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1 A minimal model with scale invariance properties

In view of the rather complicated technical characteristics of the full model

we present in this paper, it may be appropriate to present here a toy model

that has the minimal hierarchical properties we expect to obtain in the full

simulation. As a price for its simplicity, this toy model produces patterns that

are unrealistic in its global appearance. However, clarifying the hierarchical

properties of this toy model may be important to better appreciate the results

of the full modeling.

The toy model is defined as follows. Let us consider a rectangular surface.

In the beginning, it is assumed that this surface has a very small area and

represents the germ of the leaf that will grow. When its (linear) size reaches

the critical value l
c
, a new vein of unitary width appears, dividing the original

surface in two. The system continues to grow isotropically, and every time a

sector free of veins reaches a (horizontal or vertical) length l
c
, a new vein is

nucleated, dividing this sector in two. We consider that the new vein does

not appear necessarily in the middle of the sector that is divided, but in an

arbitrary position, with some probability distribution (most probably in the

middle, and less toward the borders). This eliminates the existence of four

veins junctions, which are rarely observed in real leaves. A few steps of this

process are illustrated in Fig. 1. In this figure, all stages have been plotted as

of the same size, i.e., we use the same ’zooming out’ procedure as in the full
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Fig. 1. Minimal model. Four steps in the division process.

model, and then Fig. 1 is the equivalent in the toy model of Figs. 3 and 4 of

the paper.

This very simple model admits and equally simple calculation of the statistics

of segments lengths and widths. In fact, first of all, it is easy to see that the

typical length L(w) of a segments of width w is independent of w, as segments

get divided by thinner ones, independently of its width. This is true of course

if the model is iterated infinitely. Otherwise we should get a cutoff at low w,

with L(w) going to zero for w going to zero.

Another interesting result is the scaling law of the number of segments N(w)

of a given width w. The total length of segments of width w is roughly 1/w,

as they appeared to divide a pattern with typical size ∼ l
c
in pieces of smaller

size. Since at the end the mean length of segments is independent of w, the

number of segments of width w is ∼ w−1. However, in this estimation the

implicit assumption is made that sectors are progressively divided in halves.

If we want to go to a continuous description, this has to be taken into account,
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Fig. 2. Statistical behavior of the minimal model. Top panel: Histogram of the

number of segments of a given width, N(w) vs. w. Lower panel: Histogram of the

average length of segments of width w. We show results for forty realizations in

three system sizes.

and the result of creating a continuous histogram for N(w) is that the number

of segments of width w gets an additional w−1 factor, thus we obtain N(w) ∼

w−2.

The present simple model and its expected statistical behavior is a good bench-

mark to validate the numerical algorithms for segment location and counting

we use in the full simulation. To do this we have run different configurations

of the model and made the counting of segments length and width using the

full machinery that has been explained in detail in Ref. (1). The results can be

seen in Fig. 2. We confirm that in this toy model the mean length of segments

is independent of its width, and the number of segments with a given width is
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N(w) ∼ w−2. These results are consequence of the hierarchical way in which

the patterns is constructed, and form the basis on which the results of the full

simulations can be analyzed.
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