quasi-Newton
method bfgsmin as implemented in the open source software package octave.
Minimizing the nonlinear model requires exquisite control over the step-size
and was made by an semi-automatic gradient-based algorithm. Evaluating
the integrals for performance and reaction-time stated above numerically is
computationally expensive and made a more exhaustive search unfeasible.
Therefore the minima obtained for the nonlinear model might not be global.
In fitting the models to the data from [7] we constrained the fits and only
allowed the threshold and residual RTs to vary between conditions in the lin-
ear model and linear term and residual RTs in the nonlinear one. Parameter
values and errors for the fits are shown in the tables below.

linear model k A res. RT fitting error
Monkeys 13.5 0.70 327.2 8.17e-5
Subj1 05 22.0 0.45 305.0 3.22e-4
Subj1 10 22.0 0.86 320.5 4.07e-4
Subj1 20 22.0 1.28 284.0 3.48e-3
Subj2 05 26.8 0.49 300.9 2.17e-4
Subj2 10 26.8 0.88 304.4 9.43e-4
Subj2 20 26.8 1.38 269.7 1.23e-3

Here k and A are the normalized drift and threshold, see [7] for details.
nonlinear model σ η µ res. RT fitting error
Monkeys 1.35e-3 6.67e-6 3.0e-3 230 6.5e-5
Subj1 05 1.15e-3 9.35e-6 1.03e-2 219.5 6.1e-4
Subj1 10 1.15e-3 9.35e-6 1.60e-3 215.5 5.3e-4
Subj1 20 1.15e-3 9.35e-6 -3.96e-4 212.5 2.6e-3
Subj2 05 1.37e-3 1.30e-5 8.00e-3 213.5 5.4e-4
Subj2 10 1.15e-3 1.30e-5 1.08e-2 213.5 1.4e-3
Subj2 20 1.15e-3 1.30e-5 -1.14e-3 221.5 1.3e-3

The fits to the data can be seen in Fig.S.2.
The nonlinear model performed better than the linear model (in the sense

of having a smaller error) in fitting the data from Roitman and Shadlen and in
one of the subjects (subject 2) in the data from Palmer et al. The linear model
performed better on the other subject of the Palmer et al. data. Note that
the linear model predict that error reaction times are the same as the correct
reaction times which for the Roitman and Shadlen data is not the case. This
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Fig. S.2: A: Fits to data from Roitman and Shadlen 2002, also see Fig.3 in
main text. Symbols: experimental data. Black line: fit from nonlinear diffu-
sion equation from main text. Red Line: Fit from linear diffusion equation.
B: Fits to data from Palmer et al. 2005, also see Fig.4 in main text. Sym-
bols: experimental data. Solid lines: fit from nonlinear diffusion equation
from main text. Dotted lines: Fit from linear diffusion equation.
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difference is captured by the nonlinear model. We have not attempted a
more quantitative comparison between the models (for example accounting
for that the nonlinear model has more parameters) as this is beyond the
scope of the present paper. The comparison we have made however indicates
that the nonlinear model fits correct RTs and performance data in these two
data set about as well as the linear diffusion model does.
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2 Derivation of the Amplitude Equation: 2

further examples.

2.1 Example 1: Network of Integrate-and-fire Neurons

We consider a network of recurrently coupled integrate-and-fire neurons. The
network architecture consists of two distinct populations of excitatory neurons (A
and B), both of which are coupled to a population of inhibitory interneurons. We
will study the case in which the system is near a steady bifurcation to a winner-
take-all state. In the vicinity of the bifurcation the dynamics can be captured in
a one-dimensional amplitude equation which describes the slow evolution along
the critical manifold. We follow here the general methodology presented in [2] for
a one component system (single population) near a Hopf-bifurcation. We extend
that here for a steady bifurcation in a three component system.

The evolution equations for the neuronal membrane potentials are

τ V̇A,i = −(VA,i − Ee) + IAA,i − IAI,i + IAext,i, (S.8)

τ V̇B,i = −(VB,i − Ee) + IBB,i − IBI,i + IBext,i, (S.9)

τ̂ V̇I,i = −(VI,i − Ei) + IIA,i + IIB,i + IIext,i, (S.10)

where the synaptic currents of the form IXY indicate interactions from neurons in
population Y to neurons in population X, while external synaptic inputs are given
by IXext. The synaptic currents are sums over all post-synaptic currents (PSCs),
modeled as Dirac-delta functions with a delay. The currents take the form

IXX,i = τ
∑

j

JXX
ij

∑

k

δ(t − tkX,j − δE,ij), (S.11)

IXI,i = τ
∑

j

JXI
ij

∑

k

δ(t − tkI,j − δI,ij), (S.12)

IIX,i = τ̂
∑

j

JIX
ij

∑

k

δ(t − tkX,j − δE,ij), (S.13)

IXext,i = τ
∑

j

JXext
ij

∑

k

δ(t − tkXext,j). (S.14)

Given a presynaptic action potential from neuron j of population Y at a time tY,j ,
there is a resulting jump of size JXY

ij in the post-synaptic potential of neuron i
from population X after a delay δY,ij . A spike is emitted whenever the voltage of

a cell from an excitatory (inhibitory) population cross a value θ (θ̂), after which it
is reset to a value Vr (V̂r).
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We consider the case of sparse connectivity for which, on average, each neuron
from population X receives a total of CXY synapses from population Y . The
pairwise probability of connection is thus ǫXY = CXY /NY , where NA = NB = NE

and NI are the number of neurons in the respective populations. For nonzero
synapses we choose JAA

ij = JBB
ij = Jee, JIA

ij = JIB
ij = Jie, and JAI

ij = JBI
ij = Jei.

The resulting network topology exhibits a Poisson degree distribution, i.e. the
quenched randomness in the number of connections per cell is Poisson distributed.

If the network activity is asynchronous, then for sufficiently many PSCs the
sums over the delta functions can be well approximated by a Poisson process in
time with a mean equal to the firing rate of the pre-synaptic population. In this
regime the currents due to recurrent excitatory connections can be approximated
as

IXX,i = τJee

(CXX

NE
+ δCi,XX

)(

NEνX(t − δe) + δνX(t − δe)
)

, (S.15)

where δCXX are the quenched fluctuations in the connectivity and δνX are the
fluctuations in the firing rate of the population. Note that we assume a fixed delay
for each neuronal population. Distributions in the delay can be handled through
averaging. Retaining only the first order terms in the fluctuations yields

IXX,i = τJeeCXXνX(t − δe) + τJeeνX(t − δe)δCi,XX + τǫXXJeeδνX(t − δe).(S.16)

The first term in Eq.S.16 is the mean current. The second term represents fluc-
tuations in the current due to the quenched randomness in the connectivity and
accounts for differences in input across neurons. Fluctuations at the network level
are taken into account by the third term, which is proportional to the small param-
eter ǫXX = CXX/NE . These fluctuations are felt coherently by all neurons in pop-
ulation X. Finally, since the variance of a Poisson process is equal to its mean, we
have, for the strength of the fluctuations across neurons σ2

XX = τJ2
eeCXXνX(t−δe),

whereas the coherent fluctuations have a strength S2
X = τǫXXJ2

eeCXXνX(t − δe).
If the strength of the synaptic inputs is sufficiently small compared to the firing

threshold, then the fluctuations in the input can be approximated as Gaussian
distributed. This allows us to write down the Fokker-Planck equation describing
the time-evolution of the probability distribution of the membrane voltage across
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the network for each population. The equations are

τṖA =
σ2

A(t)

2
∂2

VA
PA + ∂VA

(

[

VA − µA(t) − SAξA(t)
]

PA

)

, (S.17)

τṖB =
σ2

B(t)

2
∂2

VB
PB + ∂VB

(

[

VB − µB(t) − SBξB(t)
]

PB

)

, (S.18)

τ̂ ṖI =
σ2

I (t)

2
∂2

VI
PI + ∂VI

(

[

VI − µI(t) − SIξI(t)
]

PI

)

, (S.19)

where the mean inputs are

µA = τJeeCeeνA(t − δe) − τJeiCeiνI(t − δi) + τJextCextνAext + Ee, (S.20)

µB = τJeeCeeνB(t − δe) − τJeiCeiνI(t − δi) + τJextCextνBext + Ee, (S.21)

µI = τJieCie

(

νA(t − δe) + νB(t − δe)
)

+ τJextCextνIext + Ei, (S.22)

the variances in the inputs are

σ2
A = τJ2

eeCeeνA(t − δe) + τJ2
eiCeiνI(t − δi) + τJ2

extCextνAext, (S.23)

σ2
B = τJ2

eeCeeνB(t − δe) + τJ2
eiCeiνI(t − δi) + τJ2

extCextνBext, (S.24)

σ2
I = τJ2

ieCie

(

νA(t − δe) + νB(t − δe)
)

+ τJ2
extCextνIext, (S.25)

and the strengths of the coherent fluctuations are

S2
A = τǫeeJ

2
eeCeeνA(t − δe) + τǫeiJ

2
eiCeiνI(t − δi), (S.26)

S2
B = τǫeeJ

2
eeCeeνB(t − δe) + τǫeiJ

2
eiCeiνI(t − δi), (S.27)

S2
I = τǫieJ

2
ieCee

(

νA(t − δe) + νB(t − δe)
)

. (S.28)

Note that for simplicity we have taken CAA = CBB = Cee, CAI = CBI = Cei and
CIA = CIB = Cie. Also we note that SA = SB = SE

The boundary conditions for population A are

PA(θ, t) =
[

PA(VA, t)
]V +

r

V −

r

= 0, (S.29)

P
′

A(θ, t) =
[

P
′

A(VA, t)
]V +

r

V −

r

= −2τνA(t)

σ2
A

, (S.30)

∫ θ

−∞

duPA(u, t) = 1, (S.31)

with analogous conditions for the other two populations.
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2.1.1 Stationary Distributions

The steady-state distributions of the membrane voltages can be found by setting
the left hand side equal to zero in Eqs(S.17) through (S.19) and solving together
with the boundary conditions (BCs) Eqs(S.29) through (S.31), in which the time
dependence is removed. The stationary voltage-distribution of population A is

PA(V ) =
2ν̄Aτ

σ̄A
e
−

(V −µ̄A)2

σ̄2
A

∫

θ−µ̄A
σ̄A

V −µ̄A
σ̄A

dueu2
H

(

u − Vr − µ̄A

σ̄A

)

(S.32)

where ν̄A is the steady-state firing rate of population A, and the steady-state values
of the mean input and variance can be found by plugging the steady-state firing
rates into Eqs(S.20) through (S.25). Analogous expressions hold for populations
B and I. H(x) is the Heaviside function. The mean firing rates of the populations
are given by the following relations

√
πν̄Xτ

∫

θ−µ̄X
σ̄X

Vr−µ̄X
σ̄X

dueu2
erfc(−u) = 1, (S.33)

where X = A, B, and I [2]. The coefficient of variation (CV) of the inter-spike
interval can also be shown to be

CV = 2πν̄2
Xτ2

∫

θ−µ̄X
σ̄X

Vr−µ̄X
σ̄X

dvev2

∫ v

−∞

dueu2
[erfc(−u)]2, (S.34)

[1].

2.1.2 Linear Stability and Weakly Nonlinear Analysis

Since we are interested in investigating the network dynamics for a discrimination
task, i.e. νAext ∼ νBext, we assume that differences in the afferent firing rates to
populations A and B are small. We can then take the mean firing rates to be
ν̄A = ν̄B = ν̄E to leading order.

For convenience we write PA = 2τ ν̄A
σ̄A

QA, yA = VA−µ̄A
σ̄A

and νA = ν̄E(1 + nA(t))
and analogously for populations B and I. Eqs (S.17) through (S.19) can then be
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rewritten as

τQ̇A = LQA + nA(t − δe)

(

− GeeQ
′

A +
Hee

2
Q

′′

A

)

+nI(t − δi)

(

GeiQ
′

A +
Hei

2
Q

′′

A

)

− SA

σ̄A
ξA(t)Q

′

A, (S.35)

τQ̇B = LQB + nB(t − δe)

(

− GeeQ
′

B +
Hee

2
Q

′′

B

)

+nI(t − δi)

(

GeiQ
′

B +
Hei

2
Q

′′

B

)

− SB

σ̄B
ξB(t)Q

′

B, (S.36)

τ̂ Q̇I = LQI +
(

nA(t − δe) + nB(t − δe)
)

(

− GieQ
′

A +
Hie

2
Q

′′

A

)

−SI

σ̄I
ξI(t)Q

′

I , (S.37)

where we have written Gee = τJeeCeeν̄e
σ̄e

, Gei = τJeiCeiν̄I
σ̄e

, Gie = τJieCieν̄e
σ̄I

, Hee =
τJ2

eeCeeν̄e

σ̄2
e

, Hei =
τJ2

eiCeiν̄I

σ̄2
e

, Hie =
τJ2

ieCieν̄e

σ̄2
I

. The BCs for population A are

QA(yθ) =
[

QA(yA, t)]y
+
r

y−

r
= 0 (S.38)

Q
′

A(yθ) =
[

Q
′

A(yA, t)
]y+

r

y−

r

= − (1 + nA(t))

1 + HeenA(t − δe) + HeinI(t − δi)
(S.39)

∫ yθ

−∞

duQA(u, t) =
1

2τ ν̄A
(S.40)

and analogous conditions hold for populations B and I.
We are now interested in determining the critical value of the external, afferent

inputs to populations A and B for which a steady bifurcation occurs leading to a
winner-take-all scenario. We then wish to extend the linear stability calculation
to include nonlinear effects, thereby deriving an evolution equation for the winner-
take-all dynamics near the bifurcation.

We assume that the bifurcation occurs for an input νAext = νBext = ν̄Eext and
νIext = ν̄Iext. We then express the inputs as

νAext = ν̄Eext

(

1 + ǫ2∆νE + ǫ3∆νA

)

, (S.41)

νBext = ν̄Eext

(

1 + ǫ2∆νE + ǫ3∆νB

)

, (S.42)

νIext = ν̄Iext

(

1 + ǫ2∆νI

)

, (S.43)
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where ǫ is a small parameter which measures the distance from the bifurcation.
Thus the difference in the afferent inputs to both populations is proportional to
νA − νB. We now expand the voltage distributions and mean firing rates in ǫ

QA(yA, t) = QE(yA) + ǫQA1(yA, T ) + ǫ2QA2(yA, T ) + . . . , (S.44)

nA(t) = ǫnA1(T ) + ǫ2nA2(T ) + . . . , (S.45)

and similar expansions hold for populations B and I. Here we have introduced a
slow time T , where T = ǫ2t.

We can now plug the expansions, Eqs.(S.44) through (S.45), into Eqs.(S.35)
and the boundary conditions Eqs.(S.38) through (S.40), and similarly for popula-
tions B and I. Grouping terms by their order in ǫ yields a systems of equations
at each order which we must solve.

2.1.3 Stationary distributions ϑ(1)

To leading order we regain the stationary distributions given by the system

LQE = 0, (S.46)

LQI = 0, (S.47)

with boundary conditions

QE(yθ) =
[

QE ]y
+
r

y−

r
= 0, (S.48)

Q
′

E(yθ) =
[

Q
′

E ]y
+
r

y−

r
= −1, (S.49)

∫ yθ

−∞

duQE(u) =
1

2τ ν̄E
, (S.50)

QI(ŷθ) =
[

QI ]
ŷ+

r

ŷ−

r
= 0, (S.51)

Q
′

I(ŷθ) =
[

Q
′

I ]
ŷ+

r

ŷ−

r
= −1, (S.52)

∫ ŷθ

−∞

duQI(u) =
1

2τ ν̄I
, (S.53)

where L = 1
2∂2

y + y∂y + 1.
The solutions are

QE(y) =

{

e−y2 ∫ yθ

y
dueu2

y > yr

e−y2 ∫ yθ

yr
dueu2

y < yr

(S.54)

QI(y) =

{

e−y2 ∫ ŷθ

y
dueu2

y > ŷr,

e−y2 ∫ ŷθ

ŷr
dueu2

y < ŷr.
(S.55)
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2.1.4 Linear Stability ϑ(ǫ)

The equations are

LQA1 = −nA1

(

− GeeQ
′

E +
Hee

2
Q

′′

E

)

− nI1

(

GeiQ
′

E +
Hei

2
Q

′′

E

)

, (S.56)

LQB1 = −nB1

(

− GeeQ
′

E +
Hee

2
Q

′′

E

)

− nI1

(

GeiQ
′

E +
Hei

2
Q

′′

E

)

, (S.57)

LQI1 = −(nA1 + nB1)

(

− GieQ
′

I +
Hie

2
Q

′′

I

)

, (S.58)

with boundary conditions

QA1(yθ) =
[

QA1]
y+

r

y−

r
= 0, (S.59)

Q
′

A1(yθ) =
[

Q
′

A1]
y+

r

y−

r
= (Hee − 1)nA1 + HeinI1, (S.60)

∫ yθ

−∞

duQA1(u) = 0, (S.61)

QB1(yθ) =
[

QB1]
y+

r

y−

r
= 0, (S.62)

Q
′

B1(yθ) =
[

Q
′

B1]
y+

r

y−

r
= (Hee − 1)nB1 + HeinI1, (S.63)

∫ yθ

−∞

duQB1(u) = 0, (S.64)

QI1(ŷθ) =
[

QI1]
ŷ+

r

ŷ−

r
= 0, (S.65)

Q
′

I1(ŷθ) =
[

Q
′

I1]
ŷ+

r

ŷ−

r
= Hie(nA1 + nB1) − nI1, (S.66)

∫ ŷθ

−∞

duQI1(u) = 0. (S.67)

Eqs.(S.56) through (S.58) are inhomogeneous second-order equations. Their
solution therefore consists of two independent solutions of the homogeneous equa-
tion plus a particular solution. We can choose the stationary distribution as one
of the two homogeneous solutions, whereas it is convenient to choose the other as
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e−y2
. Then, utilizing the boundary conditions Eqs.(S.59) through (S.67) yields

QA1(y) =

{

nA1QE(y) − ey2
θQp

A1(yθ)e
−y2

+ Qp
A1(y) y > yr,

nA1QE(y) +
(

− ey2
θ Qp

A1(yθ) + ey2
r [Qp

A1]
y+

r

y−

r

)

e−y2
+ Qp

A1(y) y < yr,
(S.68)

QB1(y) =

{

nB1QE(y) − ey2
θQp

B1(yθ)e
−y2

+ Qp
B1(y) y > yr,

nB1QE(y) +
(

− ey2
θQp

B1(yθ) + ey2
r [Qp

B1]
y+

r

y−

r

)

e−y2
+ Qp

B1(y) y < yr,
(S.69)

QI1(y) =

{

nI1QI(y) − eŷ2
θ Qp

I1(ŷθ)e
−y2

+ Qp
I1(y) y > ŷr,

nI1QI(y) +
(

− eŷ2
θ Qp

I1(ŷθ) + eŷ2
r [Qp

I1]
ŷ+

r

ŷ−

r

)

e−y2
+ Qp

I1(y) y < ŷr,
(S.70)

where the particular solutions are

Qp
A1 = nA1

(

− GeeQ
′

E +
1

4
HeeQ

′′

E

)

+ nI1

(

GeiQ
′

E +
1

4
HeiQ

′′

E

)

, (S.71)

Qp
B1 = nB1

(

− GeeQ
′

E +
1

4
HeeQ

′′

E

)

+ nI1

(

GeiQ
′

E +
1

4
HeiQ

′′

E

)

, (S.72)

Qp
I1 = (nA1 + nB1)

(

− GieQ
′

I +
1

4
HieQ

′′

I

)

. (S.73)

The normalization conditions Eqs.(S.61), (S.64) and (S.67) lead to the following
matrix equation






1
2τ ν̄E

− Γ(Gee, Hee) 0 Γ(Gei,−Hei)

0 1
2τ ν̄E

− Γ(Gee, Hee) Γ(Gei,−Hei)

−Γ(Gie, Hie) −Γ(Gie, Hie)
1

2τ̂ ν̄I











nA1

nB1

nI1



 = 0,(S.74)

where

Γ(f1, f2) =

√
π

2

[

(

f1 +
y

2
f2

)

ey2
erfc(−y)

]yθ

yr

. (S.75)

A solution to Eq.(S.74) will only exist if the determinant of the matrix is equal
to zero, which requires that Γ(Gee, Hee) = 1

2τ ν̄E
. This relationship then sets the

critical value of the control parameter, e.g. νEext, for which a steady bifurcation
occurs.

The solution is then given by (nA1, nB1, nI1) = (1,−1, 0)X(T ) = ncX(T ),
where X(T ) is an unknown amplitude which is assumed to vary slowly in time.

We note at this point that any vector in the phase space of the three component
system can be expressed as a linear combination of the mutually orthogonal vectors
nc = (1,−1, 0), ns1 = (1, 1, 1) and ns2 = (1, 1,−2). We also note that the left-null
eigenvector of Eq.(S.74) can be written n

† = (1,−1, 0) and that the left eigenspace
is thus spanned by the same above-mentioned vectors.
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2.1.5 ϑ(ǫ2)

The equations are

LQA2 = −nA2

(

− GeeQ
′

E +
Hee

2
Q

′′

E

)

− nI2

(

GeiQ
′

E +
Hei

2
Q

′′

E

)

−X(T )

(

− GeeQ
′

A1 +
Hee

2
Q

′′

A1

)

− ∆νE

(

− BeQ
′

E +
De

2
Q

′′

E

)

,(S.76)

LQB2 = −nB2

(

− GeeQ
′

E +
Hee

2
Q

′′

E

)

− nI2

(

GeiQ
′

E +
Hei

2
Q

′′

E

)

X(T )

(

− GeeQ
′

B1 +
Hee

2
Q

′′

B1

)

− ∆νE

(

− BeQ
′

E +
De

2
Q

′′

E

)

,(S.77)

LQI2 = −(nA2 + nB2)

(

− GieQ
′

I +
Hie

2
Q

′′

I

)

− ∆νI

(

− BiQ
′

I +
Di

2
Q

′′

I

)

(S.78)

with boundary conditions

QA2(yθ) =
[

QA2]
y+

r

y−

r
= 0, (S.79)

Q
′

A2(yθ) =
[

Q
′

A2]
y+

r

y−

r
= (Hee − 1)nA2 + HeinI2 + X2(Hee − H2

ee)

+De∆νE , (S.80)
∫ yθ

−∞

duQA2(u) = 0, (S.81)

QB2(yθ) =
[

QB2]
y+

r

y−

r
= 0, (S.82)

Q
′

B2(yθ) =
[

Q
′

B2]
y+

r

y−

r
= (Hee − 1)nB2 + HeinI2 + X2(Hee − H2

ee)

+De∆νE , (S.83)
∫ yθ

−∞

duQB2(u) = 0, (S.84)

QI2(ȳθ) =
[

QI2]
ȳ+

r

ȳ−

r
= 0, (S.85)

Q
′

I2(ȳθ) =
[

Q
′

I2]
ȳ+

r

ȳ−

r
= Hie(nA2 + nB2) − nI2 + Di∆νI , (S.86)

∫ ȳθ

−∞

duQI2(u) = 0, (S.87)

where Be = τJEextCEextν̄Eext
σ̄E

, De = BeJEext
σ̄E

, Bi = τ̄JIextCIextν̄Iext
σ̄I

, and Di = BiJIext
σ̄I

.
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The voltage distributions at this order are given by

QA2(y) =

{

αA2QE(y) + β+
A2e

−y2
+ Qp0

A2(y) + Qp1
A2(y) y > yr

αA2QE(y) + β−
A2e

−y2
+ Qp0

A2(y) + Qp1
A2(y) y < yr,

(S.88)

QI2(y) =

{

αI2QI(y) + β+
I2e

−y2
+ Qp0

I2(y) + Qp1
I2(y) y > ŷr

αI2QI(y) + β−
I2e

−y2
+ Qp0

I2(y) + Qp1
I2(y) y < ŷr,

(S.89)

where

Qp0
A2 = nA2

(

− GeeQ
′

E +
1

4
HeeQ

′′

E

)

+ nI2

(

GeiQ
′

E +
1

4
HeiQ

′′

E

)

, (S.90)

Qp1
A2 = −XGeeQ

′

A1 +
X

4
HeeQ

′′

A1 − Be∆νEQ
′

E +

(

− X2

2
G2

ee +
1

4
De∆νE

)

Q
′′

E

+
X2

4
GeeHeeQ

′′′

E − X2

32
H2

eeQ
(iv)
E , (S.91)

αA2 = nA2 (S.92)

β+
A2 = −ey2

θQp0
A2(yθ) − ey2

θ Qp1
A2(yθ), (S.93)

β−
A2 = β+

A2 + ey2
r [Qp0

A2]
y+

r

y−

r
+ ey2

r [Qp1
A2]

y+
r

y−

r
, (S.94)

Qp0
I2 = (nA2 + nB2)

(

− GieQ
′

I +
1

4
HieQ

′′

I

)

, (S.95)

Qp1
I2 =

(

− BiQ
′

I +
1

4
DiQ

′′

I

)

∆νI , (S.96)

αI2 = nI2, (S.97)

β+
I2 = −eȳ2

θQp0
I2(ȳθ) − eȳ2

θQp1
I2(ȳθ), (S.98)

β−
I2 = β+

I2 + eȳ2
r [Qp0

I2]
ȳ+

r

ȳ−

r
+ eȳ2

r [Qp1
I2]

ȳ+
r

ȳ−

r
(S.99)

and it can be shown that QB2(y) = QA2(y) at this order.
The normalization conditions, Eqs.(S.81), (S.84) and (S.87) lead to the matrix

equation
Ln2 = N2 (S.100)
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where

L =





0 0 Γei

0 0 Γei

Γie Γie
1

2τ̂ ν̄I



 , (S.101)

N2 =





AX2 + Γ(Be, De)∆νE

AX2 + Γ(Be, De)∆νE

Γ(Bi, Di)∆νI



 , (S.102)

and

A = Γ(Gee, Hee) −
√

π

2

[(

yG2
ee + (

1

2
+ y2)GeeHee +

1

8
(3y + 2y3)H2

ee

)

ey2
erfc(−y)

]yθ

yr

−(y2
θ − y2

r )

8
H2

ee −
(yθ − yr)

2
GeeHee. (S.103)

The matrix L can be recognized as that arising in the linear problem at the bifurca-
tion point, see Eq.(S.74), and is thus clearly not invertible. There exists a solution
to Eq.(S.100) only if N2 lies outside of the left-null eigenspace of the matrix, i.e.
n
† · N2 = 0. It is clear that this condition is met upon inspection.

The firing rates at this order can then be expressed as n2 = R1ns1 + R2ns2

which can be equivalently written as n2 = (Π1, Π1, Π2) where Π1 = R1 + R2 and
Π2 = R1 − 2R2. The coefficients Π1 and Pi2 can be determined by projecting
Eq.(S.100) onto the eigenspace orthogonal to the left-null eigenspace of the oper-
ator L. This is equivalent to operating on Eq.(S.100) from the left with ns1 and
ns2. Doing so leads to the system of equations

 

−2Γ(Gie, Hie) 2Γ(Gei, −Hei) + 1

2τ̂ ν̄I

4Γ(Gie, Hie) 2Γ(Gei, −Hei) −
1

τ̂ ν̄I

!

„

Π1

Π2

«

=

„

2AX2 + 2Γ(Be, De)∆νE + Γ(Bi, Di)∆νI

2AX2 + 2Γ(Be, De)∆νE − 2Γ(Bi, Di)∆νI

«

, (S.104)

the solution of which is

Π1 =
A

4Γ(Gie, Hie)Γ(Gei,−Hei)τ̂ νI
X2 +

Γ(Be, De)

4Γ(Gie, Hie)Γ(Gei,−Hei)τ̂ νI
∆νE − Γ(Bi, Di)

2Γ(Gie, Hie)
∆νI

Π2 =
A

Γ(Gei,−Hei)
X2 +

Γ(Be, De)

Γ(Gei,−Hei)
∆νE (S.105)

Furthermore, we can write Πj = ΠjI∆νI + ΠjE∆νE + ΠjCX2 for j = 1, 2.
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2.1.6 ϑ(ǫ3)

The equations are

LQA3 = −nA3

(

− GeeQ
′

E +
1

2
HeeQ

′′

E

)

− nI3

(

− GeiQ
′

E +
1

2
HeiQ

′′

E

)

−Π1

(

− GeeQ
′

A1 +
1

2
HeeQ

′′

A1

)

− Π2

(

GeiQ
′

A1 +
1

2
HeiQ

′′

A1

)

−X

(

− GeeQ
′

A2 +
1

2
HeeQ

′′

A2

)

+ δe∂T X

(

− GeeQ
′

E +
1

2
HeeQ

′′

E

)

−∆νE

(

− BeQ
′

A1 +
1

2
DeQ

′′

A1

)

− ∆νA

(

− BeQ
′

E +
1

2
DeQ

′′

E

)

+τ∂T QA1 +
SE

σ̄E
ξAQ

′

E (S.106)

LQB3 = −nB3

(

− GeeQ
′

E +
1

2
HeeQ

′′

E

)

− nI3

(

− GeiQ
′

E +
1

2
HeiQ

′′

E

)

−Π1

(

− GeeQ
′

B1 +
1

2
HeeQ

′′

B1

)

− Π2

(

GeiQ
′

B1 +
1

2
HeiQ

′′

B1

)

+X

(

− GeeQ
′

B2 +
1

2
HeeQ

′′

B2

)

− δe∂T X

(

− GeeQ
′

E +
1

2
HeeQ

′′

E

)

−∆νE

(

− BeQ
′

B1 +
1

2
DeQ

′′

B1

)

− ∆νB

(

− BeQ
′

E +
1

2
DeQ

′′

E

)

+τ∂T QB1 +
SE

σ̄E
ξBQ

′

E (S.107)

LQI3 = −(nA3 + nB3)

(

− GieQ
′

I +
1

2
HieQ

′′

I

)

− 2Π1

(

− GieQ
′

I1 +
1

2
HieQ

′′

I1

)

+τ̂ ∂T QI1 +
SI

σ̄I
ξIQ

′

I (S.108)
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with boundary conditions

QA3(yθ) = [QA3]
y+

r

y−

r
= 0 (S.109)

Q
′

A3(yθ) = [Q
′

A3]
y+

r

y−

r
= (Hee − 1)nA3 + HeinI3 − δeHee∂T X + De∆νA

−2HeeX
(

HeeΠ1 + HeiΠ2 + De∆νE

)

+ (H3
ee − H2

ee)X
3

+X
(

HeeΠ1 + HeiΠ2 + De∆νE

)

+ HeeΠ1X (S.110)
∫ yθ

−∞

duQA3(u) = 0 (S.111)

QB3(yθ) = [QB3]
y+

r

y−

r
= 0 (S.112)

Q
′

B3(yθ) = [Q
′

B3]
y+

r

y−

r
= (Hee − 1)nB3 + HeinI3 + δeHee∂T X + De∆νB

+2HeeX
(

HeeΠ1 + HeiΠ2 + De∆νE

)

− (H3
ee − H2

ee)X
3

−X
(

HeeΠ1 + HeiΠ2 + De∆νE

)

− HeeΠ1X (S.113)
∫ yθ

−∞

duQB3(u) = 0 (S.114)

QI3(ŷθ) = [QI3]
ŷ+

r

ŷ−

r
= 0 (S.115)

QI3(ŷθ) = [QI3]
ŷ+

r

ŷ−

r
= Hie(nA3 + nB3) − nI3 (S.116)

∫ ŷθ

−∞

duQI3(u) = 0 (S.117)

The voltage distributions for populations A and B at this order are given by

QA3(y) =

{

αA3QE(y) + β+
A3e

−y2
+ Qp0

A3(y) + Qp1
A3(y) y > yr

αA3QE(y) + β−
A3e

−y2
+ Qp0

A3(y) + Qp1
A3(y) y < yr,

(S.118)

QB3(y) =

{

αB3QE(y) + β+
B3e

−y2
+ Qp0

B3(y) + Qp1
B3(y) y > yr

αB3QE(y) + β−
B3e

−y2
+ Qp0

B3(y) + Qp1
B3(y) y < yr,

(S.119)

It is not necessary to solve for QI3(y).
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One finds that

αA3 = nA3 + 2yθQ
p1
A3(yθ) + ∂yQ

p1
A3(yθ) + δeHee∂T X − De∆νA + X3(H2

ee − H3
ee)

+2Π1X(H2
ee − Hee) + Π2X(2HeeHei − Hei) + (2Hee − 1)De∆νEX, (S.120)

β+
A3 = −ey2

θQp0
A3(yθ) − ey2

θ Qp1
A3(yθ), (S.121)

β−
A3 = β+

A3 + ey2
r [Qp0

A3]
y+

r

y−

r
+ ey2

r [Qp1
A3]

y+
r

y−

r
, (S.122)

Qp0
A3 = nA3

(

− GeeQ
′

E +
1

4
HeeQ

′′

E

)

+ nI3

(

GeiQ
′

E +
1

4
HeiQ

′′

E

)

, (S.123)

Qp1
A3 = −XGeeQ

′

A2 +
1

4
XHeeQ

′′

A2 +
(

GeiΠ2 − GeeΠ1 − Be∆νE

)

Q
′

A1

+
1

4

(

− 2X2Gee + HeeΠ1 + HeiΠ2 + De∆νE

)

Q
′′

A1 +
1

4
X2GeeHeeQ

′′′

A1 −
1

32
X2H2

eeQ
(iv)
A1

+
(

Gee(τ + δe)∂T X − Be∆νA − SAξA

σ̄E

)

Q
′

E

+
(

− XG2
eeΠ1 + XGeeGeiΠ2 − XGeeBe∆νE +

1

4
De∆νA − 1

4
(
1

2
τ + δe)Hee∂T X

)

Q
′′

e

+
1

4

(

− 2

3
X3G3

ee + 2XGeeHeeΠ1 + X(GeeHei − GeiHee)Π2 + (HeeBe + GeeDe)∆νE

)

Q
′′′

E

1

16

(

2X3G2
eeHee − XH2

eeΠ1 − XHeeHeiΠ2 − HeeDe∆νE

)

Q
(iv)
E − 1

32
X3GeeH

2
eeQ

(v)
E

+
1

384
X3H3

eeQ
(vi)
E + QT

A3(y)τ∂T X, (S.124)

where LQT
A3 = QA1 − Qp

A1, which can be integrated straightforwardly.
It is easily shown that QA3 = −QB3 once the transformation ∆νA → −∆νB,

SAξA → −SBξB has been made.
Once again the normalization conditions, Eqs.(S.111), (S.114) and (S.117), lead

to a matrix equation, given by
Ln3 = N3, (S.125)

and once again we must have
n
† · N3 = 0. (S.126)

Eq.(S.126) is the solvability condition which yields an equation for X given by

τ̃ ∂T X = η̂(νA,ext − νB,ext) + (µE∆νE + µI∆νI)X + γX3 + σ̄ξ, (S.127)
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where

τ̃ = 2τ

{[√
π

2

(

Gee(1 +
δe

τ
) +

y

4
Hee(1 +

2δe

τ
)

)

ey2
erfc(−y) + QT

A3

]yθ

yr

− Hee

2
√

πνEτ

}

, (S.128)

η̂ = Γ(Be, De), (S.129)

µE =
√

π

[

KE(y)ey2
erfc(−y)

]yθ

yr

− 2K̄E , (S.130)

µI =
√

π

[

KI(y)ey2
erfc(−y)

]yθ

yr

− 2K̄I , (S.131)

γ =
√

π

[

KC(y)ey2
erfc(−y)

]yθ

yr

− 2K̄C , (S.132)

σ̄ =

√

π

2

SE

σ̄E

[

ey2
erfc(−y)

]yθ

yr

, (S.133)

28



and

KE(y) = Π1E

(

2Gee + yHee − 2yG2
ee − (1 + 2y2)GeeHee − (

3y

4
+

y3

2
)H2

ee

)

Π2E

(

− Gei +
y

2
Hei + 2yGeeGei + (

1

2
+ y2)(GeiHee − GeeHei)

−(
3y

4
+

y3

2
)HeeHei

)

+

(

1 − 2yGee − (
1

2
+ y2)Hee

)

Be

(

y

2
− (

1

2
+ y2)Gee − (

3y

4
+

y

2
)Hee

)

De, (S.134)

K̄E(y) = Π1E

(

(yθ − yr)GeeHee +
(y2

θ − y2
r )

4
H2

ee

)

+Π2E

(

(yθ − yr)

2
(GeeHei − GeiHee) +

(y2
θ − y2

r )

4
HeeHei

)

+
(yθ − yr)

2
HeeBe +

(

(yθ − yr)

2
Gee +

(y2
θ − y2

r )

4
Hee

)

De (S.135)

KI(y) = Π1I

(

2Gee + yHee − 2yG2
ee − (1 + 2y2)GeeHee − (

3y

4
+

y3

2
)H2

ee

)

(S.136)

K̄LI(y) = Π1I

(

(yθ − yr)GeeHee +
(y2

θ − y2
r )

4
H2

ee

)

, (S.137)

KC(y) = Π1C

(

2Gee + yHee − 2yG2
ee − (1 + 2y2)GeeHee − (

3y

4
+

y3

2
)H2

ee

)

+Π2C

(

− Gei +
y

2
Hei + 2yGeeGei + (

1

2
+ y2)(GeiHee − GeeHei)

−(
3y

4
+

y3

2
)HeeHei

)

− yG2
ee − (

3y

8
+

y3

4
)H2

ee − (
1

2
+ y2)GeeHee

+(
3

8
+

3y2

2
+

y4

2
)GeeH

2
ee + (

3y

2
+ y3)G2

eeHee + (
1

3
+

2y2

3
)G3

ee

+(
5y

16
+

5y3

12
+

y5

12
)H3

ee, (S.138)

K̄C(y) = Π1C

(

(yθ − yr)GeeHee +
(y2

θ − y2
r )

4
H2

ee

)

+Π2C

(

(yθ − yr)

2
(GeeHei − GeiHee) +

(y2
θ − y2

r )

4
HeeHei

)

+
(yθ − yr)

2
GeeHee +

(y2
θ − y2

r )

8
H2

ee −
(yθ − yr)

3
G3

ee

−(y2
θ − y2

r )

2
G2

eeHee −
1

4

(5(yθ − yr)

2
+ y3

θ − y3
r

)

GeeH
2
ee

+
1

8

(3(y2
θ − y2

r )

2
+

(y4
θ − y4

r )

3

)

H3
ee. (S.139)

29



Finally, if we assume that ∆νI = 0, i.e. the input to the inhibitory neurons is

fixed, we can rewrite Eq.S.127 in the form of Eq.S.1 where η = η̂ γ1/2

τ3/2 , µ = µE
τ̃

and

σ = σ̄ γ1/2

τ3/2 .

2.1.7 Comparison with numerical simulations of full system

We now, as with the rate equations, compare the quantitative match between the
network model and Eq.S.127. Fig.S.3 shows bifurcation diagrams for the case of
a supercritical bifurcation (top left), a subcritical bifurcation (top right), and an
imperfect supercritical bifurcation (bottom left). Note that these three bifurcation
diagrams provide confirmation of the quantitative accuracy of the steady-state
prediction from Eq.S.127. The transient dynamics for the imperfect, subcritical
case are compared on the bottom right. This is the case of interest for us. As
can be seen, the agreement between simulations of the full network and Eq.S.127
is not as good as for the rate equations. As mentioned, the region of quantitative
agreement will depend on the system of departure.
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Fig. S.3: Comparison of spiking network and amplitude equation. Upper left:
Supercritical bifurcation. Jee = 0.1mV. Upper right: Subcritical bifurcation.
Jee = 0.16mV, Jei = 0.22mV. Lower left: Imperfect supercritical bifurca-
tion. Difference in inputs between the two populations was 50Hz. Lower
Right: Mean reaction times and performance as a function of the difference
in presynaptic firing rates. Jee = 0.16 and Jei = 0.20. The mean input to
both populations was 4790Hz where the bifurcation occurs at 4792.5Hz. Un-
less otherwise noted parameter values were: Ne = 1000, Ni = 500, Cee = 100,
Cei = Cie = Cext = 50, Jext = 0.2mV, Jie = 0.1mV, Jei = 0.2mV, τ = 20ms,
τ̂ = 10ms, Ee = Ei = −70mV, Vr = V̂r = −60mV, Vθ = V̄θ = −50mV.
The excitatory (inhibitory) synaptic delays were uniformly distributed with
a mean of 5ms (1ms).
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Fig. S.4: Comparison of network of integrate-and-fire network (open squares)
with Eq.S.127 (solid line). We have used the fit of Eq.S.127 to behavioral
data (filled circles with error bars) from Fig.4c and 4d of the main text. See
methods for parameter values. The parameter values used are : Ee = Ei =
−70mV, Vr = V̂r = −60mV, θ = θ̂ = −50mV, τ = 20ms, τ̂ = 10mV, Jee =
0.16mV, Jie = 0.1mV, Jei = 0.2mV, Jext = 0.20 NE = 2000, NI = 1000,
Cee = 100, Cie = 50, Cei = 50. Excitatory (inhibitory) delays were taken
from a uniform distributions with a mean of 5ms (0.5ms). The form of this
distribution (as long as delays are not too long) does not affect the reaction-
time dynamics qualitatively. The external Poisson rate for the inhibitory
population was held fixed at 9000 Hz, e.g. 90 external synapses firing at 10
Hz each. Those for the excitatory populations where held at 4750 Hz for 200
ms and then increased to 4790 + 1.425 ∗ coherence Hz.
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2.2 Example 2: Reduced equations from Wong and
Wang 2006

The equations are

ṡ1 = −s1

τs
+ (1 − s1)H

(

Jes1 − Jis2 + I0 + I1 + Inoise,1(t)
)

, (S.140)

ṡs = −ss

τs
+ (1 − ss)H

(

Jess − Jis1 + I0 + I2 + Inoise,2(t)
)

, (S.141)

where the noisy inputs obey

τampaİnoise,i = −Inoise,i + σ
√

τampaηi(t), (S.142)

and H(I) = γ (aI−b)

1−e−d(aI−b) . The derivation of these equations from the full spiking

network can be found in [11].

2.2.1 Linear Stability

We assume that I1 ∼ I2 and consider an ansatz of the form (sA, sB) = (s̄, s̄) +
(δs1, δs2)e

λt, where s̄ = (1 − s̄)H(s̄(Je − Ji) + I0). This leads to an eigenvalue
problem of the form

(

λ + 1
τs

+ H − Je(1 − s̄)H
′

Ji(1 − s̄)H
′

Ji(1 − s̄)H
′

λ + 1
τs

+ H − Je(1 − s̄)H
′

)





δrA

δrB

δrI



 = 0,(S.143)

where H and its derivatives are evaluated at the fixed point.
The eigenvalue corresponding to the eigenvector (1,−1) is equal to zero for

1
τs

+ H − Je(1 − s̄)H
′

= Ji(1 − s̄)H
′

, which occurs for I0 = Icr.

2.2.2 Weakly Nonlinear Dynamics

We expand around the steady instability found above. We take

I1 = ǫ2∆I0 + ǫ̂∆I1 (S.144)

I2 = ǫ2∆I0 + ǫ̂∆I2 (S.145)

(s1, s2) = (s̄, s̄) + ǫ(1,−1)X(T ) + ǫ2(s12, s22) + . . . , (S.146)

where ǫ and ǫ̂ are small parameters which measure the distance from the bifurcation
and the difference in inputs to the two excitatory populations respectively. Near
the bifurcation, the mode corresponding to the critical eigenvector X(T ) evolves
on the slow time scale T = ǫ2t. The expansions given above are plugged into
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Eqs(S.140-S.141) and terms are collected order by order. We assume that ǫ̂ =
ϑ(ǫ3).

ϑ(ǫ) :
We recover the linear stability problem

Ls1 = 0, (S.147)

where

L = Ji(1 − s̄)H
′

(

1 1
1 1

)

(S.148)

and s1 = (1,−1)X(T ).

ϑ(ǫ2) :

Lr2 = N2, (S.149)

N2 =
(

(1 − s̄)H
′

∆I0 + (1 − s̄)
H

′′

2
(Je + Ji)

2X2

−H
′

(Je + Ji)X
2
)

(

1
1

)

. (S.150)

We solve for s2 as in section 2.1,

s2 = S
(

1
1

)

, (S.151)

where

S =
1

2Ji
∆I0 +

[

H
′′

(Je + Ji)
2

4JiH
′

− (Je + Ji)

2(1 − s̄)Ji

]

X2 (S.152)

ϑ(ǫ3) :

We have
Lr3 + L2r1 = N3, (S.153)

where

L2 =

(

∂T + (H
′ − (1 − s̄)H

′′

Je)∆I0 (1 − s̄)H
′′

Ji∆I0

(1 − s̄)H
′′

Ji∆I0 ∂T + (H
′ − (1 − s̄)H

′′

Je)∆I0

)

,(S.154)

N3 = N3

(

1
−1

)

+

(

(1 − s̄)H
′

∆I1

(1 − s̄)H
′

∆I2

)

(S.155)
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where

N3 =
1

2Ji

(

(1 − s̄)H
′′

(J2
e − J2

i ) − 2JeH
′

)

∆I0X

+

[(

(1 − s̄)H
′′

(J2
e − J2

i ) − 2H
′

Je

)(

H
′′

(Je + Ji)
2

4JiH
′

− (Je + Ji)

2(1 − s̄)Ji

)

+
(1 − s̄)

6
H

′′

(Je + Ji)
3

−H
′′

2
(Je + Ji)

2

]

X3 (S.156)

Again, Eq.(S.153) only has a solution if 〈s†,L2s1−N3〉 = 0, where s
† = (1,−1).

This leads to the equation

∂T X = η(I1 − I2) + µ∆I0X + γX3 + σ̂Inoise, (S.157)

where

η =
(1 − s̄)H

′

2
(S.158)

µ = (Je + Ji)(1 − s̄)H
′′ − H

′

+
(J2

e − J2
i )(1 − s̄)H

′′

2Ji
− JeH

′′

Ji
(S.159)

γ =

(

(1 − s̄)H
′′

(J2
e − J2

i ) − 2JeH
′

)(

H
′′

(Je + Ji)
2

4JiH
′

− (Je + Ji)

2(1 − s̄)Ji

)

+
(1 − s̄)H

′′′

(Je + Ji)
3

6
− H

′′

(Je + Ji)
2

2
(S.160)

σ̂ =
(1 − s̄)H

′

√
2τs

(S.161)

τampaİnoise = −Inoise + σ
√

τampaη(t) (S.162)

Fig.S.5 shows the bifurcation diagram of the original system (black lines) and
the estimation of the fixed points near the bifurcation given by Eq.S.157 (red lines).
Fig.S.6 shows a sample simulation of the full system (black) and the nonlinear
diffusion equation (red) using the same seed to generate the random fluctuations.
The simultation was done at the bifurcation point for symmetric inputs.

Note that in this example as in the previous one (network of spiking neurons)
the noise is both additive and multiplicative in the original equations. Assuming
small-amplitude noise results in the approximation of purely additive noise. As
the noise strength is increased this approximation breaks down. The multiplicative
noise can be takin into account in the amplitude equation by retaining higher
order terms: the ϑ(ǫ4) term µ̂(t)X, where µ̂(t) is proportional to the noise. For
consistency one must then include the ϑ(ǫ4) term bX2 as well.
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Fig. S.5: Bifurcation diagram for the reduced model, Eqs.S.140-S.141. Pa-
rameter values are a = 173.07, b = 108, d = 0.154, τs = 100, Je = 0.2609,
Ji = 0.0497 I1 = I2 = 0. Black lines: stable (solid) and unstable (dashed)
branches calculated with a Newton-Raphson scheme. Circles: Numerical sim-
ulation of Eqs.S.140-S.141. Red lines: amplitude equation solution Eq.S.157.
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Fig. S.6: Sample traces of s1(t) and s2(t) (black lines) and X(T ) (red lines)
from a single numerical realization. The same seed is used for generating
the noise in both cases in order to compare the actual temporal evolution.
Parameter values are as in Fig.S.6 with I0 = 0.1526 (at the bifurcation point),
I1 = 0.00081, I2 = −0.00081, τampa = 2, σ = 0.001.

37



References

[1] N. Brunel. Dynamics of sparsely connected networks of excitatory and in-
hibitory spiking neurons. J. Comput. Neurosci., 8:183–208, 2000.

[2] N. Brunel and V. Hakim. Fast global oscillations in networks of integrate-
and-fire neurons with low firing rates. Neural Comp., 11:1621–1671, 1999.

[3] P. Glendinning. Stability, instability and chaos. Cambridge: Cambridge Uni-
versity Press, 1994.

[4] J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems,

and bifurcations of vector fields. Springer Verlag, 1983.

[5] H. Haken. Synergetics. Springer Verlag, 1983.

[6] Samuel Karlin and Howard M. Taylor. A second course in stochastic processes.
Academic Press, New York, first edition, 1981.

[7] J. Palmer, A. C. Huk, and M. N. Shadlen. The effect of stimulus strength
on the speed and accuracy of a perceptual decision. J. of Vision, 5:376–404,
2005.

[8] S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley Publishing
Company, 1994.

[9] X.-J. Wang. Probabilistic decision making by slow reverberation in cortical
circuits. Neuron, 36:955–968, 2002.

[10] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos.
Springer, 2nd edition, 2003.

[11] K. F. Wong and X-J Wang. A recurrent network mechanism of time integra-
tion in perceptual decisions. J. of Neurosci., 26(4):1314–1328, 2006.

38


