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A Formulation in state-space form

We now exemplify how the model structures in this article may be constructed
from the information contained in Figures 2 and 3. Consider the upper left
model in Figure 2, Mm,a. It consists of two state variables, describing the
concentration of IR and IR · P · ins, respectively. Let these state variables be
denoted x1 and x2. For all models appearing in the figures, except for Mf , it
is assumed that the reaction rates are given by mass-action kinetics. In mass
action kinetics the reaction rate is given by a rate constant times the product
of the concentrations of the substrates for the reaction. Let the rate constant
for the upper and lower reaction be denoted k1 and k

−1, respectively. Let
the corresponding reaction rates be denoted v1 and v

−1, respectively. Let the
concentration of insulin be denoted uins, where the symbol u denotes the fact
that insulin is an input to the model, and therefore not itself affected by the
dynamics of the model. Insulin is assumed to be unaffected by the dynamics in
the model, an assumption which is supported by the fact that insulin is situated
in a much larger extracellular buffer. With these notations the reactions in
Mm,a are given by

v1 = k1uinsx1 (7)

v
−1 = k

−1x2 (8)

The reaction rates are used to form the differential equations. For a state
variable corresponding to a concentration of a substrate, the reaction rate is
subtracted from the right hand side of the differential equation, and if the state
variable is a product it is added. This means that the differential equations (1a)
for Mm,a are given by

ẋ1 = −v1 + v
−1 (9a)

ẋ2 = v1 − v
−1 (9b)

The measurements are always given by the sum of the state variables corre-
sponding to a form of IR with a phosphate group, times an unknown scaling
parameter denoted ky. For Mm,a there is only one such state, and the mea-
surement equation (1b) is therefore given by

y = kyx2 (10)

Finally, at time zero it is assumed that all state variables are zero except for
[IR], but the absolute value of [IR] at time zero is irrelevant for the analysis
herein.

The above procedure can be generalized to all models structures in Figures 2
and 3 except for Mf . This final model structure contains downstream signaling
steps and regulated reactions, and both these features are lacking from the
other model structures. The downstream signaling steps are treated in the same
way as the IR step, where uins is replaced by the concentration of the relevant
kinase. However, for the activation of the IR dephosphorylation reaction, there
are some differences since X · P is not acting as a substrate to the reaction,
but instead affecting the activity of the normal dephosphorylation. Here, this
modification is formulated as a multiplicative term that is one in the case of no
X · P, and increasing to a maximal activation as X · P goes to infinity. Let the



two parameters describing the maximal activation and the X · P concentration
corresponding to half activation be denoted kf,max and kf,M, respectively. Then
the dephosphorylation reaction, denoted by v

−1, is given by

v
−1 = k

−1[IR · P · ins](1 +
kf,max[X · P]

kf,M + [X · P]
) (11)

where k
−1 again denotes the normal reaction rate constant for the reaction.

Note that there are many other more mechanistically based ways to form such
a regulation. However, since the only purpose of this model structure is to
show that such a regulation may give rise to the observed behavior, this sim-
ple phenomenological alternative is sufficient. For the same reason we neglect
the possibility of effects from different volumes for IR/IRS1 and X [2]. The
only model structure where such volume dependencies was important to check
was Mi,c, since this was the only model structure with internalization that
was rejected. Our analysis, however, showed that the extra volume dependent
parameter did not give an altered best agreement with the data.

Let the elements of the six-dimensional state vector x describe the concen-
trations of IR, IR · P · ins, IRS, IRS · P, X, and X · P, respectively. Let the
rate constants for the phosphorylation and dephosphorylation reactions for IR,
IRS, and X, be denoted k1, k

−1, k2, k
−2, k3, and k

−3, respectively. Then the
differential equations (1a) for Mf are given by

ẋ1 = −k1uinsx1 + k
−1x2(1 +

kf,maxx6

kf,M + x6

) (12a)

ẋ2 = k1uinsx1 − k
−1x2(1 +

kf,maxx6

kf,M + x6

) (12b)

ẋ3 = −k2x2x3 + k
−2x4 (12c)

ẋ4 = +k2x2x3 − k
−2x4 (12d)

ẋ5 = −k3x4x5 + k
−3x6 (12e)

ẋ6 = +k3x4x5 − k
−3x6 (12f)

and the two measurements signals, y1 and y2, measuring phosphorylation of IR
and IRS, respectively, are given by

y1 = ky,1x2 (13)

y2 = ky,2x4 (14)

where ky,1 and ky,2 are two unknown scaling parameters in the model. Again,
the concentrations of the unphosphorylated state variables are assumed to con-
tain all the concentration of the intermediate (IR, IRS or X) at time zero. Fi-
nally, all the model structures, and the files used to analyze them, are available
from the authors on demand.

B Parameter estimation

For those models where a transfer function is not sufficient to draw conclu-
sions about whether the model could be rejected, a combination of parameter
estimation and statistical testing was used instead.



The parameter estimation approach is based on the classical least squares
criterion. Consider again a general model structure of the form (1). Let the vec-
tor of measured signals at time t be denoted y(t), and let the vector of simulated
outputs corresponding to the parameters k, the unknown scaling parameters py,
and the initial values x0 be denoted ŷ(t|p), where p contains all the unknown
parameters

p = (k, x0, py) (15)

Let the function describing the relation between the state variables x and the
simulated output ŷ be denoted h

ŷ = h(x, p) (16)

This equation for Mm,a reads

y = py[IR · P · ins] (17)

where py is an unknown scaling parameter. Finally, let the weights quantifying
the importance of each time point ti and measurement signal yj be denoted wij .
With these notations the cost function to minimize is given by VN (p) as follows

VN (p) =
N∑

i=1

ny∑

j=1

(
yj(ti) − ŷj(ti|p)

wij

)2

(18)

where N is the number of samples, ny is the number of signals measured at each
time-point. The estimated parameters, denoted p̂, are thus formally defined by

p̂ := arg min
p

VN (p) (19)

In practice, the estimation process is done via the optimization routines in
the Systems Biology Toolbox for MATLAB [1]. The main algorithm used is a
combination of Simulated Annealing, which is a global optimization method,
and the local, but not gradient based, nonlinear simplex method. The weights
are chosen as 1 or as the estimated variance at each time point. Note that
this gives a higher weight to the first minutes in the time-series since more
measurements were made in this time-period; this is good because most of the
information in the data series is contained in this time-frame. Finally, for the
models with a good, but not acceptable, agreement with the data, other weights
were tried as well.

The number of iterations at each temperature were always at least 50*ny,
and the temperature always ranged from 1000 to 0 with changes by a factor of
10 at each change, and with a restarted local search at the last temperature.
For the models with a fairly good, but not acceptable, agreement with the data
more extensive searches were made. These more elaborate searches were made
to minimize the risk that erroneous conclusions have been made because of an
inadequate search in the parameter space. However, no such more elaborate
search changed the final agreement with more than a single percent in terms
of the cost function. More details regarding the parameter estimation, and
examples of the scripts and limits used in the various searches are available
from the authors on request.



C χ
2 tests

All statistical tests are based on a null hypothesis, H0. The null hypothesis in
our χ2 tests is that the true data y(t) have been generated by the given model
output, ŷ(t|p̂), for a specific realization of the measurement noise v(t)

H0 : y(t) = ŷ(t|p̂) + v(t) for all t (20)

If this was true, the residuals ε(t), defined as the difference between the measured
and simulated outputs, would have the same distribution as the measurement
noise v(t). In this work we assume that the measurement noise is generated
by independent normally distributed processes with mean value zero, and with
variances σ2

j (t) for the time point t and measurement signal j. The variances are
estimated by the spread of the measurements from the individual experiments
at the different time-points and measurement signals.

If the squared residuals are divided by the variance, the null hypothesis is
thus that a squared normally distributed sequence is obtained. This means that
the null hypothesis assumes that the following test quantity

T =

N∑

i=1

ny∑

j=1

(
εj(ti|p̂)

σj(ti)

)2

=

N∑

i=1

ny∑

j=1

(
ŷj(ti|p̂) − y(ti)

σj(ti)

)2

(21)

should follow a χ2 distribution. One may therefore evaluate (21) and compare
it with a χ2 distribution of appropriate order. In this way one may judge how
unlikely it is that the null hypothesis is true. Here we choose a 95% limit for
rejection. Finally, since we use the same data set both for the estimation and
for the testing step, the degrees of freedom in the χ2 distribution is N · ny − r,
where r is the number of parameters varied in the estimation step (or the number
of identifiable parameters if that is smaller). Here the number of identifiable
parameters is 3 (estimated using an identifiability analysis in [2]), and we assume
it to be the same for all model structures, since the number of identifiable
parameters is primarily a property of the experimental data, and not of the
model structure. This means that the degrees of freedom is 11-3 = 8 [2]. The
resulting χ2 test results for all the model structures in Figures 2 and 3 is given
in Table 1.

D Akaike Information Criterion

The Akaike Information Criterion (AIC) is given by [3, 4]

log((1 + 2
r

N
VN )) (22)

where r denotes the number of (identifiable) parameters, N the number of mea-
surement points, and VN the cost function. The cost function should be un-
weighted but scaled with the number of samples, i.e.,

VN =
1

N

N∑

k=1

(y(tk) − ŷ(tk, p̂))2 (23)

where y and ŷ denote the measured and simulated output, respectively. When
models are compared the model with the lowest AIC value is chosen.



Model Test Threshold Acceptable
Structure Value (95%) agreement?
Mm,a 58 15.5 No
Mm,b 58 15.5 No
Mm,c 58 15.5 No
Mm,d 58 15.5 No
Mm,e 58 15.5 No
Mm,f 58 15.5 No
Mi,a 3.8 15.5 Yes
Mi,b 3.8 15.5 Yes
Mi,c 32 15.5 No
Mf 8.5 15.5 Yes

Table 1: The results of the χ2-tests for the model structures in Figures 2 and 3.
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