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1. Relative entropy and entropy
Relative entropy. Given two probability distributions p and q defined on a set Z of N possible outcomes, the
relative entropy [1] of p with respect to q is given by

H[p ‖ q] :=
N∑

i=1

pi log2

(
pi

qi

)
.

Relative entropy is also known as Kullback-Leibler divergence. It can be shown that relative entropy is always
non-negative, 0 ≤ H[p ‖ q], and further that H[p‖q] = 0 if and only if p = q. A special case arises in the context of
Bayesian updating. Suppose p(H) is the prior distribution for a set of hypotheses, and p(H|D = d) is the
posterior distribution given some new data d. The relative entropy H [p(H|D = d) ‖ p(H)] quantifies the number
of bits of information about H that are gained by learning D = d.

We extend the interpretation to arbitrary distributions p and q, where q is a prior distribution and p is a posterior.
We take a posterior distribution to be a distribution that is specified after causal interactions have taken place.
Relative entropy H[p‖q] measures the information generated by specifying p, relative to q. We emphasize that it
is meaningless to measure the information generated by a repertoire p without a yardstick, given here by q.

Entropy. It is useful to compare relative entropy to the more familiar notion of (information) entropy. Entropy
is defined as

H(p) :=
∑

i

log2(pi),

where we use round brackets to distinguish the two entropies. A related notion is the concept of self-information.
Given a set of outcomes Z distributed according to p, the self-information given by outcome zi is
I(zi) := − log2(pi). Self-information is usually interpreted as a measure of the surprise associated with outcome
zi. If p(zi) = 1 then I(zi) = 0, there is no surprise; if p(zi) = 0 then I(zi) =∞, an impossible outcome is
infinitely surprising. Comparing the formulae for entropy and self-information it is clear that entropy is the
expected value of the self-information of Z.

We apply this as follows. Let δi be the probability distribution on Z assigning probability 1 to outcome zi and
probability 0 to all other outcomes. Observe that I(zi) = H[δi ‖ p], which we interpret as measuring how much
information is generated by the particular outcome zi from the repertoire of possible outcomes (possible
according to distribution p). It follows that

H(p) = Ep

{
H[δi ‖ p]

}
=
∑

i

pi ·H[δi ‖ p],

so entropy is the expected information generated by an outcome of repertoire p. Thus entropy can be derived
from the more fundamental notion of relative entropy.
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2. The maximum entropy distribution on a finite set
The maximum entropy (maxent) distribution on a finite set Z of possible outcomes is the distribution m that
maximizes the entropy functional: m(Z) := argmaxpH(p). If there are N outcomes in Z then the maxent
distribution is given by

m(zi) =
1
N

for all zi ∈ Z.

The maxent distribution on Z coincides with the uniform distribution on Z. In the paper, the set Z will arise as
the set of possible outputs of a collection of n elements in a system X. If the elements are all binary (with
outputs 0 and 1), then Z consists of N = 2N possible activity patterns. A useful property of the maxent
distribution is that it is independent on disjoint subsets of the system.

3. The a posteriori repertoire
Suppose we have a subset S of a discrete system X. We detail the computation of the a posteriori repertoire
p(S0 → s1) specified when S transitions to s1. The approach is completely general: it applies to the entire system
X, or any part thereof.

To specify the a posteriori repertoire we need two pieces of data: the a priori repertoire of perturbations, and a
description of the mechanism by which S responds to perturbations. The a priori repertoire is given by the
maximum entropy distribution on the set of outputs of the elements. The mechanism is the causal architecture of
the system; we suppose it to be encoded in the form of a conditional probability distribution: psys (x1|do(x0)),
the probability the system outputs state x1 given it is perturbed with x0, where the do(−) operator is introduced
following [2]. Since we are interested in the causal interactions that are accounted for internally by S, we ignore
the responses of elements outside of S, and only consider the conditional distribution psys (s1|do(x0)).
Perturbations introduced outside of S can affect the response by S, and are not accounted for internally, so we
average (marginalize) over them. Each connection afferent to S is averaged over using the maximum entropy
distribution. After averaging out extrinsic noise, the mechanism of an element nk in S is given by:

pmech
(
nk

1 |do(s0)
)

=
∑
e0

pmech
(
nk

1 |do(s0, e0)
)
· pmax(e0),

where the summation is over afferent connections from the environment E := X\S into S. The environment acts
as a source of extrinsic noise that loosens the mechanism within S. The mechanism of the system, psys (s1|do(s0))
is then the combined mechanism of the elements within S. Imposing maximum ignorance on external inputs
requires perturbing connections rather than elements, since connections from the environment to S are a property
of S, and the external elements themselves are not.

Note that the alternate treatment of extrinsic noise, perturbing elements rather than wires, does not qualitatively
affect the results presented in the text.

The a posteriori repertoire can then be captured via Bayes’ rule:

p(s0 → s1) :=
psys (s1|do(s0)) · pmax(s0)

p(s1)

where p(s1) =
∑

s0
psys (s1|do(s0)) · pmax(s0). Bayes’ rule provides a formal method for keeping track of the

(probabilistic) effects of a priori perturbations introduced into the system, and for converting the resulting data
into the a posteriori repertoire.

We consider two extreme cases. First suppose S is completely deterministic. It follows that

p(s0 → s1) =
{

1
m if p (s1|do(s0)) = 1
0 else

where m is the number of perturbations in the a priori repertoire that cause s1. The a posteriori repertoire
specified by S is simply all the perturbations that result in s1, weighted equally. From S’s point of view the
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various perturbations in the a posteriori repertoire are indistinguishable. Note that the a posteriori does not
specify the probability of s0 leading to s1 (which is 1 or 0 in this case), but rather the probability that s0 led to s1.

Second, suppose S operates completely randomly: each outcome is equally likely regardless of prior inputs. This
may be a result of the mechanism implemented by the elements in S, or due to external interactions
overwhelming S. Either way, S does nothing to rule out alternatives by entering s1, and the a posteriori
repertoire is p(S0 → s1) = pmax(S0).

In an isolated deterministic system, Bayes’ rule simply keeps track of which perturbations lead to s1, and
renormalizes so that the probabilities sum to one as required. In a probabilistic system Bayes’ rule keeps track of
the additional data given by the likelihoods of the perturbations given the response, and weights the
perturbations according to their likelihoods.

4. No integrated information is generated by a disconnected system
Suppose X consists of two disjoint subsets A and B. We show that ei(X0 → x1/P) = 0 for the partition
P = {A,B}, regardless of the state x1. Recall that relative entropy is zero if and only if the two repertoires under
comparison are identical, so it suffices to show that the a posteriori repertoire specified by the parts coincides
with that specified by the system.

If A and B are disjoint then the conditional probability p(x1|x0) = p(a1, b1|a0, b0) splits into a product:
p(x1|x0) = p(a1|a0) · p(b1|b0). It follows that the a posteriori repertoire also decomposes into a product, and so
the combined a posteriori repertoires of the parts coincides with the a posteriori repertoire of the system.

5. The expectation of effective information
In the course of computing the a posteriori repertoire given state s1 we computed the probability of the system
entering s1 given its causal architecture and the a priori repertoire of perturbations. It follows that we can
compute the distribution p(S1) of possible outcomes at t = 1. We use p(S1) to compute the expected value of
effective information.

First observe that effective information decomposes as a sum of simpler terms:

ei(S0 → s1/P) = H

[
p(S0 → s1)

∥∥∥∥∥∏
k

p(Mk
0 → µk

1)

]
(S1)

=
∑

k

H
[
p(Mk

0 → s0)
∥∥ p(Mk

0 → µk
1)
]

+H

[
p(S0 → s1)

∥∥∥∥∥∏
k

p(Mk
0 → s1)

]
.

The expectation of H
[
p(M0

k → s1) ‖ p(Mk
0 → µk

1)
]

is∑
s1

p(s1)H
[
p(Mk

0 → s1) ‖ p(Mk
0 → µk

1)
]

= H
(
p(Mk

0 →Mk
1 )
)
−H

(
p(Mk

0 → S1)
)

and the expectation of H
[
p(S0 → s1)

∥∥∏
k p(M

k
0 → s1)

]
is

∑
s1

p(s1) ·H

[
p(S0 → s1)

∥∥∥∥∥∏
k

p(Mk
0 → s1)

]
=
∑

k

H
(
p(Mk

0 → S1)
)
−H (p(S0 → S1))

In both formulae we are now computing entropy rather than relative entropy. Define the expected effective
information generated by a subset S of X as

EI(S0 → S1) = H (pmax(S0))−H (p(S0 → S1)) . (S2)
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It follows that the expectation of effective information across a partition is

EI(S0 → S1/P) := ES1 [ei(S0 → s1/P)]

= EI(S0 → S1)−
∑

k

[
EI(Mk

0 →Mk
1 )
]
.

Thus the expected effective information generated across a partition is given by the expected effective information
generated by the system minus (over and above) the expected effective information generated by the parts.

Finally, define expected integrated information, Φ(S1), as expected effective information across the partition that
generates the lowest quantity of normalized expected effective information:

Φ(S1) = EI
(
S0 → S1/PMIP

)
. (S3)

The expected integrated information provides a useful characterization of the capacity of a discrete system.

6. Bounds on Φ(X1)
Computing effective information for every partition of a set S is computationally intensive: the number of
partitions grows faster than en as a function of the number of elements n in the set. We show that restricting to
bipartitions gives a lower bound on the expected integrated information Φ(X1). Suppose we have a subset S of X
and bipartition P = {A,B} of S. Notice that EI(S0 → S1/P) ≥ 0 since the expression is an expectation of
relative entropies, all of which are non-negative. It follows that

EI(A0 → A1) + EI(B0 → B1) ≤ EI(S0 → S1) (S4)

for any bipartition of S. This can be interpreted as saying that the whole is always (on average) at least the sum
of its parts.

For any partition P we can form a refinement P ′ by subdividing one or more of the parts of P. Thus a
bipartition can be refined to form a tri-partition, and so forth. At the bottom we find the partition into the
individual elements, and below that we place the total partition, where there are no parts and the system is taken
as a whole. Equation (S4) has the following consequence:

EI(X0 → X1/P) ≤ EI(X0 → X1/P ′) if P ′ is a refinement of P.

It follows that effective information for the minimum information bipartition provides a lower bound for Φ(X1)
and that effective information for the total partition provides an upper bound. An additional upper bound – for
systems consisting of elements with identical outputs – is given by twice the effective information on the
minimum information mid-bipartition, as can be seen by considering the normalizing constant.

Homogeneous systems. We show that expected effective information in a homogeneous system of binary
elements is at most one bit: EI(X0 → X1) ≤ 1 bit. Expanding, we see that
EI(X0 → X1) = H (p(X1))−H (p(X1|X0)). The first term quantifies the repertoire of possible outputs of the
system. However for a homogeneous system the elements act monolithically regardless of the input: they all
either fire or all silent. Thus H(X1) ≤ 1 bits. It follows from the nature of the normalization for different
partitions that expected integrated information is at most one bit.

Lattices. Expected effective information across the minimum bipartition in an n× n lattice of binary elements is
at most 2n bits. There are 2n elements that lie on the boundary of a vertical or horizontal bipartition on an
n× n lattice. These elements are the only elements that are affected by interactions between the parts, and they
can at most generate 1 bit of information on average. If we assume the lattice wraps around to form a torus, as in
the Game of Life grid in Figure 15, there are two cuts across which parts can interact and the upper bound
increases to 4n.
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7. Relationship to effective information for stationary systems
In previous work [3, 4] the notions of effective information and integrated information were introduced for
stationary multivariate Gaussian random process. Fix a bipartition P = {A,B}. The effective information
EI(A→ B) = H(Amax) +H(B)−H(Amax, B) across the bipartition captures the capacity of the subsets for
integrated information. Integrated information of the system was then defined as the capacity across the
minimum information bipartition; we denote it by Φpert

stat (X) = EI(A 
 BMIB).

In this paper we generalize effective information as a time and state dependent measure. The measure quantifies
the effective information generated by the process of ruling out a collection of alternatives from the a priori
repertoire. It cannot be directly connected to the previous notion since they apply in different contexts, however,
we investigate how expected integrated information can be adapted to stationary systems since expected effective
information can be interpreted as a capacity: the capacity for interactions between a collection of parts.

Recall that the expected value of effective information, Eq (S2), is given by
EI(A0 → A1) = H (pmax(A0))−H (p(A0 → A1)), and expected effective information over an arbitrary partition
is EI(X0 → X1/P) = H (p(A0 → A1)) +H (p(B0 → B1))−H (p(X0 → X1)). The most natural way to apply this
to a stationary (timeless) system is to drop the time dependence and rewrite it as

MI(X/P) = MI(A;B) = H(A) +H(B)−H(X),

the mutual information over the partition. Finding the minimum information partition, suitably normalized, and
computing mutual information across the MIP recovers the perturbation free modification of integrated
information discussed in [3]:

Φcorr
stat (X) = MI(X/PMIP ).

It provides a measure of the minimal observed dependencies in a stationary system, and could be applied, for
example, to determine the natural components of a stationary system.

Perturbing elements in a stationary system allows one to observe the effects one part can have on the rest of the
system, but not the effects the entire system can have on itself. The perturbation free measure above detects
correlations between subsets of the system, but does not detect causal interactions. This paper avoids these
problems by considering non-stationary systems so that perturbations are introduced in one time step, and the
response is measured in the next.

Finally, note that integration (not to be confused with integrated information) as introduced in [5] is given by
MI

(
X/{Xk}Nk=1

)
=
∑N

k=1H(Xk)−H(X).

8. Comparison with other information measures on discrete systems, and discussion of
technical aspects of φ
It is worth briefly discussing the relation between the present work, and the notions of stochastic interaction,
transfer entropy and information flow.

A measure of stochastic interactions within a discrete system was introduced in [6], motivated by the desire to
extend the infomax principle of [7] to dynamical processes. In their work they found that optimizing stochastic
interaction results in systems with almost deterministic global behavior, and long cycles with relatively few
branch points. Further, the individual elements in the optimized systems were extremely poor predictors of the
system’s future behavior. Thus the optimized systems possess an intriguing mix of local flexibility and global
rigidity, suggesting they may generate high φ.

Stochastic interaction is defined as follows. A discrete system X is given, with an initial probability distribution p
on the outputs of the elements (in examples p is a stationary distribution) and causal mechanism M . The system
is partitioned into its individual elements: P =

{
{nk}Nk=1

}
, and for each element nk the distribution p is
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projected to its marginal distribution pk. The causal mechanism (Markov kernel) Mk of each part is computed in
a manner similar to that in this paper. Stochastic interaction is then

I(p,M) =
∑

k

H
(
pk,Mk

)
−H(p,M),

where H(p,M) =
∑

x0
H (M(X1|x0)). By comparison, expected effective information over and above the partition

into individual elements is

EI
(
X0 → X1/

{
{nk}Nk=1

})
=
∑

k

H
(
p(Nk

0 → Nk
1 )
)
−H (p(X0 → X1)) .

Thus, in a special case stochastic interaction (with the maximum entropy distribution) can be seen to be similar
to a special case of expected effective information (across a particular partition, i.e. the partition into individual
elements). The underlying motivations however are quite different. Stochastic interaction measures the total
statistical dependence introduced into the system by the action of the Markov kernel and can be thought of as a
dynamic implementation of the notion of integration in [5]; whereas φ is a measure of the repertoire of states
specified by the system as a whole.

Contrasting the two measures is a useful exercise, since they seek to answer different questions using similar
information-theoretic tools. We emphasize the differences, not to criticize the notion of stochastic interaction, but
rather to provide a stage for motivating and summarizing certain technical aspects of the definition of φ,
complementing the phenomenological presentation in the main text.

(a) Stationary versus maximum entropy distributions. The stationary distribution(s) of a Markov process are for
many purposes the most natural to use in an analysis of its dynamics, since it describes the equilibrium
behavior. φ does not capture or characterize equilibrium behavior, but is rather concerned with how a system
reduces a priori ignorance. The maximum entropy distribution captures the notion of maximal ignorance;
which is then reduced by the mechanism. It also has the important consequence that φ is bounded, which is
not true in general of relative entropy.

(b) Averaging over states versus considering a particular state. Since we are interested in the information
generated by the system, we attend to the particular state it enters, rather than take an average of states.

(c) Looking forward versus looking backwards. Stochastic interaction quantifies how the Markov kernel transforms
a distribution at t = 0 to a distribution at t = 1, “counting” how many different outcomes the system
generates compared to its elements; i.e. by looking forward at where the system could go. In contrast,
effective information quantifies the information generated by the system transitioning from x0 to x1 using the
a priori and a posteriori repertoires; i.e. by looking back at the possible prior perturbations through the lens
of the mechanism. Looking forward quantifies the number of outcomes the system can produce in general,
without attending to the actual state the system is in; whereas looking back asks how much information the
system generates upon entering its actual state. Consider, for example, a six-sided die. We take the position
that the die does not generate information in and of itself (i.e. because it is six-sided); but rather that it must
be thrown, and generates information in the act of landing on a particular face, ruling out the alternatives.

Returning to the analysis of discrete systems, as an external observer all we see is the first state followed by
the second (note that x0 may in fact be the same as x1: the mechanism may cause the system to stay in the
same state). However, the system, we have to assume, has certain undeniable properties:

(i) at t = 1 it is in a particular state;

(ii) it has a mechanism, which admits a description as an input-output table; and

(iii) it has a repertoire of possible inputs; about which the system has no a priori information.

It follows that there is a certain amount of effective information associated with entering any particular state.
It is fruitful to visualize the mechanism as a filtering device. Each input in the a priori repertoire leads to a
particular output, so the mechanism acts by grouping inputs into boxes labeled by outputs (possibly
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Figure 1: Two systems in a steady state with no elements firing. (A): a system of three AND-gates. The
system generates 1 bit of effective information since at each time step the elements choose not to fire after checking
their inputs for spikes. (B): a system which is silent no matter the prior state. No effective information is generated.

probabilistically). It is the action of the mechanism, taking inputs and determining the corresponding
outputs, that generates information. The particular state the system is (or was) in is not informative in and
of itself. Thus we are not interested in where the system was or even where it is per se, but rather in how the
mechanism reduces uncertainty by entering the current state. The answer is given by the rules implemented
by the elements, which we unfold by using the a priori repertoire to determine how the rules act on different
possible states. Perturbing with all possible states ensures we exhaustively uncover the processing of the
mechanism. By looking back at the prior perturbations through the lens of the mechanism, from the vantage
point of the current state, we see how the a priori repertoire is contracted into the a posteriori repertoire by
the processing of the system. Contrasting the two repertoires captures the “differences that make a
difference” to the system.

As an example, consider Figure SI-1. In panel A the system is in a steady state, with no elements firing.
Nevertheless, it generates 1 bit of integrated information each time it does nothing (the minimum partition in
this case is the total partition). The mechanism causes the system to actively choose to remain silent. From
the vantage point of the current state, the four a posteriori states that lead to state x1 – which the system
cannot distinguish among – are specified against the background of the eight possible a priori states, through
the lens of the system’s mechanism. The system in panel B is also in a fixed point, with no elements firing.
However, in contrast to panel A, this is not as a result of causal interactions, but rather a result of the
elements ignoring their inputs and remaining silent no matter what. For this system we find that integrated
information is zero bits, although to the external observer its behavior is identical to that in panel A.

(d) Difference of entropies versus directly comparing repertoires. Stochastic interaction is the difference of the
entropy generated by the elements and the entropy generated by the whole. By contrast, and crucially for our
purposes, effective information directly compares the repertoires of the parts and the whole, without first
converting each into a number, and then comparing the two numbers. We quantify the information generated
by the system, over and above that generated by a collection of parts, by computing the entropy of the a
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posteriori repertoire of the system relative to the combined a posteriori repertoires of the parts. A
conceivable alternative would be to subtract the entropy of the system’s a posteriori repertoire from the sum
of the entropies of the a posteriori repertoires of the parts. This would provide a measure that compares
numerically the reduction in uncertainty performed by the parts with that done by the whole. Note however
that we wish to capture how the processing of the whole differs from that of the parts: the a posteriori
repertoire serves as a means to expose the action of the mechanism, rather than an end to be quantified in
itself. It is therefore necessary to determine, for each perturbation taken separately, how the processing of the
system differs from the combined action of the parts. This ensures that integrated information, as defined in
the text, is zero if and only if the parts and the whole specify identical repertoires, which is not necessarily
the case if we simply compare the sizes of the repertoires. Thus, rather than simply compare the sizes of the
repertoires as seen through the lenses of the whole and the parts, we directly contrast the distributions,
perturbation by perturbation. In this way, computing relative entropy, we directly compare the processing of
the system as a whole to the system taken as a collection of parts.

(e) Partitions. Stochastic interaction is computed using the partition into individual elements. Suppose we have
a system of 4 elements, decomposing into 2 separate couples with internal connections, but no connections
between the couples. Stochastic interaction will be nonzero, which makes sense, since there are indeed
interactions within the couples. However any measure of integration must be zero on a disjoint system, since
a disjoint system is not a single entity. Thus φ is computed by comparing effective information across all
partitions.

We complete the discussion by considering the notions of transfer entropy (TE) and information flow (IF ).
Transfer entropy [8] can be written (for special case l = k = 1) as

TA→B =
∑
a0,b0

p(a0, b0) ·H [p(B1|a0, b0)‖p(B1|b0)] .

It is an average of relative entropies over some initial probability distribution. It captures how much information
flows from A to B by measuring how much variability in B is explained by A. Information flow [9,10] is a similar
measure capturing the flow of information between two subsets of a discrete system using causal interventions.

We do not compare effective information with these measures in detail. Instead it is illuminating ask the
question: what prevents transfer entropy and information flow from forming suitable foundations for measuring
integrated information? Either measure could be computed across bipartitions, using TA→B + TB→A for example.
Comparing across all bipartitions using a normalization, would then result in measures superficially similar to φ.
This sort of approach arguably provides the most straightforward way to adapt effective information from
stationary to non-stationary systems, so it is worth explaining why we did not follow this route.

To avoid repeating the presentation in the text, and the discussion of stochastic information above, we restrict
attention to a single aspect of our reasoning. Integrated information is motivated by a desire to understand how a
discrete system acts (generates information) as a single entity. We directly compare the processing performed by
the system as a whole with the processing performed by the parts – considered as wholes in their own right – to
quantify the interactions in the system that cannot be reduced to the actions of independent subsystems. In
contrast, TE and IF decompose a system into parts from the start: they quantify the flow of information
(suitably defined) from one part, A, of a system to another, B. Thus, TE and IF take a fundamentally local
perspective on the system that precludes understanding it as a single entity.

A simple example illustrates the point. Consider the parity system of Figure 14. The system behaves as a single
giant element, and generates 1 bit of integrated information. However if we try to measure integrated information
using TE or IF , splitting the system into two parts, we find that each part is capable of making one bit’s worth of
difference to the other, resulting in two bits of integrated information. By focusing on the effects of the parts on
each other, rather than that of the system on itself (relative to the parts), we obtain an incorrect measurement.
More generally, suppose we calculate the TE or IF between all the subsets of a system. It is not clear how this
data can be combined to generate a single coherent picture of the processing performed by the system. Our
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solution is to emphasize the action of the whole over the parts, rather than the action of the parts on each other.

Note that we could not do this without introducing time as a variable into the systems. Thus previous work [3]
necessarily considered the actions of parts on each other, rather than the whole relative to the parts, since (as far
as we know) this is the only way to analyze causal interactions in stationary systems.

9. Applications of φ and approximations
We briefly discuss possible approaches to applying φ to neural systems. There are at least two major hurdles.
The most serious is that the causal architecture of a system must be known before φ can be measured. A further
daunting problem is dealing with the combinatorial explosion in the number of partitions and states that have to
be considered in large systems.

The computational burden can be reduced in a number of ways. First, the discussion of expected effective
information and Φ above shows that on average it is sufficient to restrict attention to bipartitions. Second, it is
often the case that most bipartitions can be eliminated as possibilities out of hand in a system that is
well-studied and understood, recall the grid for example. Third, the computation of the a posteriori repertoires
can potentially be short-circuited. For example, perturbations that involve an abnormally high or low firing rate
can be dismissed. Finally, the system in question can be considered over longer time frames and approximated as
a stationary system, so that the mutual information can be used instead of effective information, see [4].

Although these approximations may prove useful and interesting, a more basic point should be made. According
to the theory, a neural (or any other) system is a single entity insofar as it generates a large amount of integrated
information. A practical way of addressing this issue is to consider the two notions (integration and information)
separately. Approximate measures of integration can be developed; for example based on functional
clustering [11], or using the mutual information approximation to integrated information, or possibly by adapting
transfer entropy or information flow. Although none of these measures fully captures the notion of integration,
they provide useful tools in the absence of a detailed understanding of the causal mechanisms underlying
mammalian brains. Once integration has been approximately established, further measures such as coherence
dimension or stochastic interaction could be applied to quantify the degrees of freedom available to the system
considered as a single entity, providing an approximate measure of the integrated information generated.

10. Integrated information and the choice of elements and variables
We have seen in the section on complexes that it is important to properly choose the elementary components of a
system. An instructive example is given by the deterministic Hopfield-type network of [12]. It has connection
weights from the jth element to the ith element given by 2j , so that network activity is updated according to

xi(t) =
n∑

j=1

2jf (xj(t− 1)) for f(x) =
{
−1 if x < 0
+1 if x ≥ 0

where xj(t) describes the state of the ith neuron at time t. Computing integrated information they find that
Φ = n bits. They then go on to observe that the network can be rewritten in the form

vi(t) = f

 n∑
j=1

2jvj(t− 1)

 ,

where vi(t) = f (xi(t)) is a binary variable describing the output of the ith neuron, in which case Φ = 2 bits. The
claim is that there is a family of systems with simple dynamics and interactions between elements, and with
arbitrarily high Φ. Moreover the discrepancy between the Φ values in the two realizations of the system would
show that Φ is sensitive to a change of variables since the two systems “produce identical behavior”.

The example is a discrete system, though their adaptation of Φ and effective information from [3] differs from the
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one provided here. Nevertheless, the error in the example rests on the treatment of causal interactions, rather
than in the implementation of Φ.

Let us first consider the claim that it is possible to construct simple systems with arbitrarily high values of Φ.
The possible states of a single neuron are never explicitly described in [12], except to say the states are integer
valued. By considering all possible 2n initial conditions for the network, we see that each neuron has at least
N = 2n internal states. In particular each neuron stores at least n bits. Since Φ = n it is apparent that the
network is integrating no more information than the individual neurons. The difficulty involved in constructing a
system with high Φ has been shifted onto the shoulders of the neurons: it is not clear how to build neurons that
are integrated objects with repertoires of 2n for arbitrarily large n. This relates to the discussion of Figure 7AB
above. If we take the units to be single objects then it is easy to construct systems with high Φ by coupling them.
The problem is that the units are not integrated.

Second, consider the claim that Φ depends on the choice of variables. Is the natural choice the 2n internal states
or the 2 outputs of the elements? Since Φ measures causal interactions internal states are only relevant to the
extent that they contribute to outputs; beyond that they are not used by the model and are in fact somewhat
artificial. Once we – or rather the elements – have identified whether the internal states are positive or negative
they have no further causal consequences. The difference in Φ obtained in the two computations is not a
consequence of changing variables, but rather a result of measuring things that are not effectively there. Φ is 2
bits regardless of the number of elements and connections, reflecting the simple causal architecture.

11. Integrated information for continuous systems
The theory developed in the paper assumes that elements have a finite repertoire of outputs, and that time passes
in discrete instants. We do not develop the theory for continuous systems; indeed, it is unclear whether
continuous variables exist in nature. However, it is suggested in [12] that φ can be infinite and depends on the
choice of scale for systems with continuous variables, so we briefly discuss these issues.

Relative entropy for continuous random variables (which have a probability density function) is

H [p ‖ q] =
∫

X

log2

(
p

q

)
dp,

where q is the prior and p the posterior. Relative entropy, applied to measure effective information, is easily seen
to be finite (briefly, the support of p is contained in that of q since p is specified using more data than q).
Relative entropy is also invariant under rescaling: if we change the units of measurement, rescaling from
X = [0, T ] to X = [0, α · T ] for example, then the scaling factor affects both p and q and cancels out. Thus
systems with continuous variables pose no theoretical difficulties.

A related question is whether continuous variables provide a cheap method for constructing systems with high φ.
It is possible to imagine systems (whether discrete or continuous) of coupled components with large repertoires
that have high φ. As a practical matter, the question is always how such a system could be implemented. The
world appears, at the smallest scales, to be comprised of discrete components with limited repertoires of available
states. Thus any object X with a large repertoire must contain a correspondingly large number of components.
However, as discussed in the section on Complexes, see Figure 7, in that case two possibilities obtain. If the
elements within an object are independent then φ will be zero, On the other hand, to the extent the elements
within an object are coupled, the a posteriori repertoire of the object will shrink, so effective information between
objects is reduced. Finally, it is also important to note that, since φ measures causal interactions between
interacting elements, one should be careful to identify variables that reflect causal states within a system.
Specifically, macroscopic variables such as phase or position, which are typically identified by an external
observer, are only relevant insofar as they correspond to intrinsic properties of the elements of a complex that
make a difference to their interactions.
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12. Boolean functions in scrambled counting network
Each element in the scrambled counting network implements a Boolean function, which we detail. For each
element we list the 8 firing patterns that cause it to remain silent. It will fire when it receives any of the
remaining 8 inputs.

Element 1 0000 0001 0101 0110 1000 1011 1110 1111
Element 2 0000 0001 0011 0111 1010 1011 1100 1111
Element 3 0000 0001 0101 0110 1001 1010 1100 1101
Element 4 0001 0010 0110 0111 1001 1011 1100 1110

13. Connection matrix of network in Figure 18
Row 1 shows efferent connections from element 1 to elements 1,2,3 and so forth. Blank entries signal there is no
connection.

.875 -.375 -.875 .75
.5 -.375 1 .875 -.125 .5 .5

-.25 -.875 .125 .125 .5
-.75 -.375 -.125 -.75
-.625 -.875 -1 1

-.625 .75 -.375 -.5
-.875 .5 -.125 -.5 -.25
-.75 -.25 -.375 .25 -.875
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